1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of speed-critical encoding functions.
11 //
12 // Author: Christian Duvivier (cduvivier@google.com)
13
14 #include "./dsp.h"
15
16 #if defined(__cplusplus) || defined(c_plusplus)
17 extern "C" {
18 #endif
19
20 #if defined(WEBP_USE_SSE2)
21 #include <stdlib.h> // for abs()
22 #include <emmintrin.h>
23
24 #include "../enc/vp8enci.h"
25
26 //------------------------------------------------------------------------------
27 // Quite useful macro for debugging. Left here for convenience.
28
29 #if 0
30 #include <stdio.h>
31 static void PrintReg(const __m128i r, const char* const name, int size) {
32 int n;
33 union {
34 __m128i r;
35 uint8_t i8[16];
36 uint16_t i16[8];
37 uint32_t i32[4];
38 uint64_t i64[2];
39 } tmp;
40 tmp.r = r;
41 printf("%s\t: ", name);
42 if (size == 8) {
43 for (n = 0; n < 16; ++n) printf("%.2x ", tmp.i8[n]);
44 } else if (size == 16) {
45 for (n = 0; n < 8; ++n) printf("%.4x ", tmp.i16[n]);
46 } else if (size == 32) {
47 for (n = 0; n < 4; ++n) printf("%.8x ", tmp.i32[n]);
48 } else {
49 for (n = 0; n < 2; ++n) printf("%.16lx ", tmp.i64[n]);
50 }
51 printf("\n");
52 }
53 #endif
54
55 //------------------------------------------------------------------------------
56 // Compute susceptibility based on DCT-coeff histograms:
57 // the higher, the "easier" the macroblock is to compress.
58
CollectHistogramSSE2(const uint8_t * ref,const uint8_t * pred,int start_block,int end_block,VP8Histogram * const histo)59 static void CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
60 int start_block, int end_block,
61 VP8Histogram* const histo) {
62 const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
63 int j;
64 for (j = start_block; j < end_block; ++j) {
65 int16_t out[16];
66 int k;
67
68 VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
69
70 // Convert coefficients to bin (within out[]).
71 {
72 // Load.
73 const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
74 const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
75 // sign(out) = out >> 15 (0x0000 if positive, 0xffff if negative)
76 const __m128i sign0 = _mm_srai_epi16(out0, 15);
77 const __m128i sign1 = _mm_srai_epi16(out1, 15);
78 // abs(out) = (out ^ sign) - sign
79 const __m128i xor0 = _mm_xor_si128(out0, sign0);
80 const __m128i xor1 = _mm_xor_si128(out1, sign1);
81 const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
82 const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
83 // v = abs(out) >> 3
84 const __m128i v0 = _mm_srai_epi16(abs0, 3);
85 const __m128i v1 = _mm_srai_epi16(abs1, 3);
86 // bin = min(v, MAX_COEFF_THRESH)
87 const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
88 const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
89 // Store.
90 _mm_storeu_si128((__m128i*)&out[0], bin0);
91 _mm_storeu_si128((__m128i*)&out[8], bin1);
92 }
93
94 // Convert coefficients to bin.
95 for (k = 0; k < 16; ++k) {
96 histo->distribution[out[k]]++;
97 }
98 }
99 }
100
101 //------------------------------------------------------------------------------
102 // Transforms (Paragraph 14.4)
103
104 // Does one or two inverse transforms.
ITransformSSE2(const uint8_t * ref,const int16_t * in,uint8_t * dst,int do_two)105 static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
106 int do_two) {
107 // This implementation makes use of 16-bit fixed point versions of two
108 // multiply constants:
109 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
110 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
111 //
112 // To be able to use signed 16-bit integers, we use the following trick to
113 // have constants within range:
114 // - Associated constants are obtained by subtracting the 16-bit fixed point
115 // version of one:
116 // k = K - (1 << 16) => K = k + (1 << 16)
117 // K1 = 85267 => k1 = 20091
118 // K2 = 35468 => k2 = -30068
119 // - The multiplication of a variable by a constant become the sum of the
120 // variable and the multiplication of that variable by the associated
121 // constant:
122 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
123 const __m128i k1 = _mm_set1_epi16(20091);
124 const __m128i k2 = _mm_set1_epi16(-30068);
125 __m128i T0, T1, T2, T3;
126
127 // Load and concatenate the transform coefficients (we'll do two inverse
128 // transforms in parallel). In the case of only one inverse transform, the
129 // second half of the vectors will just contain random value we'll never
130 // use nor store.
