1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of speed-critical encoding functions.
11 //
12 // Author: Christian Duvivier (cduvivier@google.com)
13 
14 #include "./dsp.h"
15 
16 #if defined(__cplusplus) || defined(c_plusplus)
17 extern "C" {
18 #endif
19 
20 #if defined(WEBP_USE_SSE2)
21 #include <stdlib.h>  // for abs()
22 #include <emmintrin.h>
23 
24 #include "../enc/vp8enci.h"
25 
26 //------------------------------------------------------------------------------
27 // Quite useful macro for debugging. Left here for convenience.
28 
29 #if 0
30 #include <stdio.h>
31 static void PrintReg(const __m128i r, const char* const name, int size) {
32   int n;
33   union {
34     __m128i r;
35     uint8_t i8[16];
36     uint16_t i16[8];
37     uint32_t i32[4];
38     uint64_t i64[2];
39   } tmp;
40   tmp.r = r;
41   printf("%s\t: ", name);
42   if (size == 8) {
43     for (n = 0; n < 16; ++n) printf("%.2x ", tmp.i8[n]);
44   } else if (size == 16) {
45     for (n = 0; n < 8; ++n) printf("%.4x ", tmp.i16[n]);
46   } else if (size == 32) {
47     for (n = 0; n < 4; ++n) printf("%.8x ", tmp.i32[n]);
48   } else {
49     for (n = 0; n < 2; ++n) printf("%.16lx ", tmp.i64[n]);
50   }
51   printf("\n");
52 }
53 #endif
54 
55 //------------------------------------------------------------------------------
56 // Compute susceptibility based on DCT-coeff histograms:
57 // the higher, the "easier" the macroblock is to compress.
58 
CollectHistogramSSE2(const uint8_t * ref,const uint8_t * pred,int start_block,int end_block,VP8Histogram * const histo)59 static void CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
60                                  int start_block, int end_block,
61                                  VP8Histogram* const histo) {
62   const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
63   int j;
64   for (j = start_block; j < end_block; ++j) {
65     int16_t out[16];
66     int k;
67 
68     VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
69 
70     // Convert coefficients to bin (within out[]).
71     {
72       // Load.
73       const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
74       const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
75       // sign(out) = out >> 15  (0x0000 if positive, 0xffff if negative)
76       const __m128i sign0 = _mm_srai_epi16(out0, 15);
77       const __m128i sign1 = _mm_srai_epi16(out1, 15);
78       // abs(out) = (out ^ sign) - sign
79       const __m128i xor0 = _mm_xor_si128(out0, sign0);
80       const __m128i xor1 = _mm_xor_si128(out1, sign1);
81       const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
82       const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
83       // v = abs(out) >> 3
84       const __m128i v0 = _mm_srai_epi16(abs0, 3);
85       const __m128i v1 = _mm_srai_epi16(abs1, 3);
86       // bin = min(v, MAX_COEFF_THRESH)
87       const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
88       const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
89       // Store.
90       _mm_storeu_si128((__m128i*)&out[0], bin0);
91       _mm_storeu_si128((__m128i*)&out[8], bin1);
92     }
93 
94     // Convert coefficients to bin.
95     for (k = 0; k < 16; ++k) {
96       histo->distribution[out[k]]++;
97     }
98   }
99 }
100 
101 //------------------------------------------------------------------------------
102 // Transforms (Paragraph 14.4)
103 
104 // Does one or two inverse transforms.
ITransformSSE2(const uint8_t * ref,const int16_t * in,uint8_t * dst,int do_two)105 static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
106                            int do_two) {
107   // This implementation makes use of 16-bit fixed point versions of two
108   // multiply constants:
109   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
110   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
111   //
112   // To be able to use signed 16-bit integers, we use the following trick to
113   // have constants within range:
114   // - Associated constants are obtained by subtracting the 16-bit fixed point
115   //   version of one:
116   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
117   //      K1 = 85267  =>  k1 =  20091
118   //      K2 = 35468  =>  k2 = -30068
119   // - The multiplication of a variable by a constant become the sum of the
120   //   variable and the multiplication of that variable by the associated
121   //   constant:
122   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
123   const __m128i k1 = _mm_set1_epi16(20091);
124   const __m128i k2 = _mm_set1_epi16(-30068);
125   __m128i T0, T1, T2, T3;
126 
127   // Load and concatenate the transform coefficients (we'll do two inverse
128   // transforms in parallel). In the case of only one inverse transform, the
129   // second half of the vectors will just contain random value we'll never
130   // use nor store.
