1 ///////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
4 // Digital Ltd. LLC
5 //
6 // All rights reserved.
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
11 // *       Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 // *       Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following disclaimer
15 // in the documentation and/or other materials provided with the
16 // distribution.
17 // *       Neither the name of Industrial Light & Magic nor the names of
18 // its contributors may be used to endorse or promote products derived
19 // from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 //
33 ///////////////////////////////////////////////////////////////////////////
34 
35 
36 
37 #ifndef INCLUDED_IMATHFRAME_H
38 #define INCLUDED_IMATHFRAME_H
39 
40 namespace Imath {
41 
42 template<class T> class Vec3;
43 template<class T> class Matrix44;
44 
45 //
46 //  These methods compute a set of reference frames, defined by their
47 //  transformation matrix, along a curve. It is designed so that the
48 //  array of points and the array of matrices used to fetch these routines
49 //  don't need to be ordered as the curve.
50 //
51 //  A typical usage would be :
52 //
53 //      m[0] = Imath::firstFrame( p[0], p[1], p[2] );
54 //      for( int i = 1; i < n - 1; i++ )
55 //      {
56 //          m[i] = Imath::nextFrame( m[i-1], p[i-1], p[i], t[i-1], t[i] );
57 //      }
58 //      m[n-1] = Imath::lastFrame( m[n-2], p[n-2], p[n-1] );
59 //
60 //  See Graphics Gems I for the underlying algorithm.
61 //
62 
63 template<class T> Matrix44<T> firstFrame( const Vec3<T>&,    // First point
64                                           const Vec3<T>&,    // Second point
65                                           const Vec3<T>& );  // Third point
66 
67 template<class T> Matrix44<T> nextFrame( const Matrix44<T>&, // Previous matrix
68                                          const Vec3<T>&,     // Previous point
69                                          const Vec3<T>&,     // Current point
70                                          Vec3<T>&,           // Previous tangent
71                                          Vec3<T>& );         // Current tangent
72 
73 template<class T> Matrix44<T> lastFrame( const Matrix44<T>&, // Previous matrix
74                                          const Vec3<T>&,     // Previous point
75                                          const Vec3<T>& );   // Last point
76 
77 //
78 //  firstFrame - Compute the first reference frame along a curve.
79 //
80 //  This function returns the transformation matrix to the reference frame
81 //  defined by the three points 'pi', 'pj' and 'pk'. Note that if the two
82 //  vectors <pi,pj> and <pi,pk> are colinears, an arbitrary twist value will
83 //  be choosen.
84 //
85 //  Throw 'NullVecExc' if 'pi' and 'pj' are equals.
86 //
87 
firstFrame(const Vec3<T> & pi,const Vec3<T> & pj,const Vec3<T> & pk)88 template<class T> Matrix44<T> firstFrame
89 (
90     const Vec3<T>& pi,             // First point
91     const Vec3<T>& pj,             // Second point
92     const Vec3<T>& pk )            // Third point
93 {
94     Vec3<T> t = pj - pi; t.normalizeExc();
95 
96     Vec3<T> n = t.cross( pk - pi ); n.normalize();
97     if( n.length() == 0.0f )
98     {
99         int i = fabs( t[0] ) < fabs( t[1] ) ? 0 : 1;
100         if( fabs( t[2] ) < fabs( t[i] )) i = 2;
101 
102         Vec3<T> v( 0.0, 0.0, 0.0 ); v[i] = 1.0;
103         n = t.cross( v ); n.normalize();
104     }
105 
106     Vec3<T> b = t.cross( n );
107 
108     Matrix44<T> M;
109 
110     M[0][0] =  t[0]; M[0][1] =  t[1]; M[0][2] =  t[2]; M[0][3] = 0.0,
111     M[1][0] =  n[0]; M[1][1] =  n[1]; M[1][2] =  n[2]; M[1][3] = 0.0,
112     M[2][0] =  b[0]; M[2][1] =  b[1]; M[2][2] =  b[2]; M[2][3] = 0.0,
113     M[3][0] = pi[0]; M[3][1] = pi[1]; M[3][2] = pi[2]; M[3][3] = 1.0;
114 
115     return M;
116 }
117 
118 //
119 //  nextFrame - Compute the next reference frame along a curve.
120 //
121 //  This function returns the transformation matrix to the next reference
122 //  frame defined by the previously computed transformation matrix and the
123 //  new point and tangent vector along the curve.
124 //
125 
nextFrame(const Matrix44<T> & Mi,const Vec3<T> & pi,const Vec3<T> & pj,Vec3<T> & ti,Vec3<T> & tj)126 template<class T> Matrix44<T> nextFrame
127 (
128     const Matrix44<T>&  Mi,             // Previous matrix
129     const Vec3<T>&      pi,             // Previous point
130     const Vec3<T>&      pj,             // Current point
131     Vec3<T>&            ti,             // Previous tangent vector
132     Vec3<T>&            tj )            // Current tangent vector
133 {
134     Vec3<T> a(0.0, 0.0, 0.0);		// Rotation axis.
135     T r = 0.0;				// Rotation angle.
136 
137     if( ti.length() != 0.0 && tj.length() != 0.0 )
138     {
139         ti.normalize(); tj.normalize();
140         T dot = ti.dot( tj );
141 
142         //
143         //  This is *really* necessary :
144         //
145 
146         if( dot > 1.0 ) dot = 1.0;
147         else if( dot < -1.0 ) dot = -1.0;
148 
149         r = acosf( dot );
150         a = ti.cross( tj );
151     }
152 
153     if( a.length() != 0.0 && r != 0.0 )
154     {
155         Matrix44<T> R; R.setAxisAngle( a, r );
156         Matrix44<T> Tj; Tj.translate(  pj );
157         Matrix44<T> Ti; Ti.translate( -pi );
158 
159         return Mi * Ti * R * Tj;
160     }
161     else
162     {
163         Matrix44<T> Tr; Tr.translate( pj - pi );
164 
165         return Mi * Tr;
166     }
167 }
168 
169 //
170 //  lastFrame - Compute the last reference frame along a curve.
171 //
172 //  This function returns the transformation matrix to the last reference
173 //  frame defined by the previously computed transformation matrix and the
174 //  last point along the curve.
175 //
176 
lastFrame(const Matrix44<T> & Mi,const Vec3<T> & pi,const Vec3<T> & pj)177 template<class T> Matrix44<T> lastFrame
178 (
179     const Matrix44<T>&  Mi,             // Previous matrix
180     const Vec3<T>&      pi,             // Previous point
181     const Vec3<T>&      pj )            // Last point
182 {
183     Matrix44<T> Tr; Tr.translate( pj - pi );
184 
185     return Mi * Tr;
186 }
187 
188 } // namespace Imath
189 
190 #endif
191