131 __m128i in0, in1, in2, in3;
132 {
133 in0 = _mm_loadl_epi64((__m128i*)&in[0]);
134 in1 = _mm_loadl_epi64((__m128i*)&in[4]);
135 in2 = _mm_loadl_epi64((__m128i*)&in[8]);
136 in3 = _mm_loadl_epi64((__m128i*)&in[12]);
137 // a00 a10 a20 a30 x x x x
138 // a01 a11 a21 a31 x x x x
139 // a02 a12 a22 a32 x x x x
140 // a03 a13 a23 a33 x x x x
141 if (do_two) {
142 const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
143 const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
144 const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
145 const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
146 in0 = _mm_unpacklo_epi64(in0, inB0);
147 in1 = _mm_unpacklo_epi64(in1, inB1);
148 in2 = _mm_unpacklo_epi64(in2, inB2);
149 in3 = _mm_unpacklo_epi64(in3, inB3);
150 // a00 a10 a20 a30 b00 b10 b20 b30
151 // a01 a11 a21 a31 b01 b11 b21 b31
152 // a02 a12 a22 a32 b02 b12 b22 b32
153 // a03 a13 a23 a33 b03 b13 b23 b33
154 }
155 }
156
157 // Vertical pass and subsequent transpose.
158 {
159 // First pass, c and d calculations are longer because of the "trick"
160 // multiplications.
161 const __m128i a = _mm_add_epi16(in0, in2);
162 const __m128i b = _mm_sub_epi16(in0, in2);
163 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
164 const __m128i c1 = _mm_mulhi_epi16(in1, k2);
165 const __m128i c2 = _mm_mulhi_epi16(in3, k1);
166 const __m128i c3 = _mm_sub_epi16(in1, in3);
167 const __m128i c4 = _mm_sub_epi16(c1, c2);
168 const __m128i c = _mm_add_epi16(c3, c4);
169 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
170 const __m128i d1 = _mm_mulhi_epi16(in1, k1);
171 const __m128i d2 = _mm_mulhi_epi16(in3, k2);
172 const __m128i d3 = _mm_add_epi16(in1, in3);
173 const __m128i d4 = _mm_add_epi16(d1, d2);
174 const __m128i d = _mm_add_epi16(d3, d4);
175
176 // Second pass.
177 const __m128i tmp0 = _mm_add_epi16(a, d);
178 const __m128i tmp1 = _mm_add_epi16(b, c);
179 const __m128i tmp2 = _mm_sub_epi16(b, c);
180 const __m128i tmp3 = _mm_sub_epi16(a, d);
181
182 // Transpose the two 4x4.
183 // a00 a01 a02 a03 b00 b01 b02 b03
184 // a10 a11 a12 a13 b10 b11 b12 b13
185 // a20 a21 a22 a23 b20 b21 b22 b23
186 // a30 a31 a32 a33 b30 b31 b32 b33
187 const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
188 const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
189 const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
190 const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
191 // a00 a10 a01 a11 a02 a12 a03 a13
192 // a20 a30 a21 a31 a22 a32 a23 a33
193 // b00 b10 b01 b11 b02 b12 b03 b13
194 // b20 b30 b21 b31 b22 b32 b23 b33
195 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
196 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
197 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
198 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
199 // a00 a10 a20 a30 a01 a11 a21 a31
200 // b00 b10 b20 b30 b01 b11 b21 b31
201 // a02 a12 a22 a32 a03 a13 a23 a33
202 // b02 b12 a22 b32 b03 b13 b23 b33
203 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
204 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
205 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
206 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
207 // a00 a10 a20 a30 b00 b10 b20 b30
208 // a01 a11 a21 a31 b01 b11 b21 b31
209 // a02 a12 a22 a32 b02 b12 b22 b32
210 // a03 a13 a23 a33 b03 b13 b23 b33
211 }
212
213 // Horizontal pass and subsequent transpose.
214 {
215 // First pass, c and d calculations are longer because of the "trick"
216 // multiplications.
217 const __m128i four = _mm_set1_epi16(4);
218 const __m128i dc = _mm_add_epi16(T0, four);
219 const __m128i a = _mm_add_epi16(dc, T2);
220 const __m128i b = _mm_sub_epi16(dc, T2);
221 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
222 const __m128i c1 = _mm_mulhi_epi16(T1, k2);
223 const __m128i c2 = _mm_mulhi_epi16(T3, k1);
224 const __m128i c3 = _mm_sub_epi16(T1, T3);
225 const __m128i c4 = _mm_sub_epi16(c1, c2);
226 const __m128i c = _mm_add_epi16(c3, c4);
227 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
228 const __m128i d1 = _mm_mulhi_epi16(T1, k1);
229 const __m128i d2 = _mm_mulhi_epi16(T3, k2);
230 const __m128i d3 = _mm_add_epi16(T1, T3);
231 const __m128i d4 = _mm_add_epi16(d1, d2);
232 const __m128i d = _mm_add_epi16(d3, d4);
233
234 // Second pass.
235 const __m128i tmp0 = _mm_add_epi16(a, d);
236 const __m128i tmp1 = _mm_add_epi16(b, c);
237 const __m128i tmp2 = _mm_sub_epi16(b, c);
238 const __m128i tmp3 = _mm_sub_epi16(a, d);
239 const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
240 const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
241 const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
242 const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
243
244 // Transpose the two 4x4.
