1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Author: Jyrki Alakuijala (jyrki@google.com)
11 //
12 #ifdef HAVE_CONFIG_H
13 #include "config.h"
14 #endif
15 
16 #include <math.h>
17 #include <stdio.h>
18 
19 #include "./backward_references.h"
20 #include "./histogram.h"
21 #include "../dsp/lossless.h"
22 #include "../utils/utils.h"
23 
HistogramClear(VP8LHistogram * const p)24 static void HistogramClear(VP8LHistogram* const p) {
25   memset(p->literal_, 0, sizeof(p->literal_));
26   memset(p->red_, 0, sizeof(p->red_));
27   memset(p->blue_, 0, sizeof(p->blue_));
28   memset(p->alpha_, 0, sizeof(p->alpha_));
29   memset(p->distance_, 0, sizeof(p->distance_));
30   p->bit_cost_ = 0;
31 }
32 
VP8LHistogramStoreRefs(const VP8LBackwardRefs * const refs,VP8LHistogram * const histo)33 void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
34                             VP8LHistogram* const histo) {
35   int i;
36   for (i = 0; i < refs->size; ++i) {
37     VP8LHistogramAddSinglePixOrCopy(histo, &refs->refs[i]);
38   }
39 }
40 
VP8LHistogramCreate(VP8LHistogram * const p,const VP8LBackwardRefs * const refs,int palette_code_bits)41 void VP8LHistogramCreate(VP8LHistogram* const p,
42                          const VP8LBackwardRefs* const refs,
43                          int palette_code_bits) {
44   if (palette_code_bits >= 0) {
45     p->palette_code_bits_ = palette_code_bits;
46   }
47   HistogramClear(p);
48   VP8LHistogramStoreRefs(refs, p);
49 }
50 
VP8LHistogramInit(VP8LHistogram * const p,int palette_code_bits)51 void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits) {
52   p->palette_code_bits_ = palette_code_bits;
53   HistogramClear(p);
54 }
55 
VP8LAllocateHistogramSet(int size,int cache_bits)56 VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
57   int i;
58   VP8LHistogramSet* set;
59   VP8LHistogram* bulk;
60   const uint64_t total_size = sizeof(*set)
61                             + (uint64_t)size * sizeof(*set->histograms)
62                             + (uint64_t)size * sizeof(**set->histograms);
63   uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
64   if (memory == NULL) return NULL;
65 
66   set = (VP8LHistogramSet*)memory;
67   memory += sizeof(*set);
68   set->histograms = (VP8LHistogram**)memory;
69   memory += size * sizeof(*set->histograms);
70   bulk = (VP8LHistogram*)memory;
71   set->max_size = size;
72   set->size = size;
73   for (i = 0; i < size; ++i) {
74     set->histograms[i] = bulk + i;
75     VP8LHistogramInit(set->histograms[i], cache_bits);
76   }
77   return set;
78 }
79 
80 // -----------------------------------------------------------------------------
81 
VP8LHistogramAddSinglePixOrCopy(VP8LHistogram * const histo,const PixOrCopy * const v)82 void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
83                                      const PixOrCopy* const v) {
84   if (PixOrCopyIsLiteral(v)) {
85     ++histo->alpha_[PixOrCopyLiteral(v, 3)];
86     ++histo->red_[PixOrCopyLiteral(v, 2)];
87     ++histo->literal_[PixOrCopyLiteral(v, 1)];
88     ++histo->blue_[PixOrCopyLiteral(v, 0)];
89   } else if (PixOrCopyIsCacheIdx(v)) {
90     int literal_ix = 256 + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
91     ++histo->literal_[literal_ix];
92   } else {
93     int code, extra_bits_count, extra_bits_value;
94     PrefixEncode(PixOrCopyLength(v),
95                  &code, &extra_bits_count, &extra_bits_value);
96     ++histo->literal_[256 + code];
97     PrefixEncode(PixOrCopyDistance(v),
98                  &code, &extra_bits_count, &extra_bits_value);
99     ++histo->distance_[code];
100   }
101 }
102 
BitsEntropy(const int * const array,int n)103 static double BitsEntropy(const int* const array, int n) {
104   double retval = 0.;
105   int sum = 0;
106   int nonzeros = 0;
107   int max_val = 0;
108   int i;
109   double mix;
110   for (i = 0; i < n; ++i) {
111     if (array[i] != 0) {
112       sum += array[i];
113       ++nonzeros;
114       retval -= VP8LFastSLog2(array[i]);
115       if (max_val < array[i]) {
116         max_val = array[i];
117       }
118     }
119   }
120   retval += VP8LFastSLog2(sum);
121 
122   if (nonzeros < 5) {
123     if (nonzeros <= 1) {
124       return 0;
125     }
126     // Two symbols, they will be 0 and 1 in a Huffman code.