131   __m128i in0, in1, in2, in3;
132   {
133     in0 = _mm_loadl_epi64((__m128i*)&in[0]);
134     in1 = _mm_loadl_epi64((__m128i*)&in[4]);
135     in2 = _mm_loadl_epi64((__m128i*)&in[8]);
136     in3 = _mm_loadl_epi64((__m128i*)&in[12]);
137     // a00 a10 a20 a30   x x x x
138     // a01 a11 a21 a31   x x x x
139     // a02 a12 a22 a32   x x x x
140     // a03 a13 a23 a33   x x x x
141     if (do_two) {
142       const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
143       const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
144       const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
145       const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
146       in0 = _mm_unpacklo_epi64(in0, inB0);
147       in1 = _mm_unpacklo_epi64(in1, inB1);
148       in2 = _mm_unpacklo_epi64(in2, inB2);
149       in3 = _mm_unpacklo_epi64(in3, inB3);
150       // a00 a10 a20 a30   b00 b10 b20 b30
151       // a01 a11 a21 a31   b01 b11 b21 b31
152       // a02 a12 a22 a32   b02 b12 b22 b32
153       // a03 a13 a23 a33   b03 b13 b23 b33
154     }
155   }
156 
157   // Vertical pass and subsequent transpose.
158   {
159     // First pass, c and d calculations are longer because of the "trick"
160     // multiplications.
161     const __m128i a = _mm_add_epi16(in0, in2);
162     const __m128i b = _mm_sub_epi16(in0, in2);
163     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
164     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
165     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
166     const __m128i c3 = _mm_sub_epi16(in1, in3);
167     const __m128i c4 = _mm_sub_epi16(c1, c2);
168     const __m128i c = _mm_add_epi16(c3, c4);
169     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
170     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
171     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
172     const __m128i d3 = _mm_add_epi16(in1, in3);
173     const __m128i d4 = _mm_add_epi16(d1, d2);
174     const __m128i d = _mm_add_epi16(d3, d4);
175 
176     // Second pass.
177     const __m128i tmp0 = _mm_add_epi16(a, d);
178     const __m128i tmp1 = _mm_add_epi16(b, c);
179     const __m128i tmp2 = _mm_sub_epi16(b, c);
180     const __m128i tmp3 = _mm_sub_epi16(a, d);
181 
182     // Transpose the two 4x4.
183     // a00 a01 a02 a03   b00 b01 b02 b03
184     // a10 a11 a12 a13   b10 b11 b12 b13
185     // a20 a21 a22 a23   b20 b21 b22 b23
186     // a30 a31 a32 a33   b30 b31 b32 b33
187     const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
188     const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
189     const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
190     const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
191     // a00 a10 a01 a11   a02 a12 a03 a13
192     // a20 a30 a21 a31   a22 a32 a23 a33
193     // b00 b10 b01 b11   b02 b12 b03 b13
194     // b20 b30 b21 b31   b22 b32 b23 b33
195     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
196     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
197     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
198     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
199     // a00 a10 a20 a30 a01 a11 a21 a31
200     // b00 b10 b20 b30 b01 b11 b21 b31
201     // a02 a12 a22 a32 a03 a13 a23 a33
202     // b02 b12 a22 b32 b03 b13 b23 b33
203     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
204     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
205     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
206     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
207     // a00 a10 a20 a30   b00 b10 b20 b30
208     // a01 a11 a21 a31   b01 b11 b21 b31
209     // a02 a12 a22 a32   b02 b12 b22 b32
210     // a03 a13 a23 a33   b03 b13 b23 b33
211   }
212 
213   // Horizontal pass and subsequent transpose.
214   {
215     // First pass, c and d calculations are longer because of the "trick"
216     // multiplications.
217     const __m128i four = _mm_set1_epi16(4);
218     const __m128i dc = _mm_add_epi16(T0, four);
219     const __m128i a =  _mm_add_epi16(dc, T2);
220     const __m128i b =  _mm_sub_epi16(dc, T2);
221     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
222     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
223     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
224     const __m128i c3 = _mm_sub_epi16(T1, T3);
225     const __m128i c4 = _mm_sub_epi16(c1, c2);
226     const __m128i c = _mm_add_epi16(c3, c4);
227     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
228     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
229     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
230     const __m128i d3 = _mm_add_epi16(T1, T3);
231     const __m128i d4 = _mm_add_epi16(d1, d2);
232     const __m128i d = _mm_add_epi16(d3, d4);
233 
234     // Second pass.
235     const __m128i tmp0 = _mm_add_epi16(a, d);
236     const __m128i tmp1 = _mm_add_epi16(b, c);
237     const __m128i tmp2 = _mm_sub_epi16(b, c);
238     const __m128i tmp3 = _mm_sub_epi16(a, d);
239     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
240     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
241     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
242     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
243 
244     // Transpose the two 4x4.