245 // a00 a01 a02 a03 b00 b01 b02 b03
246 // a10 a11 a12 a13 b10 b11 b12 b13
247 // a20 a21 a22 a23 b20 b21 b22 b23
248 // a30 a31 a32 a33 b30 b31 b32 b33
249 const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
250 const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
251 const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
252 const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
253 // a00 a10 a01 a11 a02 a12 a03 a13
254 // a20 a30 a21 a31 a22 a32 a23 a33
255 // b00 b10 b01 b11 b02 b12 b03 b13
256 // b20 b30 b21 b31 b22 b32 b23 b33
257 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
258 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
259 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
260 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
261 // a00 a10 a20 a30 a01 a11 a21 a31
262 // b00 b10 b20 b30 b01 b11 b21 b31
263 // a02 a12 a22 a32 a03 a13 a23 a33
264 // b02 b12 a22 b32 b03 b13 b23 b33
265 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
266 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
267 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
268 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
269 // a00 a10 a20 a30 b00 b10 b20 b30
270 // a01 a11 a21 a31 b01 b11 b21 b31
271 // a02 a12 a22 a32 b02 b12 b22 b32
272 // a03 a13 a23 a33 b03 b13 b23 b33
273 }
274
275 // Add inverse transform to 'ref' and store.
276 {
277 const __m128i zero = _mm_setzero_si128();
278 // Load the reference(s).
279 __m128i ref0, ref1, ref2, ref3;
280 if (do_two) {
281 // Load eight bytes/pixels per line.
282 ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
283 ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
284 ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
285 ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
286 } else {
287 // Load four bytes/pixels per line.
288 ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
289 ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
290 ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
291 ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
292 }
293 // Convert to 16b.
294 ref0 = _mm_unpacklo_epi8(ref0, zero);
295 ref1 = _mm_unpacklo_epi8(ref1, zero);
296 ref2 = _mm_unpacklo_epi8(ref2, zero);
297 ref3 = _mm_unpacklo_epi8(ref3, zero);
298 // Add the inverse transform(s).
299 ref0 = _mm_add_epi16(ref0, T0);
300 ref1 = _mm_add_epi16(ref1, T1);
301 ref2 = _mm_add_epi16(ref2, T2);
302 ref3 = _mm_add_epi16(ref3, T3);
303 // Unsigned saturate to 8b.
304 ref0 = _mm_packus_epi16(ref0, ref0);
305 ref1 = _mm_packus_epi16(ref1, ref1);
306 ref2 = _mm_packus_epi16(ref2, ref2);
307 ref3 = _mm_packus_epi16(ref3, ref3);
308 // Store the results.
309 if (do_two) {
310 // Store eight bytes/pixels per line.
311 _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
312 _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
313 _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
314 _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
315 } else {
316 // Store four bytes/pixels per line.
317 *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
318 *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
319 *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
320 *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
321 }
322 }
323 }
324
FTransformSSE2(const uint8_t * src,const uint8_t * ref,int16_t * out)325 static void FTransformSSE2(const uint8_t* src, const uint8_t* ref,
326 int16_t* out) {
327 const __m128i zero = _mm_setzero_si128();
328 const __m128i seven = _mm_set1_epi16(7);
329 const __m128i k937 = _mm_set1_epi32(937);
330 const __m128i k1812 = _mm_set1_epi32(1812);
331 const __m128i k51000 = _mm_set1_epi32(51000);
332 const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
333 const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217,
334 5352, 2217, 5352, 2217);
335 const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
336 2217, -5352, 2217, -5352);
337 const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
338 const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
339 const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
340 2217, 5352, 2217, 5352);
341 const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
342 -5352, 2217, -5352, 2217);
343 __m128i v01, v32;
344
345
346 // Difference between src and ref and initial transpose.
347 {
348 // Load src and convert to 16b.
349 const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
350 const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
351 const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
352 const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
353 const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
354 const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
355 const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
356 const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
357 // Load ref and convert to 16b.
358 const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
359 const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
360 const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
361 const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
362 const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
363 const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
364 const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
365 const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
366 // Compute difference. -> 00 01 02 03 00 00 00 00
367 const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
368 const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
369 const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
370 const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
371
372
373 // Unpack and shuffle
374 // 00 01 02 03 0 0 0 0
375 // 10 11 12 13 0 0 0 0
376 // 20 21 22 23 0 0 0 0
377 // 30 31 32 33 0 0 0 0
378 const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1);
379 const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3);
380 // 00 01 10 11 02 03 12 13
381 // 20 21 30 31 22 23 32 33
382 const __m128i shuf01_p =
383 _mm_shufflehi_epi16(shuf01, _MM_SHUFFLE(2, 3, 0, 1));
384 const __m128i shuf23_p =
385 _mm_shufflehi_epi16(shuf23, _MM_SHUFFLE(2, 3, 0, 1));
386 // 00 01 10 11 03 02 13 12
387 // 20 21 30 31 23 22 33 32
388 const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
389 const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
390 // 00 01 10 11 20 21 30 31
391 // 03 02 13 12 23 22 33 32
392 const __m128i a01 = _mm_add_epi16(s01, s32);
393 const __m128i a32 = _mm_sub_epi16(s01, s32);
394 // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
395 // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
396
397 const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ]
398 const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ]
399 const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
400 const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
401 const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
402 const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
403 const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9);
404 const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9);
405 const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
406 const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
407 const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1...
