1 #include "opencv2/core.hpp"
2
3 #include "cascadeclassifier.h"
4 #include <queue>
5
6 using namespace std;
7 using namespace cv;
8
9 static const char* stageTypes[] = { CC_BOOST };
10 static const char* featureTypes[] = { CC_HAAR, CC_LBP, CC_HOG };
11
CvCascadeParams()12 CvCascadeParams::CvCascadeParams() : stageType( defaultStageType ),
13 featureType( defaultFeatureType ), winSize( cvSize(24, 24) )
14 {
15 name = CC_CASCADE_PARAMS;
16 }
CvCascadeParams(int _stageType,int _featureType)17 CvCascadeParams::CvCascadeParams( int _stageType, int _featureType ) : stageType( _stageType ),
18 featureType( _featureType ), winSize( cvSize(24, 24) )
19 {
20 name = CC_CASCADE_PARAMS;
21 }
22
23 //---------------------------- CascadeParams --------------------------------------
24
write(FileStorage & fs) const25 void CvCascadeParams::write( FileStorage &fs ) const
26 {
27 string stageTypeStr = stageType == BOOST ? CC_BOOST : string();
28 CV_Assert( !stageTypeStr.empty() );
29 fs << CC_STAGE_TYPE << stageTypeStr;
30 string featureTypeStr = featureType == CvFeatureParams::HAAR ? CC_HAAR :
31 featureType == CvFeatureParams::LBP ? CC_LBP :
32 featureType == CvFeatureParams::HOG ? CC_HOG :
33 0;
34 CV_Assert( !stageTypeStr.empty() );
35 fs << CC_FEATURE_TYPE << featureTypeStr;
36 fs << CC_HEIGHT << winSize.height;
37 fs << CC_WIDTH << winSize.width;
38 }
39
read(const FileNode & node)40 bool CvCascadeParams::read( const FileNode &node )
41 {
42 if ( node.empty() )
43 return false;
44 string stageTypeStr, featureTypeStr;
45 FileNode rnode = node[CC_STAGE_TYPE];
46 if ( !rnode.isString() )
47 return false;
48 rnode >> stageTypeStr;
49 stageType = !stageTypeStr.compare( CC_BOOST ) ? BOOST : -1;
50 if (stageType == -1)
51 return false;
52 rnode = node[CC_FEATURE_TYPE];
53 if ( !rnode.isString() )
54 return false;
55 rnode >> featureTypeStr;
56 featureType = !featureTypeStr.compare( CC_HAAR ) ? CvFeatureParams::HAAR :
57 !featureTypeStr.compare( CC_LBP ) ? CvFeatureParams::LBP :
58 !featureTypeStr.compare( CC_HOG ) ? CvFeatureParams::HOG :
59 -1;
60 if (featureType == -1)
61 return false;
62 node[CC_HEIGHT] >> winSize.height;
63 node[CC_WIDTH] >> winSize.width;
64 return winSize.height > 0 && winSize.width > 0;
65 }
66
printDefaults() const67 void CvCascadeParams::printDefaults() const
68 {
69 CvParams::printDefaults();
70 cout << " [-stageType <";
71 for( int i = 0; i < (int)(sizeof(stageTypes)/sizeof(stageTypes[0])); i++ )
72 {
73 cout << (i ? " | " : "") << stageTypes[i];
74 if ( i == defaultStageType )
75 cout << "(default)";
76 }
77 cout << ">]" << endl;
78
79 cout << " [-featureType <{";
80 for( int i = 0; i < (int)(sizeof(featureTypes)/sizeof(featureTypes[0])); i++ )
81 {
82 cout << (i ? ", " : "") << featureTypes[i];
83 if ( i == defaultStageType )
84 cout << "(default)";
85 }
86 cout << "}>]" << endl;
87 cout << " [-w <sampleWidth = " << winSize.width << ">]" << endl;
88 cout << " [-h <sampleHeight = " << winSize.height << ">]" << endl;
89 }
90
printAttrs() const91 void CvCascadeParams::printAttrs() const
92 {
93 cout << "stageType: " << stageTypes[stageType] << endl;
94 cout << "featureType: " << featureTypes[featureType] << endl;
95 cout << "sampleWidth: " << winSize.width << endl;
96 cout << "sampleHeight: " << winSize.height << endl;
97 }
98
scanAttr(const string prmName,const string val)99 bool CvCascadeParams::scanAttr( const string prmName, const string val )