245     // a00 a01 a02 a03   b00 b01 b02 b03
246     // a10 a11 a12 a13   b10 b11 b12 b13
247     // a20 a21 a22 a23   b20 b21 b22 b23
248     // a30 a31 a32 a33   b30 b31 b32 b33
249     const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
250     const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
251     const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
252     const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
253     // a00 a10 a01 a11   a02 a12 a03 a13
254     // a20 a30 a21 a31   a22 a32 a23 a33
255     // b00 b10 b01 b11   b02 b12 b03 b13
256     // b20 b30 b21 b31   b22 b32 b23 b33
257     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
258     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
259     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
260     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
261     // a00 a10 a20 a30 a01 a11 a21 a31
262     // b00 b10 b20 b30 b01 b11 b21 b31
263     // a02 a12 a22 a32 a03 a13 a23 a33
264     // b02 b12 a22 b32 b03 b13 b23 b33
265     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
266     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
267     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
268     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
269     // a00 a10 a20 a30   b00 b10 b20 b30
270     // a01 a11 a21 a31   b01 b11 b21 b31
271     // a02 a12 a22 a32   b02 b12 b22 b32
272     // a03 a13 a23 a33   b03 b13 b23 b33
273   }
274 
275   // Add inverse transform to 'ref' and store.
276   {
277     const __m128i zero = _mm_setzero_si128();
278     // Load the reference(s).
279     __m128i ref0, ref1, ref2, ref3;
280     if (do_two) {
281       // Load eight bytes/pixels per line.
282       ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
283       ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
284       ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
285       ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
286     } else {
287       // Load four bytes/pixels per line.
288       ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
289       ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
290       ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
291       ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
292     }
293     // Convert to 16b.
294     ref0 = _mm_unpacklo_epi8(ref0, zero);
295     ref1 = _mm_unpacklo_epi8(ref1, zero);
296     ref2 = _mm_unpacklo_epi8(ref2, zero);
297     ref3 = _mm_unpacklo_epi8(ref3, zero);
298     // Add the inverse transform(s).
299     ref0 = _mm_add_epi16(ref0, T0);
300     ref1 = _mm_add_epi16(ref1, T1);
301     ref2 = _mm_add_epi16(ref2, T2);
302     ref3 = _mm_add_epi16(ref3, T3);
303     // Unsigned saturate to 8b.
304     ref0 = _mm_packus_epi16(ref0, ref0);
305     ref1 = _mm_packus_epi16(ref1, ref1);
306     ref2 = _mm_packus_epi16(ref2, ref2);
307     ref3 = _mm_packus_epi16(ref3, ref3);
308     // Store the results.
309     if (do_two) {
310       // Store eight bytes/pixels per line.
311       _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
312       _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
313       _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
314       _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
315     } else {
316       // Store four bytes/pixels per line.
317       *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
318       *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
319       *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
320       *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
321     }
322   }
323 }
324 
FTransformSSE2(const uint8_t * src,const uint8_t * ref,int16_t * out)325 static void FTransformSSE2(const uint8_t* src, const uint8_t* ref,
326                            int16_t* out) {
327   const __m128i zero = _mm_setzero_si128();
328   const __m128i seven = _mm_set1_epi16(7);
329   const __m128i k937 = _mm_set1_epi32(937);
330   const __m128i k1812 = _mm_set1_epi32(1812);
331   const __m128i k51000 = _mm_set1_epi32(51000);
332   const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
333   const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
334                                            5352,  2217, 5352,  2217);
335   const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
336                                            2217, -5352, 2217, -5352);
337   const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
338   const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
339   const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
340                                             2217, 5352, 2217, 5352);
341   const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
342                                             -5352, 2217, -5352, 2217);
343   __m128i v01, v32;
344 
345 
346   // Difference between src and ref and initial transpose.
347   {
348     // Load src and convert to 16b.
349     const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
350     const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
351     const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
352     const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
353     const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
354     const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
355     const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
356     const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
357     // Load ref and convert to 16b.
358     const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
359     const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
360     const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
361     const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
362     const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
363     const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
364     const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
365     const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
366     // Compute difference. -> 00 01 02 03 00 00 00 00
367     const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
368     const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
369     const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
370     const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
371 
372 
373     // Unpack and shuffle
374     // 00 01 02 03   0 0 0 0
375     // 10 11 12 13   0 0 0 0
376     // 20 21 22 23   0 0 0 0
377     // 30 31 32 33   0 0 0 0
378     const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1);
379     const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3);
380     // 00 01 10 11 02 03 12 13
381     // 20 21 30 31 22 23 32 33
382     const __m128i shuf01_p =
383         _mm_shufflehi_epi16(shuf01, _MM_SHUFFLE(2, 3, 0, 1));
384     const __m128i shuf23_p =
385         _mm_shufflehi_epi16(shuf23, _MM_SHUFFLE(2, 3, 0, 1));
386     // 00 01 10 11 03 02 13 12
387     // 20 21 30 31 23 22 33 32
388     const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
389     const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
390     // 00 01 10 11 20 21 30 31
391     // 03 02 13 12 23 22 33 32
392     const __m128i a01 = _mm_add_epi16(s01, s32);
393     const __m128i a32 = _mm_sub_epi16(s01, s32);
394     // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
395     // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
396 
397     const __m128i tmp0 = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
398     const __m128i tmp2 = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
399     const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
400     const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
401     const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
402     const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
403     const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
404     const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
405     const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
406     const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
407     const __m128i s_lo = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
408     const __m128i s_hi = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
409     const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
410     v01 = _mm_unpacklo_epi32(s_lo, s_hi);
411     v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
412   }
413 
414   // Second pass
415   {
416     // Same operations are done on the (0,3) and (1,2) pairs.