408 const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3
409 const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
410 v01 = _mm_unpacklo_epi32(s_lo, s_hi);
411 v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2..
412 }
413
414 // Second pass
415 {
416 // Same operations are done on the (0,3) and (1,2) pairs.
417 // a0 = v0 + v3
418 // a1 = v1 + v2
419 // a3 = v0 - v3
420 // a2 = v1 - v2
421 const __m128i a01 = _mm_add_epi16(v01, v32);
422 const __m128i a32 = _mm_sub_epi16(v01, v32);
423 const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
424 const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
425 const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
426
427 // d0 = (a0 + a1 + 7) >> 4;
428 // d2 = (a0 - a1 + 7) >> 4;
429 const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
430 const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
431 const __m128i d0 = _mm_srai_epi16(c0, 4);
432 const __m128i d2 = _mm_srai_epi16(c2, 4);
433
434 // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
435 // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
436 const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
437 const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
438 const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
439 const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
440 const __m128i d3 = _mm_add_epi32(c3, k51000);
441 const __m128i e1 = _mm_srai_epi32(d1, 16);
442 const __m128i e3 = _mm_srai_epi32(d3, 16);
443 const __m128i f1 = _mm_packs_epi32(e1, e1);
444 const __m128i f3 = _mm_packs_epi32(e3, e3);
445 // f1 = f1 + (a3 != 0);
446 // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
447 // desired (0, 1), we add one earlier through k12000_plus_one.
448 // -> f1 = f1 + 1 - (a3 == 0)
449 const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
450
451 _mm_storel_epi64((__m128i*)&out[ 0], d0);
452 _mm_storel_epi64((__m128i*)&out[ 4], g1);
453 _mm_storel_epi64((__m128i*)&out[ 8], d2);
454 _mm_storel_epi64((__m128i*)&out[12], f3);
455 }
456 }
457
FTransformWHTSSE2(const int16_t * in,int16_t * out)458 static void FTransformWHTSSE2(const int16_t* in, int16_t* out) {
459 int16_t tmp[16];
460 int i;
461 for (i = 0; i < 4; ++i, in += 64) {
462 const int a0 = (in[0 * 16] + in[2 * 16]);
463 const int a1 = (in[1 * 16] + in[3 * 16]);
464 const int a2 = (in[1 * 16] - in[3 * 16]);
465 const int a3 = (in[0 * 16] - in[2 * 16]);
466 tmp[0 + i * 4] = a0 + a1;
467 tmp[1 + i * 4] = a3 + a2;
468 tmp[2 + i * 4] = a3 - a2;
469 tmp[3 + i * 4] = a0 - a1;
470 }
471 {
472 const __m128i src0 = _mm_loadl_epi64((__m128i*)&tmp[0]);
473 const __m128i src1 = _mm_loadl_epi64((__m128i*)&tmp[4]);
474 const __m128i src2 = _mm_loadl_epi64((__m128i*)&tmp[8]);
475 const __m128i src3 = _mm_loadl_epi64((__m128i*)&tmp[12]);
476 const __m128i a0 = _mm_add_epi16(src0, src2);
477 const __m128i a1 = _mm_add_epi16(src1, src3);
478 const __m128i a2 = _mm_sub_epi16(src1, src3);
479 const __m128i a3 = _mm_sub_epi16(src0, src2);
480 const __m128i b0 = _mm_srai_epi16(_mm_adds_epi16(a0, a1), 1);
481 const __m128i b1 = _mm_srai_epi16(_mm_adds_epi16(a3, a2), 1);
482 const __m128i b2 = _mm_srai_epi16(_mm_subs_epi16(a3, a2), 1);
483 const __m128i b3 = _mm_srai_epi16(_mm_subs_epi16(a0, a1), 1);
484 _mm_storel_epi64((__m128i*)&out[ 0], b0);
485 _mm_storel_epi64((__m128i*)&out[ 4], b1);
486 _mm_storel_epi64((__m128i*)&out[ 8], b2);
487 _mm_storel_epi64((__m128i*)&out[12], b3);
488 }
489 }
490
491 //------------------------------------------------------------------------------
492 // Metric
493
SSE_Nx4SSE2(const uint8_t * a,const uint8_t * b,int num_quads,int do_16)494 static int SSE_Nx4SSE2(const uint8_t* a, const uint8_t* b,
495 int num_quads, int do_16) {
496 const __m128i zero = _mm_setzero_si128();
497 __m128i sum1 = zero;
498 __m128i sum2 = zero;
499
500 while (num_quads-- > 0) {
501 // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok,
502 // thanks to buffer over-allocation to that effect.