127     // Let's mix in a bit of entropy to favor good clustering when
128     // distributions of these are combined.
129     if (nonzeros == 2) {
130       return 0.99 * sum + 0.01 * retval;
131     }
132     // No matter what the entropy says, we cannot be better than min_limit
133     // with Huffman coding. I am mixing a bit of entropy into the
134     // min_limit since it produces much better (~0.5 %) compression results
135     // perhaps because of better entropy clustering.
136     if (nonzeros == 3) {
137       mix = 0.95;
138     } else {
139       mix = 0.7;  // nonzeros == 4.
140     }
141   } else {
142     mix = 0.627;
143   }
144 
145   {
146     double min_limit = 2 * sum - max_val;
147     min_limit = mix * min_limit + (1.0 - mix) * retval;
148     return (retval < min_limit) ? min_limit : retval;
149   }
150 }
151 
152 // Returns the cost encode the rle-encoded entropy code.
153 // The constants in this function are experimental.
HuffmanCost(const int * const population,int length)154 static double HuffmanCost(const int* const population, int length) {
155   // Small bias because Huffman code length is typically not stored in
156   // full length.
157   static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
158   static const double kSmallBias = 9.1;
159   double retval = kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
160   int streak = 0;
161   int i = 0;
162   for (; i < length - 1; ++i) {
163     ++streak;
164     if (population[i] == population[i + 1]) {
165       continue;
166     }
167  last_streak_hack:
168     // population[i] points now to the symbol in the streak of same values.
169     if (streak > 3) {
170       if (population[i] == 0) {
171         retval += 1.5625 + 0.234375 * streak;
172       } else {
173         retval += 2.578125 + 0.703125 * streak;
174       }
175     } else {
176       if (population[i] == 0) {
177         retval += 1.796875 * streak;
178       } else {
179         retval += 3.28125 * streak;
180       }
181     }
182     streak = 0;
183   }
184   if (i == length - 1) {
185     ++streak;
186     goto last_streak_hack;
187   }
188   return retval;
189 }
190 
PopulationCost(const int * const population,int length)191 static double PopulationCost(const int* const population, int length) {
192   return BitsEntropy(population, length) + HuffmanCost(population, length);
193 }
194 
ExtraCost(const int * const population,int length)195 static double ExtraCost(const int* const population, int length) {
196   int i;
197   double cost = 0.;
198   for (i = 2; i < length - 2; ++i) cost += (i >> 1) * population[i + 2];
199   return cost;
200 }
201 
202 // Estimates the Entropy + Huffman + other block overhead size cost.
VP8LHistogramEstimateBits(const VP8LHistogram * const p)203 double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
204   return PopulationCost(p->literal_, VP8LHistogramNumCodes(p))
205        + PopulationCost(p->red_, 256)
206        + PopulationCost(p->blue_, 256)
207        + PopulationCost(p->alpha_, 256)
208        + PopulationCost(p->distance_, NUM_DISTANCE_CODES)
209        + ExtraCost(p->literal_ + 256, NUM_LENGTH_CODES)
210        + ExtraCost(p->distance_, NUM_DISTANCE_CODES);
211 }
212 
VP8LHistogramEstimateBitsBulk(const VP8LHistogram * const p)213 double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
214   return BitsEntropy(p->literal_, VP8LHistogramNumCodes(p))
215        + BitsEntropy(p->red_, 256)
216        + BitsEntropy(p->blue_, 256)
217        + BitsEntropy(p->alpha_, 256)
218        + BitsEntropy(p->distance_, NUM_DISTANCE_CODES)
219        + ExtraCost(p->literal_ + 256, NUM_LENGTH_CODES)
220        + ExtraCost(p->distance_, NUM_DISTANCE_CODES);
221 }
222 
223 // -----------------------------------------------------------------------------
224 // Various histogram combine/cost-eval functions
225 
226 // Adds 'in' histogram to 'out'
HistogramAdd(const VP8LHistogram * const in,VP8LHistogram * const out)227 static void HistogramAdd(const VP8LHistogram* const in,
228                          VP8LHistogram* const out) {
229   int i;
230   for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
231     out->literal_[i] += in->literal_[i];
232   }
233   for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
234     out->distance_[i] += in->distance_[i];
235   }
236   for (i = 0; i < 256; ++i) {
237     out->red_[i] += in->red_[i];
238     out->blue_[i] += in->blue_[i];
239     out->alpha_[i] += in->alpha_[i];
240   }
241 }
242 
243 // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
244 // to the threshold value 'cost_threshold'. The score returned is
245 //  Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
246 // Since the previous score passed is 'cost_threshold', we only need to compare
247 // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
248 // early.