417     // a0 = v0 + v3
418     // a1 = v1 + v2
419     // a3 = v0 - v3
420     // a2 = v1 - v2
421     const __m128i a01 = _mm_add_epi16(v01, v32);
422     const __m128i a32 = _mm_sub_epi16(v01, v32);
423     const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
424     const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
425     const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
426 
427     // d0 = (a0 + a1 + 7) >> 4;
428     // d2 = (a0 - a1 + 7) >> 4;
429     const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
430     const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
431     const __m128i d0 = _mm_srai_epi16(c0, 4);
432     const __m128i d2 = _mm_srai_epi16(c2, 4);
433 
434     // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
435     // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
436     const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
437     const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
438     const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
439     const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
440     const __m128i d3 = _mm_add_epi32(c3, k51000);
441     const __m128i e1 = _mm_srai_epi32(d1, 16);
442     const __m128i e3 = _mm_srai_epi32(d3, 16);
443     const __m128i f1 = _mm_packs_epi32(e1, e1);
444     const __m128i f3 = _mm_packs_epi32(e3, e3);
445     // f1 = f1 + (a3 != 0);
446     // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
447     // desired (0, 1), we add one earlier through k12000_plus_one.
448     // -> f1 = f1 + 1 - (a3 == 0)
449     const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
450 
451     _mm_storel_epi64((__m128i*)&out[ 0], d0);
452     _mm_storel_epi64((__m128i*)&out[ 4], g1);
453     _mm_storel_epi64((__m128i*)&out[ 8], d2);
454     _mm_storel_epi64((__m128i*)&out[12], f3);
455   }
456 }
457 
FTransformWHTSSE2(const int16_t * in,int16_t * out)458 static void FTransformWHTSSE2(const int16_t* in, int16_t* out) {
459   int16_t tmp[16];
460   int i;
461   for (i = 0; i < 4; ++i, in += 64) {
462     const int a0 = (in[0 * 16] + in[2 * 16]);
463     const int a1 = (in[1 * 16] + in[3 * 16]);
464     const int a2 = (in[1 * 16] - in[3 * 16]);
465     const int a3 = (in[0 * 16] - in[2 * 16]);
466     tmp[0 + i * 4] = a0 + a1;
467     tmp[1 + i * 4] = a3 + a2;
468     tmp[2 + i * 4] = a3 - a2;
469     tmp[3 + i * 4] = a0 - a1;
470   }
471   {
472     const __m128i src0 = _mm_loadl_epi64((__m128i*)&tmp[0]);
473     const __m128i src1 = _mm_loadl_epi64((__m128i*)&tmp[4]);
474     const __m128i src2 = _mm_loadl_epi64((__m128i*)&tmp[8]);
475     const __m128i src3 = _mm_loadl_epi64((__m128i*)&tmp[12]);
476     const __m128i a0 = _mm_add_epi16(src0, src2);
477     const __m128i a1 = _mm_add_epi16(src1, src3);
478     const __m128i a2 = _mm_sub_epi16(src1, src3);
479     const __m128i a3 = _mm_sub_epi16(src0, src2);
480     const __m128i b0 = _mm_srai_epi16(_mm_adds_epi16(a0, a1), 1);
481     const __m128i b1 = _mm_srai_epi16(_mm_adds_epi16(a3, a2), 1);
482     const __m128i b2 = _mm_srai_epi16(_mm_subs_epi16(a3, a2), 1);
483     const __m128i b3 = _mm_srai_epi16(_mm_subs_epi16(a0, a1), 1);
484     _mm_storel_epi64((__m128i*)&out[ 0], b0);
485     _mm_storel_epi64((__m128i*)&out[ 4], b1);
486     _mm_storel_epi64((__m128i*)&out[ 8], b2);
487     _mm_storel_epi64((__m128i*)&out[12], b3);
488   }
489 }
490 
491 //------------------------------------------------------------------------------
492 // Metric
493 
SSE_Nx4SSE2(const uint8_t * a,const uint8_t * b,int num_quads,int do_16)494 static int SSE_Nx4SSE2(const uint8_t* a, const uint8_t* b,
495                        int num_quads, int do_16) {
496   const __m128i zero = _mm_setzero_si128();
497   __m128i sum1 = zero;
498   __m128i sum2 = zero;
499 
500   while (num_quads-- > 0) {
501     // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok,
502     // thanks to buffer over-allocation to that effect.