503 const __m128i a0 = _mm_loadu_si128((__m128i*)&a[BPS * 0]);
504 const __m128i a1 = _mm_loadu_si128((__m128i*)&a[BPS * 1]);
505 const __m128i a2 = _mm_loadu_si128((__m128i*)&a[BPS * 2]);
506 const __m128i a3 = _mm_loadu_si128((__m128i*)&a[BPS * 3]);
507 const __m128i b0 = _mm_loadu_si128((__m128i*)&b[BPS * 0]);
508 const __m128i b1 = _mm_loadu_si128((__m128i*)&b[BPS * 1]);
509 const __m128i b2 = _mm_loadu_si128((__m128i*)&b[BPS * 2]);
510 const __m128i b3 = _mm_loadu_si128((__m128i*)&b[BPS * 3]);
511
512 // compute clip0(a-b) and clip0(b-a)
513 const __m128i a0p = _mm_subs_epu8(a0, b0);
514 const __m128i a0m = _mm_subs_epu8(b0, a0);
515 const __m128i a1p = _mm_subs_epu8(a1, b1);
516 const __m128i a1m = _mm_subs_epu8(b1, a1);
517 const __m128i a2p = _mm_subs_epu8(a2, b2);
518 const __m128i a2m = _mm_subs_epu8(b2, a2);
519 const __m128i a3p = _mm_subs_epu8(a3, b3);
520 const __m128i a3m = _mm_subs_epu8(b3, a3);
521
522 // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a)
523 const __m128i diff0 = _mm_or_si128(a0p, a0m);
524 const __m128i diff1 = _mm_or_si128(a1p, a1m);
525 const __m128i diff2 = _mm_or_si128(a2p, a2m);
526 const __m128i diff3 = _mm_or_si128(a3p, a3m);
527
528 // unpack (only four operations, instead of eight)
529 const __m128i low0 = _mm_unpacklo_epi8(diff0, zero);
530 const __m128i low1 = _mm_unpacklo_epi8(diff1, zero);
531 const __m128i low2 = _mm_unpacklo_epi8(diff2, zero);
532 const __m128i low3 = _mm_unpacklo_epi8(diff3, zero);
533
534 // multiply with self
535 const __m128i low_madd0 = _mm_madd_epi16(low0, low0);
536 const __m128i low_madd1 = _mm_madd_epi16(low1, low1);
537 const __m128i low_madd2 = _mm_madd_epi16(low2, low2);
538 const __m128i low_madd3 = _mm_madd_epi16(low3, low3);
539
540 // collect in a cascading way
541 const __m128i low_sum0 = _mm_add_epi32(low_madd0, low_madd1);
542 const __m128i low_sum1 = _mm_add_epi32(low_madd2, low_madd3);
543 sum1 = _mm_add_epi32(sum1, low_sum0);
544 sum2 = _mm_add_epi32(sum2, low_sum1);
545
546 if (do_16) { // if necessary, process the higher 8 bytes similarly
547 const __m128i hi0 = _mm_unpackhi_epi8(diff0, zero);
548 const __m128i hi1 = _mm_unpackhi_epi8(diff1, zero);
549 const __m128i hi2 = _mm_unpackhi_epi8(diff2, zero);
550 const __m128i hi3 = _mm_unpackhi_epi8(diff3, zero);
551
552 const __m128i hi_madd0 = _mm_madd_epi16(hi0, hi0);
553 const __m128i hi_madd1 = _mm_madd_epi16(hi1, hi1);
554 const __m128i hi_madd2 = _mm_madd_epi16(hi2, hi2);
555 const __m128i hi_madd3 = _mm_madd_epi16(hi3, hi3);
556 const __m128i hi_sum0 = _mm_add_epi32(hi_madd0, hi_madd1);
557 const __m128i hi_sum1 = _mm_add_epi32(hi_madd2, hi_madd3);
558 sum1 = _mm_add_epi32(sum1, hi_sum0);
559 sum2 = _mm_add_epi32(sum2, hi_sum1);
560 }
561 a += 4 * BPS;
562 b += 4 * BPS;
563 }
564 {
565 int32_t tmp[4];
566 const __m128i sum = _mm_add_epi32(sum1, sum2);
567 _mm_storeu_si128((__m128i*)tmp, sum);
568 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
569 }
570 }
571
SSE16x16SSE2(const uint8_t * a,const uint8_t * b)572 static int SSE16x16SSE2(const uint8_t* a, const uint8_t* b) {
573 return SSE_Nx4SSE2(a, b, 4, 1);
574 }
575
SSE16x8SSE2(const uint8_t * a,const uint8_t * b)576 static int SSE16x8SSE2(const uint8_t* a, const uint8_t* b) {
577 return SSE_Nx4SSE2(a, b, 2, 1);
578 }
579
SSE8x8SSE2(const uint8_t * a,const uint8_t * b)580 static int SSE8x8SSE2(const uint8_t* a, const uint8_t* b) {
581 return SSE_Nx4SSE2(a, b, 2, 0);
582 }
583
SSE4x4SSE2(const uint8_t * a,const uint8_t * b)584 static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) {
585 const __m128i zero = _mm_setzero_si128();
586
587 // Load values. Note that we read 8 pixels instead of 4,
588 // but the a/b buffers are over-allocated to that effect.