100 {
101 bool res = true;
102 if( !prmName.compare( "-stageType" ) )
103 {
104 for( int i = 0; i < (int)(sizeof(stageTypes)/sizeof(stageTypes[0])); i++ )
105 if( !val.compare( stageTypes[i] ) )
106 stageType = i;
107 }
108 else if( !prmName.compare( "-featureType" ) )
109 {
110 for( int i = 0; i < (int)(sizeof(featureTypes)/sizeof(featureTypes[0])); i++ )
111 if( !val.compare( featureTypes[i] ) )
112 featureType = i;
113 }
114 else if( !prmName.compare( "-w" ) )
115 {
116 winSize.width = atoi( val.c_str() );
117 }
118 else if( !prmName.compare( "-h" ) )
119 {
120 winSize.height = atoi( val.c_str() );
121 }
122 else
123 res = false;
124 return res;
125 }
126
127 //---------------------------- CascadeClassifier --------------------------------------
128
train(const string _cascadeDirName,const string _posFilename,const string _negFilename,int _numPos,int _numNeg,int _precalcValBufSize,int _precalcIdxBufSize,int _numStages,const CvCascadeParams & _cascadeParams,const CvFeatureParams & _featureParams,const CvCascadeBoostParams & _stageParams,bool baseFormatSave,double acceptanceRatioBreakValue)129 bool CvCascadeClassifier::train( const string _cascadeDirName,
130 const string _posFilename,
131 const string _negFilename,
132 int _numPos, int _numNeg,
133 int _precalcValBufSize, int _precalcIdxBufSize,
134 int _numStages,
135 const CvCascadeParams& _cascadeParams,
136 const CvFeatureParams& _featureParams,
137 const CvCascadeBoostParams& _stageParams,
138 bool baseFormatSave,
139 double acceptanceRatioBreakValue )
140 {
141 // Start recording clock ticks for training time output
142 const clock_t begin_time = clock();
143
144 if( _cascadeDirName.empty() || _posFilename.empty() || _negFilename.empty() )
145 CV_Error( CV_StsBadArg, "_cascadeDirName or _bgfileName or _vecFileName is NULL" );
146
147 string dirName;
148 if (_cascadeDirName.find_last_of("/\\") == (_cascadeDirName.length() - 1) )
149 dirName = _cascadeDirName;
150 else
151 dirName = _cascadeDirName + '/';
152
153 numPos = _numPos;
154 numNeg = _numNeg;
155 numStages = _numStages;
156 if ( !imgReader.create( _posFilename, _negFilename, _cascadeParams.winSize ) )
157 {
158 cout << "Image reader can not be created from -vec " << _posFilename
159 << " and -bg " << _negFilename << "." << endl;
160 return false;
161 }
162 if ( !load( dirName ) )
163 {
164 cascadeParams = _cascadeParams;
165 featureParams = CvFeatureParams::create(cascadeParams.featureType);
166 featureParams->init(_featureParams);
167 stageParams = makePtr<CvCascadeBoostParams>();
168 *stageParams = _stageParams;
169 featureEvaluator = CvFeatureEvaluator::create(cascadeParams.featureType);
170 featureEvaluator->init( featureParams, numPos + numNeg, cascadeParams.winSize );
171 stageClassifiers.reserve( numStages );
172 }else{
173 // Make sure that if model parameters are preloaded, that people are aware of this,
174 // even when passing other parameters to the training command
175 cout << "---------------------------------------------------------------------------------" << endl;
176 cout << "Training parameters are pre-loaded from the parameter file in data folder!" << endl;
177 cout << "Please empty this folder if you want to use a NEW set of training parameters." << endl;