503     const __m128i a0 = _mm_loadu_si128((__m128i*)&a[BPS * 0]);
504     const __m128i a1 = _mm_loadu_si128((__m128i*)&a[BPS * 1]);
505     const __m128i a2 = _mm_loadu_si128((__m128i*)&a[BPS * 2]);
506     const __m128i a3 = _mm_loadu_si128((__m128i*)&a[BPS * 3]);
507     const __m128i b0 = _mm_loadu_si128((__m128i*)&b[BPS * 0]);
508     const __m128i b1 = _mm_loadu_si128((__m128i*)&b[BPS * 1]);
509     const __m128i b2 = _mm_loadu_si128((__m128i*)&b[BPS * 2]);
510     const __m128i b3 = _mm_loadu_si128((__m128i*)&b[BPS * 3]);
511 
512     // compute clip0(a-b) and clip0(b-a)
513     const __m128i a0p = _mm_subs_epu8(a0, b0);
514     const __m128i a0m = _mm_subs_epu8(b0, a0);
515     const __m128i a1p = _mm_subs_epu8(a1, b1);
516     const __m128i a1m = _mm_subs_epu8(b1, a1);
517     const __m128i a2p = _mm_subs_epu8(a2, b2);
518     const __m128i a2m = _mm_subs_epu8(b2, a2);
519     const __m128i a3p = _mm_subs_epu8(a3, b3);
520     const __m128i a3m = _mm_subs_epu8(b3, a3);
521 
522     // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a)
523     const __m128i diff0 = _mm_or_si128(a0p, a0m);
524     const __m128i diff1 = _mm_or_si128(a1p, a1m);
525     const __m128i diff2 = _mm_or_si128(a2p, a2m);
526     const __m128i diff3 = _mm_or_si128(a3p, a3m);
527 
528     // unpack (only four operations, instead of eight)
529     const __m128i low0 = _mm_unpacklo_epi8(diff0, zero);
530     const __m128i low1 = _mm_unpacklo_epi8(diff1, zero);
531     const __m128i low2 = _mm_unpacklo_epi8(diff2, zero);
532     const __m128i low3 = _mm_unpacklo_epi8(diff3, zero);
533 
534     // multiply with self
535     const __m128i low_madd0 = _mm_madd_epi16(low0, low0);
536     const __m128i low_madd1 = _mm_madd_epi16(low1, low1);
537     const __m128i low_madd2 = _mm_madd_epi16(low2, low2);
538     const __m128i low_madd3 = _mm_madd_epi16(low3, low3);
539 
540     // collect in a cascading way
541     const __m128i low_sum0 = _mm_add_epi32(low_madd0, low_madd1);
542     const __m128i low_sum1 = _mm_add_epi32(low_madd2, low_madd3);
543     sum1 = _mm_add_epi32(sum1, low_sum0);
544     sum2 = _mm_add_epi32(sum2, low_sum1);
545 
546     if (do_16) {  // if necessary, process the higher 8 bytes similarly
547       const __m128i hi0 = _mm_unpackhi_epi8(diff0, zero);
548       const __m128i hi1 = _mm_unpackhi_epi8(diff1, zero);
549       const __m128i hi2 = _mm_unpackhi_epi8(diff2, zero);
550       const __m128i hi3 = _mm_unpackhi_epi8(diff3, zero);
551 
552       const __m128i hi_madd0 = _mm_madd_epi16(hi0, hi0);
553       const __m128i hi_madd1 = _mm_madd_epi16(hi1, hi1);
554       const __m128i hi_madd2 = _mm_madd_epi16(hi2, hi2);
555       const __m128i hi_madd3 = _mm_madd_epi16(hi3, hi3);
556       const __m128i hi_sum0 = _mm_add_epi32(hi_madd0, hi_madd1);
557       const __m128i hi_sum1 = _mm_add_epi32(hi_madd2, hi_madd3);
558       sum1 = _mm_add_epi32(sum1, hi_sum0);
559       sum2 = _mm_add_epi32(sum2, hi_sum1);
560     }
561     a += 4 * BPS;
562     b += 4 * BPS;
563   }
564   {
565     int32_t tmp[4];
566     const __m128i sum = _mm_add_epi32(sum1, sum2);
567     _mm_storeu_si128((__m128i*)tmp, sum);
568     return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
569   }
570 }
571 
SSE16x16SSE2(const uint8_t * a,const uint8_t * b)572 static int SSE16x16SSE2(const uint8_t* a, const uint8_t* b) {
573   return SSE_Nx4SSE2(a, b, 4, 1);
574 }
575 
SSE16x8SSE2(const uint8_t * a,const uint8_t * b)576 static int SSE16x8SSE2(const uint8_t* a, const uint8_t* b) {
577   return SSE_Nx4SSE2(a, b, 2, 1);
578 }
579 
SSE8x8SSE2(const uint8_t * a,const uint8_t * b)580 static int SSE8x8SSE2(const uint8_t* a, const uint8_t* b) {
581   return SSE_Nx4SSE2(a, b, 2, 0);
582 }
583 
SSE4x4SSE2(const uint8_t * a,const uint8_t * b)584 static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) {
585   const __m128i zero = _mm_setzero_si128();
586 
587   // Load values. Note that we read 8 pixels instead of 4,
588   // but the a/b buffers are over-allocated to that effect.