589 const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
590 const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
591 const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
592 const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
593 const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
594 const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
595 const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
596 const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
597
598 // Combine pair of lines and convert to 16b.
599 const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
600 const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
601 const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
602 const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
603 const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
604 const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
605 const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
606 const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
607
608 // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
609 // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
610 // need absolute values, there is no need to do calculation
611 // in 8bit as we are already in 16bit, ... Yet this is what
612 // benchmarks the fastest!
613 const __m128i d0 = _mm_subs_epu8(a01s, b01s);
614 const __m128i d1 = _mm_subs_epu8(b01s, a01s);
615 const __m128i d2 = _mm_subs_epu8(a23s, b23s);
616 const __m128i d3 = _mm_subs_epu8(b23s, a23s);
617
618 // Square and add them all together.
619 const __m128i madd0 = _mm_madd_epi16(d0, d0);
620 const __m128i madd1 = _mm_madd_epi16(d1, d1);
621 const __m128i madd2 = _mm_madd_epi16(d2, d2);
622 const __m128i madd3 = _mm_madd_epi16(d3, d3);
623 const __m128i sum0 = _mm_add_epi32(madd0, madd1);
624 const __m128i sum1 = _mm_add_epi32(madd2, madd3);
625 const __m128i sum2 = _mm_add_epi32(sum0, sum1);
626
627 int32_t tmp[4];
628 _mm_storeu_si128((__m128i*)tmp, sum2);
629 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
630 }
631
632 //------------------------------------------------------------------------------
633 // Texture distortion
634 //
635 // We try to match the spectral content (weighted) between source and
636 // reconstructed samples.
637
638 // Hadamard transform
639 // Returns the difference between the weighted sum of the absolute value of
640 // transformed coefficients.
TTransformSSE2(const uint8_t * inA,const uint8_t * inB,const uint16_t * const w)641 static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB,
642 const uint16_t* const w) {
643 int32_t sum[4];
644 __m128i tmp_0, tmp_1, tmp_2, tmp_3;
645 const __m128i zero = _mm_setzero_si128();
646
647 // Load, combine and tranpose inputs.
648 {
649 const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
650 const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
651 const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
652 const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
653 const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
654 const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
655 const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
656 const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
657
658 // Combine inA and inB (we'll do two transforms in parallel).
659 const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
660 const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
661 const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
662 const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
663 // a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0
664 // a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0
665 // a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0
666 // a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0
667
668 // Transpose the two 4x4, discarding the filling zeroes.
669 const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
670 const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
671 // a00 a20 b00 b20 a01 a21 b01 b21 a02 a22 b02 b22 a03 a23 b03 b23
672 // a10 a30 b10 b30 a11 a31 b11 b31 a12 a32 b12 b32 a13 a33 b13 b33
673 const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
674 const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
675 // a00 a10 a20 a30 b00 b10 b20 b30 a01 a11 a21 a31 b01 b11 b21 b31
676 // a02 a12 a22 a32 b02 b12 b22 b32 a03 a13 a23 a33 b03 b13 b23 b33
677
678 // Convert to 16b.
679 tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
680 tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
681 tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
682 tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
683 // a00 a10 a20 a30 b00 b10 b20 b30
684 // a01 a11 a21 a31 b01 b11 b21 b31
685 // a02 a12 a22 a32 b02 b12 b22 b32
686 // a03 a13 a23 a33 b03 b13 b23 b33
687 }
688
689 // Horizontal pass and subsequent transpose.
690 {
691 // Calculate a and b (two 4x4 at once).
692 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
693 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
694 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
695 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
696 const __m128i b0 = _mm_add_epi16(a0, a1);
697 const __m128i b1 = _mm_add_epi16(a3, a2);
698 const __m128i b2 = _mm_sub_epi16(a3, a2);
699 const __m128i b3 = _mm_sub_epi16(a0, a1);
700 // a00 a01 a02 a03 b00 b01 b02 b03
701 // a10 a11 a12 a13 b10 b11 b12 b13
702 // a20 a21 a22 a23 b20 b21 b22 b23
703 // a30 a31 a32 a33 b30 b31 b32 b33
704
705 // Transpose the two 4x4.