HistogramAddEval(const VP8LHistogram * const a,const VP8LHistogram * const b,VP8LHistogram * const out,double cost_threshold)249 static double HistogramAddEval(const VP8LHistogram* const a,
250                                const VP8LHistogram* const b,
251                                VP8LHistogram* const out,
252                                double cost_threshold) {
253   double cost = 0;
254   const double sum_cost = a->bit_cost_ + b->bit_cost_;
255   int i;
256 
257   cost_threshold += sum_cost;
258 
259   // palette_code_bits_ is part of the cost evaluation for literal_.
260   // TODO(skal): remove/simplify this palette_code_bits_?
261   out->palette_code_bits_ =
262       (a->palette_code_bits_ > b->palette_code_bits_) ? a->palette_code_bits_ :
263                                                         b->palette_code_bits_;
264   for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
265     out->literal_[i] = a->literal_[i] + b->literal_[i];
266   }
267   cost += PopulationCost(out->literal_, VP8LHistogramNumCodes(out));
268   cost += ExtraCost(out->literal_ + 256, NUM_LENGTH_CODES);
269   if (cost > cost_threshold) return cost;
270 
271   for (i = 0; i < 256; ++i) out->red_[i] = a->red_[i] + b->red_[i];
272   cost += PopulationCost(out->red_, 256);
273   if (cost > cost_threshold) return cost;
274 
275   for (i = 0; i < 256; ++i) out->blue_[i] = a->blue_[i] + b->blue_[i];
276   cost += PopulationCost(out->blue_, 256);
277   if (cost > cost_threshold) return cost;
278 
279   for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
280     out->distance_[i] = a->distance_[i] + b->distance_[i];
281   }
282   cost += PopulationCost(out->distance_, NUM_DISTANCE_CODES);
283   cost += ExtraCost(out->distance_, NUM_DISTANCE_CODES);
284   if (cost > cost_threshold) return cost;
285 
286   for (i = 0; i < 256; ++i) out->alpha_[i] = a->alpha_[i] + b->alpha_[i];
287   cost += PopulationCost(out->alpha_, 256);
288 
289   out->bit_cost_ = cost;
290   return cost - sum_cost;
291 }
292 
293 // Same as HistogramAddEval(), except that the resulting histogram
294 // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
295 // the term C(b) which is constant over all the evaluations.
HistogramAddThresh(const VP8LHistogram * const a,const VP8LHistogram * const b,double cost_threshold)296 static double HistogramAddThresh(const VP8LHistogram* const a,
297                                  const VP8LHistogram* const b,
298                                  double cost_threshold) {
299   int tmp[PIX_OR_COPY_CODES_MAX];  // <= max storage we'll need
300   int i;
301   double cost = -a->bit_cost_;
302 
303   for (i = 0; i < PIX_OR_COPY_CODES_MAX; ++i) {
304     tmp[i] = a->literal_[i] + b->literal_[i];
305   }
306   // note that the tests are ordered so that the usually largest
307   // cost shares come first.