589   const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
590   const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
591   const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
592   const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
593   const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
594   const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
595   const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
596   const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
597 
598   // Combine pair of lines and convert to 16b.
599   const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
600   const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
601   const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
602   const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
603   const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
604   const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
605   const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
606   const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
607 
608   // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
609   // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
610   //                  need absolute values, there is no need to do calculation
611   //                  in 8bit as we are already in 16bit, ... Yet this is what
612   //                  benchmarks the fastest!
613   const __m128i d0 = _mm_subs_epu8(a01s, b01s);
614   const __m128i d1 = _mm_subs_epu8(b01s, a01s);
615   const __m128i d2 = _mm_subs_epu8(a23s, b23s);
616   const __m128i d3 = _mm_subs_epu8(b23s, a23s);
617 
618   // Square and add them all together.
619   const __m128i madd0 = _mm_madd_epi16(d0, d0);
620   const __m128i madd1 = _mm_madd_epi16(d1, d1);
621   const __m128i madd2 = _mm_madd_epi16(d2, d2);
622   const __m128i madd3 = _mm_madd_epi16(d3, d3);
623   const __m128i sum0 = _mm_add_epi32(madd0, madd1);
624   const __m128i sum1 = _mm_add_epi32(madd2, madd3);
625   const __m128i sum2 = _mm_add_epi32(sum0, sum1);
626 
627   int32_t tmp[4];
628   _mm_storeu_si128((__m128i*)tmp, sum2);
629   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
630 }
631 
632 //------------------------------------------------------------------------------
633 // Texture distortion
634 //
635 // We try to match the spectral content (weighted) between source and
636 // reconstructed samples.
637 
638 // Hadamard transform
639 // Returns the difference between the weighted sum of the absolute value of
640 // transformed coefficients.
TTransformSSE2(const uint8_t * inA,const uint8_t * inB,const uint16_t * const w)641 static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB,
642                           const uint16_t* const w) {
643   int32_t sum[4];
644   __m128i tmp_0, tmp_1, tmp_2, tmp_3;
645   const __m128i zero = _mm_setzero_si128();
646 
647   // Load, combine and tranpose inputs.
648   {
649     const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
650     const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
651     const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
652     const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
653     const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
654     const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
655     const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
656     const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
657 
658     // Combine inA and inB (we'll do two transforms in parallel).
659     const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
660     const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
661     const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
662     const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
663     // a00 b00 a01 b01 a02 b03 a03 b03   0 0 0 0 0 0 0 0
664     // a10 b10 a11 b11 a12 b12 a13 b13   0 0 0 0 0 0 0 0
665     // a20 b20 a21 b21 a22 b22 a23 b23   0 0 0 0 0 0 0 0
666     // a30 b30 a31 b31 a32 b32 a33 b33   0 0 0 0 0 0 0 0
667 
668     // Transpose the two 4x4, discarding the filling zeroes.
669     const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
670     const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
671     // a00 a20  b00 b20  a01 a21  b01 b21  a02 a22  b02 b22  a03 a23  b03 b23
672     // a10 a30  b10 b30  a11 a31  b11 b31  a12 a32  b12 b32  a13 a33  b13 b33
673     const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
674     const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
675     // a00 a10 a20 a30  b00 b10 b20 b30  a01 a11 a21 a31  b01 b11 b21 b31
676     // a02 a12 a22 a32  b02 b12 b22 b32  a03 a13 a23 a33  b03 b13 b23 b33
677 
678     // Convert to 16b.
679     tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
680     tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
681     tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
682     tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
683     // a00 a10 a20 a30   b00 b10 b20 b30
684     // a01 a11 a21 a31   b01 b11 b21 b31
685     // a02 a12 a22 a32   b02 b12 b22 b32
686     // a03 a13 a23 a33   b03 b13 b23 b33
687   }
688 
689   // Horizontal pass and subsequent transpose.
690   {
691     // Calculate a and b (two 4x4 at once).
692     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
693     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
694     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
695     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
696     const __m128i b0 = _mm_add_epi16(a0, a1);
697     const __m128i b1 = _mm_add_epi16(a3, a2);
698     const __m128i b2 = _mm_sub_epi16(a3, a2);
699     const __m128i b3 = _mm_sub_epi16(a0, a1);
700     // a00 a01 a02 a03   b00 b01 b02 b03
701     // a10 a11 a12 a13   b10 b11 b12 b13
702     // a20 a21 a22 a23   b20 b21 b22 b23
703     // a30 a31 a32 a33   b30 b31 b32 b33
704 
705     // Transpose the two 4x4.