706 const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
707 const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
708 const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
709 const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
710 // a00 a10 a01 a11 a02 a12 a03 a13
711 // a20 a30 a21 a31 a22 a32 a23 a33
712 // b00 b10 b01 b11 b02 b12 b03 b13
713 // b20 b30 b21 b31 b22 b32 b23 b33
714 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
715 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
716 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
717 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
718 // a00 a10 a20 a30 a01 a11 a21 a31
719 // b00 b10 b20 b30 b01 b11 b21 b31
720 // a02 a12 a22 a32 a03 a13 a23 a33
721 // b02 b12 a22 b32 b03 b13 b23 b33
722 tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
723 tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
724 tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
725 tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
726 // a00 a10 a20 a30 b00 b10 b20 b30
727 // a01 a11 a21 a31 b01 b11 b21 b31
728 // a02 a12 a22 a32 b02 b12 b22 b32
729 // a03 a13 a23 a33 b03 b13 b23 b33
730 }
731
732 // Vertical pass and difference of weighted sums.
733 {
734 // Load all inputs.
735 // TODO(cduvivier): Make variable declarations and allocations aligned so
736 // we can use _mm_load_si128 instead of _mm_loadu_si128.
737 const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
738 const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
739
740 // Calculate a and b (two 4x4 at once).
741 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
742 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
743 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
744 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
745 const __m128i b0 = _mm_add_epi16(a0, a1);
746 const __m128i b1 = _mm_add_epi16(a3, a2);
747 const __m128i b2 = _mm_sub_epi16(a3, a2);
748 const __m128i b3 = _mm_sub_epi16(a0, a1);
749
750 // Separate the transforms of inA and inB.
751 __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
752 __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
753 __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
754 __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
755
756 {
757 // sign(b) = b >> 15 (0x0000 if positive, 0xffff if negative)
758 const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
759 const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
760 const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
761 const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
762
763 // b = abs(b) = (b ^ sign) - sign
764 A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
765 A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
766 B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
767 B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
768 A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
769 A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
770 B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
771 B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
772 }
773
774 // weighted sums
775 A_b0 = _mm_madd_epi16(A_b0, w_0);
776 A_b2 = _mm_madd_epi16(A_b2, w_8);
777 B_b0 = _mm_madd_epi16(B_b0, w_0);
778 B_b2 = _mm_madd_epi16(B_b2, w_8);
779 A_b0 = _mm_add_epi32(A_b0, A_b2);
780 B_b0 = _mm_add_epi32(B_b0, B_b2);
781
782 // difference of weighted sums
783 A_b0 = _mm_sub_epi32(A_b0, B_b0);
784 _mm_storeu_si128((__m128i*)&sum[0], A_b0);
785 }
786 return sum[0] + sum[1] + sum[2] + sum[3];
787 }
788
Disto4x4SSE2(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)789 static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b,
790 const uint16_t* const w) {
791 const int diff_sum = TTransformSSE2(a, b, w);
792 return abs(diff_sum) >> 5;
793 }
794
Disto16x16SSE2(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)795 static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b,
796 const uint16_t* const w) {
797 int D = 0;
798 int x, y;
799 for (y = 0; y < 16 * BPS; y += 4 * BPS) {
800 for (x = 0; x < 16; x += 4) {
801 D += Disto4x4SSE2(a + x + y, b + x + y, w);
802 }
803 }
804 return D;
805 }
806
807 //------------------------------------------------------------------------------
808 // Quantization
809 //
810
811 // Simple quantization
QuantizeBlockSSE2(int16_t in[16],int16_t out[16],int n,const VP8Matrix * const mtx)812 static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16],
813 int n, const VP8Matrix* const mtx) {
814 const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
815 const __m128i zero = _mm_setzero_si128();
816 __m128i coeff0, coeff8;
817 __m128i out0, out8;
818 __m128i packed_out;
819
820 // Load all inputs.
821 // TODO(cduvivier): Make variable declarations and allocations aligned so that
822 // we can use _mm_load_si128 instead of _mm_loadu_si128.