308   cost += PopulationCost(tmp, VP8LHistogramNumCodes(a));
309   cost += ExtraCost(tmp + 256, NUM_LENGTH_CODES);
310   if (cost > cost_threshold) return cost;
311 
312   for (i = 0; i < 256; ++i) tmp[i] = a->red_[i] + b->red_[i];
313   cost += PopulationCost(tmp, 256);
314   if (cost > cost_threshold) return cost;
315 
316   for (i = 0; i < 256; ++i) tmp[i] = a->blue_[i] + b->blue_[i];
317   cost += PopulationCost(tmp, 256);
318   if (cost > cost_threshold) return cost;
319 
320   for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
321     tmp[i] = a->distance_[i] + b->distance_[i];
322   }
323   cost += PopulationCost(tmp, NUM_DISTANCE_CODES);
324   cost += ExtraCost(tmp, NUM_DISTANCE_CODES);
325   if (cost > cost_threshold) return cost;
326 
327   for (i = 0; i < 256; ++i) tmp[i] = a->alpha_[i] + b->alpha_[i];
328   cost += PopulationCost(tmp, 256);
329 
330   return cost;
331 }
332 
333 // -----------------------------------------------------------------------------
334 
HistogramBuildImage(int xsize,int histo_bits,const VP8LBackwardRefs * const backward_refs,VP8LHistogramSet * const image)335 static void HistogramBuildImage(int xsize, int histo_bits,
336                                 const VP8LBackwardRefs* const backward_refs,
337                                 VP8LHistogramSet* const image) {
338   int i;
339   int x = 0, y = 0;
340   const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
341   VP8LHistogram** const histograms = image->histograms;
342   assert(histo_bits > 0);
343   for (i = 0; i < backward_refs->size; ++i) {
344     const PixOrCopy* const v = &backward_refs->refs[i];
345     const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
346     VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
347     x += PixOrCopyLength(v);
348     while (x >= xsize) {
349       x -= xsize;
350       ++y;
351     }
352   }
353 }
354 
MyRand(uint32_t * seed)355 static uint32_t MyRand(uint32_t *seed) {
356   *seed *= 16807U;
357   if (*seed == 0) {
358     *seed = 1;
359   }
360   return *seed;
361 }
362 
HistogramCombine(const VP8LHistogramSet * const in,VP8LHistogramSet * const out,int iter_mult,int num_pairs,int num_tries_no_success)363 static int HistogramCombine(const VP8LHistogramSet* const in,
364                             VP8LHistogramSet* const out, int iter_mult,
365                             int num_pairs, int num_tries_no_success) {
366   int ok = 0;
367   int i, iter;
368   uint32_t seed = 0;
369   int tries_with_no_success = 0;
370   int out_size = in->size;
371   const int outer_iters = in->size * iter_mult;
372   const int min_cluster_size = 2;
373   VP8LHistogram* const histos = (VP8LHistogram*)malloc(2 * sizeof(*histos));
374   VP8LHistogram* cur_combo = histos + 0;    // trial merged histogram
375   VP8LHistogram* best_combo = histos + 1;   // best merged histogram so far
376   if (histos == NULL) goto End;
377 
378   // Copy histograms from in[] to out[].
379   assert(in->size <= out->size);
380   for (i = 0; i < in->size; ++i) {
381     in->histograms[i]->bit_cost_ = VP8LHistogramEstimateBits(in->histograms[i]);
382     *out->histograms[i] = *in->histograms[i];
383   }
384 
385   // Collapse similar histograms in 'out'.
386   for (iter = 0; iter < outer_iters && out_size >= min_cluster_size; ++iter) {
387     double best_cost_diff = 0.;
388     int best_idx1 = -1, best_idx2 = 1;
389     int j;
390     const int num_tries = (num_pairs < out_size) ? num_pairs : out_size;
391     seed += iter;
392     for (j = 0; j < num_tries; ++j) {
393       double curr_cost_diff;
394       // Choose two histograms at random and try to combine them.
395       const uint32_t idx1 = MyRand(&seed) % out_size;
396       const uint32_t tmp = (j & 7) + 1;
397       const uint32_t diff = (tmp < 3) ? tmp : MyRand(&seed) % (out_size - 1);
398       const uint32_t idx2 = (idx1 + diff + 1) % out_size;
399       if (idx1 == idx2) {
400         continue;
401       }
402       // Calculate cost reduction on combining.
403       curr_cost_diff = HistogramAddEval(out->histograms[idx1],
404                                         out->histograms[idx2],
405                                         cur_combo, best_cost_diff);
406       if (curr_cost_diff < best_cost_diff) {    // found a better pair?