706     const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
707     const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
708     const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
709     const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
710     // a00 a10 a01 a11   a02 a12 a03 a13
711     // a20 a30 a21 a31   a22 a32 a23 a33
712     // b00 b10 b01 b11   b02 b12 b03 b13
713     // b20 b30 b21 b31   b22 b32 b23 b33
714     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
715     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
716     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
717     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
718     // a00 a10 a20 a30 a01 a11 a21 a31
719     // b00 b10 b20 b30 b01 b11 b21 b31
720     // a02 a12 a22 a32 a03 a13 a23 a33
721     // b02 b12 a22 b32 b03 b13 b23 b33
722     tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
723     tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
724     tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
725     tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
726     // a00 a10 a20 a30   b00 b10 b20 b30
727     // a01 a11 a21 a31   b01 b11 b21 b31
728     // a02 a12 a22 a32   b02 b12 b22 b32
729     // a03 a13 a23 a33   b03 b13 b23 b33
730   }
731 
732   // Vertical pass and difference of weighted sums.
733   {
734     // Load all inputs.
735     // TODO(cduvivier): Make variable declarations and allocations aligned so
736     //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
737     const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
738     const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
739 
740     // Calculate a and b (two 4x4 at once).
741     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
742     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
743     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
744     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
745     const __m128i b0 = _mm_add_epi16(a0, a1);
746     const __m128i b1 = _mm_add_epi16(a3, a2);
747     const __m128i b2 = _mm_sub_epi16(a3, a2);
748     const __m128i b3 = _mm_sub_epi16(a0, a1);
749 
750     // Separate the transforms of inA and inB.
751     __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
752     __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
753     __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
754     __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
755 
756     {
757       // sign(b) = b >> 15  (0x0000 if positive, 0xffff if negative)
758       const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
759       const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
760       const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
761       const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
762 
763       // b = abs(b) = (b ^ sign) - sign
764       A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
765       A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
766       B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
767       B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
768       A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
769       A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
770       B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
771       B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
772     }
773 
774     // weighted sums
775     A_b0 = _mm_madd_epi16(A_b0, w_0);
776     A_b2 = _mm_madd_epi16(A_b2, w_8);
777     B_b0 = _mm_madd_epi16(B_b0, w_0);
778     B_b2 = _mm_madd_epi16(B_b2, w_8);
779     A_b0 = _mm_add_epi32(A_b0, A_b2);
780     B_b0 = _mm_add_epi32(B_b0, B_b2);
781 
782     // difference of weighted sums
783     A_b0 = _mm_sub_epi32(A_b0, B_b0);
784     _mm_storeu_si128((__m128i*)&sum[0], A_b0);
785   }
786   return sum[0] + sum[1] + sum[2] + sum[3];
787 }
788 
Disto4x4SSE2(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)789 static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b,
790                         const uint16_t* const w) {
791   const int diff_sum = TTransformSSE2(a, b, w);
792   return abs(diff_sum) >> 5;
793 }
794 
Disto16x16SSE2(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)795 static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b,
796                           const uint16_t* const w) {
797   int D = 0;
798   int x, y;
799   for (y = 0; y < 16 * BPS; y += 4 * BPS) {
800     for (x = 0; x < 16; x += 4) {
801       D += Disto4x4SSE2(a + x + y, b + x + y, w);
802     }
803   }
804   return D;
805 }
806 
807 //------------------------------------------------------------------------------
808 // Quantization
809 //
810 
811 // Simple quantization
QuantizeBlockSSE2(int16_t in[16],int16_t out[16],int n,const VP8Matrix * const mtx)812 static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16],
813                              int n, const VP8Matrix* const mtx) {
814   const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
815   const __m128i zero = _mm_setzero_si128();
816   __m128i coeff0, coeff8;
817   __m128i out0, out8;
818   __m128i packed_out;
819 
820   // Load all inputs.