823 __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
824 __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
825 const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]);
826 const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]);
827 const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
828 const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
829 const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
830 const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
831 const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
832 const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
833 const __m128i zthresh0 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[0]);
834 const __m128i zthresh8 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[8]);
835
836 // sign(in) = in >> 15 (0x0000 if positive, 0xffff if negative)
837 const __m128i sign0 = _mm_srai_epi16(in0, 15);
838 const __m128i sign8 = _mm_srai_epi16(in8, 15);
839
840 // coeff = abs(in) = (in ^ sign) - sign
841 coeff0 = _mm_xor_si128(in0, sign0);
842 coeff8 = _mm_xor_si128(in8, sign8);
843 coeff0 = _mm_sub_epi16(coeff0, sign0);
844 coeff8 = _mm_sub_epi16(coeff8, sign8);
845
846 // coeff = abs(in) + sharpen
847 coeff0 = _mm_add_epi16(coeff0, sharpen0);
848 coeff8 = _mm_add_epi16(coeff8, sharpen8);
849
850 // out = (coeff * iQ + B) >> QFIX;
851 {
852 // doing calculations with 32b precision (QFIX=17)
853 // out = (coeff * iQ)
854 __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
855 __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
856 __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
857 __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
858 __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
859 __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
860 __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
861 __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
862 // expand bias from 16b to 32b
863 __m128i bias_00 = _mm_unpacklo_epi16(bias0, zero);
864 __m128i bias_04 = _mm_unpackhi_epi16(bias0, zero);
865 __m128i bias_08 = _mm_unpacklo_epi16(bias8, zero);
866 __m128i bias_12 = _mm_unpackhi_epi16(bias8, zero);
867 // out = (coeff * iQ + B)
868 out_00 = _mm_add_epi32(out_00, bias_00);
869 out_04 = _mm_add_epi32(out_04, bias_04);
870 out_08 = _mm_add_epi32(out_08, bias_08);
871 out_12 = _mm_add_epi32(out_12, bias_12);
872 // out = (coeff * iQ + B) >> QFIX;
873 out_00 = _mm_srai_epi32(out_00, QFIX);
874 out_04 = _mm_srai_epi32(out_04, QFIX);
875 out_08 = _mm_srai_epi32(out_08, QFIX);
876 out_12 = _mm_srai_epi32(out_12, QFIX);
877
878 // pack result as 16b
879 out0 = _mm_packs_epi32(out_00, out_04);
880 out8 = _mm_packs_epi32(out_08, out_12);
881
882 // if (coeff > 2047) coeff = 2047
883 out0 = _mm_min_epi16(out0, max_coeff_2047);
884 out8 = _mm_min_epi16(out8, max_coeff_2047);
885 }
886
887 // get sign back (if (sign[j]) out_n = -out_n)
888 out0 = _mm_xor_si128(out0, sign0);
889 out8 = _mm_xor_si128(out8, sign8);
890 out0 = _mm_sub_epi16(out0, sign0);
891 out8 = _mm_sub_epi16(out8, sign8);
892
893 // in = out * Q
894 in0 = _mm_mullo_epi16(out0, q0);
895 in8 = _mm_mullo_epi16(out8, q8);
896
897 // if (coeff <= mtx->zthresh_) {in=0; out=0;}
898 {
899 __m128i cmp0 = _mm_cmpgt_epi16(coeff0, zthresh0);
900 __m128i cmp8 = _mm_cmpgt_epi16(coeff8, zthresh8);
901 in0 = _mm_and_si128(in0, cmp0);
902 in8 = _mm_and_si128(in8, cmp8);
903 _mm_storeu_si128((__m128i*)&in[0], in0);
904 _mm_storeu_si128((__m128i*)&in[8], in8);
905 out0 = _mm_and_si128(out0, cmp0);
906 out8 = _mm_and_si128(out8, cmp8);
907 }
908
909 // zigzag the output before storing it.
910 //
911 // The zigzag pattern can almost be reproduced with a small sequence of
912 // shuffles. After it, we only need to swap the 7th (ending up in third
913 // position instead of twelfth) and 8th values.
914 {
915 __m128i outZ0, outZ8;
916 outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0));
917 outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
918 outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
919 outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1));
920 outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
921 outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
922 _mm_storeu_si128((__m128i*)&out[0], outZ0);
923 _mm_storeu_si128((__m128i*)&out[8], outZ8);
924 packed_out = _mm_packs_epi16(outZ0, outZ8);
925 }
926 {
927 const int16_t outZ_12 = out[12];
928 const int16_t outZ_3 = out[3];
929 out[3] = outZ_12;
930 out[12] = outZ_3;
931 }
932
933 // detect if all 'out' values are zeroes or not
934 {
935 int32_t tmp[4];
936 _mm_storeu_si128((__m128i*)tmp, packed_out);
937 if (n) {
938 tmp[0] &= ~0xff;
939 }
940 return (tmp[3] || tmp[2] || tmp[1] || tmp[0]);
941 }
942 }
943
944 #endif // WEBP_USE_SSE2
945
946 //------------------------------------------------------------------------------
947 // Entry point
948
949 extern void VP8EncDspInitSSE2(void);
950
VP8EncDspInitSSE2(void)951 void VP8EncDspInitSSE2(void) {
952 #if defined(WEBP_USE_SSE2)
953 VP8CollectHistogram = CollectHistogramSSE2;
954 VP8EncQuantizeBlock = QuantizeBlockSSE2;
955 VP8ITransform = ITransformSSE2;
956 VP8FTransform = FTransformSSE2;
957 VP8FTransformWHT = FTransformWHTSSE2;
958 VP8SSE16x16 = SSE16x16SSE2;
959 VP8SSE16x8 = SSE16x8SSE2;
960 VP8SSE8x8 = SSE8x8SSE2;
961 VP8SSE4x4 = SSE4x4SSE2;
962 VP8TDisto4x4 = Disto4x4SSE2;
963 VP8TDisto16x16 = Disto16x16SSE2;
964 #endif // WEBP_USE_SSE2
965 }
966
967 #if defined(__cplusplus) || defined(c_plusplus)
968 } // extern "C"
969 #endif
970