407         {     // swap cur/best combo histograms
408           VP8LHistogram* const tmp_histo = cur_combo;
409           cur_combo = best_combo;
410           best_combo = tmp_histo;
411         }
412         best_cost_diff = curr_cost_diff;
413         best_idx1 = idx1;
414         best_idx2 = idx2;
415       }
416     }
417 
418     if (best_idx1 >= 0) {
419       *out->histograms[best_idx1] = *best_combo;
420       // swap best_idx2 slot with last one (which is now unused)
421       --out_size;
422       if (best_idx2 != out_size) {
423         out->histograms[best_idx2] = out->histograms[out_size];
424         out->histograms[out_size] = NULL;   // just for sanity check.
425       }
426       tries_with_no_success = 0;
427     }
428     if (++tries_with_no_success >= num_tries_no_success) {
429       break;
430     }
431   }
432   out->size = out_size;
433   ok = 1;
434 
435  End:
436   free(histos);
437   return ok;
438 }
439 
440 // -----------------------------------------------------------------------------
441 // Histogram refinement
442 
443 // What is the bit cost of moving square_histogram from cur_symbol to candidate.
HistogramDistance(const VP8LHistogram * const square_histogram,const VP8LHistogram * const candidate,double cost_threshold)444 static double HistogramDistance(const VP8LHistogram* const square_histogram,
445                                 const VP8LHistogram* const candidate,
446                                 double cost_threshold) {
447   return HistogramAddThresh(candidate, square_histogram, cost_threshold);
448 }
449 
450 // Find the best 'out' histogram for each of the 'in' histograms.
451 // Note: we assume that out[]->bit_cost_ is already up-to-date.
HistogramRemap(const VP8LHistogramSet * const in,const VP8LHistogramSet * const out,uint16_t * const symbols)452 static void HistogramRemap(const VP8LHistogramSet* const in,
453                            const VP8LHistogramSet* const out,
454                            uint16_t* const symbols) {
455   int i;
456   for (i = 0; i < in->size; ++i) {
457     int best_out = 0;
458     double best_bits =
459         HistogramDistance(in->histograms[i], out->histograms[0], 1.e38);
460     int k;
461     for (k = 1; k < out->size; ++k) {
462       const double cur_bits =
463           HistogramDistance(in->histograms[i], out->histograms[k], best_bits);
464       if (cur_bits < best_bits) {
465         best_bits = cur_bits;
466         best_out = k;
467       }
468     }
469     symbols[i] = best_out;
470   }
471 
472   // Recompute each out based on raw and symbols.
473   for (i = 0; i < out->size; ++i) {
474     HistogramClear(out->histograms[i]);
475   }
476   for (i = 0; i < in->size; ++i) {
477     HistogramAdd(in->histograms[i], out->histograms[symbols[i]]);
478   }
479 }
480 
VP8LGetHistoImageSymbols(int xsize,int ysize,const VP8LBackwardRefs * const refs,int quality,int histo_bits,int cache_bits,VP8LHistogramSet * const image_in,uint16_t * const histogram_symbols)481 int VP8LGetHistoImageSymbols(int xsize, int ysize,
482                              const VP8LBackwardRefs* const refs,
483                              int quality, int histo_bits, int cache_bits,
484                              VP8LHistogramSet* const image_in,
485                              uint16_t* const histogram_symbols) {
486   int ok = 0;
487   const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
488   const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
489   const int histo_image_raw_size = histo_xsize * histo_ysize;
490 
491   // Heuristic params for HistogramCombine().
492   const int num_tries_no_success = 8 + (quality >> 1);
493   const int iter_mult = (quality < 27) ? 1 : 1 + ((quality - 27) >> 4);
494   const int num_pairs = (quality < 25) ? 10 : (5 * quality) >> 3;
495 
496   VP8LHistogramSet* const image_out =
497       VP8LAllocateHistogramSet(histo_image_raw_size, cache_bits);
498   if (image_out == NULL) return 0;
499 
500   // Build histogram image.
501   HistogramBuildImage(xsize, histo_bits, refs, image_out);
502   // Collapse similar histograms.
503   if (!HistogramCombine(image_out, image_in, iter_mult, num_pairs,
504                         num_tries_no_success)) {
505     goto Error;
506   }
507   // Find the optimal map from original histograms to the final ones.
508   HistogramRemap(image_out, image_in, histogram_symbols);
509   ok = 1;
510 
511 Error:
512   free(image_out);
513   return ok;
514 }
515