821   // TODO(cduvivier): Make variable declarations and allocations aligned so that
822   //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
823   __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
824   __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
825   const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]);
826   const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]);
827   const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
828   const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
829   const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
830   const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
831   const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
832   const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
833   const __m128i zthresh0 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[0]);
834   const __m128i zthresh8 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[8]);
835 
836   // sign(in) = in >> 15  (0x0000 if positive, 0xffff if negative)
837   const __m128i sign0 = _mm_srai_epi16(in0, 15);
838   const __m128i sign8 = _mm_srai_epi16(in8, 15);
839 
840   // coeff = abs(in) = (in ^ sign) - sign
841   coeff0 = _mm_xor_si128(in0, sign0);
842   coeff8 = _mm_xor_si128(in8, sign8);
843   coeff0 = _mm_sub_epi16(coeff0, sign0);
844   coeff8 = _mm_sub_epi16(coeff8, sign8);
845 
846   // coeff = abs(in) + sharpen
847   coeff0 = _mm_add_epi16(coeff0, sharpen0);
848   coeff8 = _mm_add_epi16(coeff8, sharpen8);
849 
850   // out = (coeff * iQ + B) >> QFIX;
851   {
852     // doing calculations with 32b precision (QFIX=17)
853     // out = (coeff * iQ)
854     __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
855     __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
856     __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
857     __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
858     __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
859     __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
860     __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
861     __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
862     // expand bias from 16b to 32b
863     __m128i bias_00 = _mm_unpacklo_epi16(bias0, zero);
864     __m128i bias_04 = _mm_unpackhi_epi16(bias0, zero);
865     __m128i bias_08 = _mm_unpacklo_epi16(bias8, zero);
866     __m128i bias_12 = _mm_unpackhi_epi16(bias8, zero);
867     // out = (coeff * iQ + B)
868     out_00 = _mm_add_epi32(out_00, bias_00);
869     out_04 = _mm_add_epi32(out_04, bias_04);
870     out_08 = _mm_add_epi32(out_08, bias_08);
871     out_12 = _mm_add_epi32(out_12, bias_12);
872     // out = (coeff * iQ + B) >> QFIX;
873     out_00 = _mm_srai_epi32(out_00, QFIX);
874     out_04 = _mm_srai_epi32(out_04, QFIX);
875     out_08 = _mm_srai_epi32(out_08, QFIX);
876     out_12 = _mm_srai_epi32(out_12, QFIX);
877 
878     // pack result as 16b
879     out0 = _mm_packs_epi32(out_00, out_04);
880     out8 = _mm_packs_epi32(out_08, out_12);
881 
882     // if (coeff > 2047) coeff = 2047
883     out0 = _mm_min_epi16(out0, max_coeff_2047);
884     out8 = _mm_min_epi16(out8, max_coeff_2047);
885   }
886 
887   // get sign back (if (sign[j]) out_n = -out_n)
888   out0 = _mm_xor_si128(out0, sign0);
889   out8 = _mm_xor_si128(out8, sign8);
890   out0 = _mm_sub_epi16(out0, sign0);
891   out8 = _mm_sub_epi16(out8, sign8);
892 
893   // in = out * Q
894   in0 = _mm_mullo_epi16(out0, q0);
895   in8 = _mm_mullo_epi16(out8, q8);
896 
897   // if (coeff <= mtx->zthresh_) {in=0; out=0;}
898   {
899     __m128i cmp0 = _mm_cmpgt_epi16(coeff0, zthresh0);
900     __m128i cmp8 = _mm_cmpgt_epi16(coeff8, zthresh8);
901     in0 = _mm_and_si128(in0, cmp0);
902     in8 = _mm_and_si128(in8, cmp8);
903     _mm_storeu_si128((__m128i*)&in[0], in0);
904     _mm_storeu_si128((__m128i*)&in[8], in8);
905     out0 = _mm_and_si128(out0, cmp0);
906     out8 = _mm_and_si128(out8, cmp8);
907   }
908 
909   // zigzag the output before storing it.
910   //
911   // The zigzag pattern can almost be reproduced with a small sequence of
912   // shuffles. After it, we only need to swap the 7th (ending up in third
913   // position instead of twelfth) and 8th values.
914   {
915     __m128i outZ0, outZ8;
916     outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
917     outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
918     outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
919     outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
920     outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
921     outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
922     _mm_storeu_si128((__m128i*)&out[0], outZ0);
923     _mm_storeu_si128((__m128i*)&out[8], outZ8);
924     packed_out = _mm_packs_epi16(outZ0, outZ8);
925   }
926   {
927     const int16_t outZ_12 = out[12];
928     const int16_t outZ_3 = out[3];
929     out[3] = outZ_12;
930     out[12] = outZ_3;
931   }
932 
933   // detect if all 'out' values are zeroes or not
934   {
935     int32_t tmp[4];
936     _mm_storeu_si128((__m128i*)tmp, packed_out);
937     if (n) {
938       tmp[0] &= ~0xff;
939     }
940     return (tmp[3] || tmp[2] || tmp[1] || tmp[0]);
941   }
942 }
943 
944 #endif   // WEBP_USE_SSE2
945 
946 //------------------------------------------------------------------------------
947 // Entry point
948 
949 extern void VP8EncDspInitSSE2(void);
950 
VP8EncDspInitSSE2(void)951 void VP8EncDspInitSSE2(void) {
952 #if defined(WEBP_USE_SSE2)
953   VP8CollectHistogram = CollectHistogramSSE2;
954   VP8EncQuantizeBlock = QuantizeBlockSSE2;
955   VP8ITransform = ITransformSSE2;
956   VP8FTransform = FTransformSSE2;
957   VP8FTransformWHT = FTransformWHTSSE2;
958   VP8SSE16x16 = SSE16x16SSE2;
959   VP8SSE16x8 = SSE16x8SSE2;
960   VP8SSE8x8 = SSE8x8SSE2;
961   VP8SSE4x4 = SSE4x4SSE2;
962   VP8TDisto4x4 = Disto4x4SSE2;
963   VP8TDisto16x16 = Disto16x16SSE2;
964 #endif   // WEBP_USE_SSE2
965 }
966 
967 #if defined(__cplusplus) || defined(c_plusplus)
968 }    // extern "C"
969 #endif
970