178 cout << "---------------------------------------------------------------------------------" << endl;
179 }
180 cout << "PARAMETERS:" << endl;
181 cout << "cascadeDirName: " << _cascadeDirName << endl;
182 cout << "vecFileName: " << _posFilename << endl;
183 cout << "bgFileName: " << _negFilename << endl;
184 cout << "numPos: " << _numPos << endl;
185 cout << "numNeg: " << _numNeg << endl;
186 cout << "numStages: " << numStages << endl;
187 cout << "precalcValBufSize[Mb] : " << _precalcValBufSize << endl;
188 cout << "precalcIdxBufSize[Mb] : " << _precalcIdxBufSize << endl;
189 cout << "acceptanceRatioBreakValue : " << acceptanceRatioBreakValue << endl;
190 cascadeParams.printAttrs();
191 stageParams->printAttrs();
192 featureParams->printAttrs();
193
194 int startNumStages = (int)stageClassifiers.size();
195 if ( startNumStages > 1 )
196 cout << endl << "Stages 0-" << startNumStages-1 << " are loaded" << endl;
197 else if ( startNumStages == 1)
198 cout << endl << "Stage 0 is loaded" << endl;
199
200 double requiredLeafFARate = pow( (double) stageParams->maxFalseAlarm, (double) numStages ) /
201 (double)stageParams->max_depth;
202 double tempLeafFARate;
203
204 for( int i = startNumStages; i < numStages; i++ )
205 {
206 cout << endl << "===== TRAINING " << i << "-stage =====" << endl;
207 cout << "<BEGIN" << endl;
208
209 if ( !updateTrainingSet( tempLeafFARate ) )
210 {
211 cout << "Train dataset for temp stage can not be filled. "
212 "Branch training terminated." << endl;
213 break;
214 }
215 if( tempLeafFARate <= requiredLeafFARate )
216 {
217 cout << "Required leaf false alarm rate achieved. "
218 "Branch training terminated." << endl;
219 break;
220 }
221 if( (tempLeafFARate <= acceptanceRatioBreakValue) && (acceptanceRatioBreakValue >= 0) ){
222 cout << "The required acceptanceRatio for the model has been reached to avoid overfitting of trainingdata. "
223 "Branch training terminated." << endl;
224 break;
225 }
226
227 Ptr<CvCascadeBoost> tempStage = makePtr<CvCascadeBoost>();
228 bool isStageTrained = tempStage->train( featureEvaluator,
229 curNumSamples, _precalcValBufSize, _precalcIdxBufSize,
230 *stageParams );
231 cout << "END>" << endl;
232
233 if(!isStageTrained)
234 break;
235
236 stageClassifiers.push_back( tempStage );
237
238 // save params
239 if( i == 0)
240 {
241 std::string paramsFilename = dirName + CC_PARAMS_FILENAME;
242 FileStorage fs( paramsFilename, FileStorage::WRITE);
243 if ( !fs.isOpened() )
244 {
245 cout << "Parameters can not be written, because file " << paramsFilename
246 << " can not be opened." << endl;
247 return false;
248 }
249 fs << FileStorage::getDefaultObjectName(paramsFilename) << "{";
250 writeParams( fs );
251 fs << "}";
252 }
253 // save current stage
254 char buf[10];
255 sprintf(buf, "%s%d", "stage", i );
256 string stageFilename = dirName + buf + ".xml";
257 FileStorage fs( stageFilename, FileStorage::WRITE );
258 if ( !fs.isOpened() )
259 {
260 cout << "Current stage can not be written, because file " << stageFilename
261 << " can not be opened." << endl;
262 return false;
263 }
264 fs << FileStorage::getDefaultObjectName(stageFilename) << "{";
265 tempStage->write( fs, Mat() );
266 fs << "}";
267
268 // Output training time up till now
269 float seconds = float( clock () - begin_time ) / CLOCKS_PER_SEC;
270 int days = int(seconds) / 60 / 60 / 24;
271 int hours = (int(seconds) / 60 / 60) % 24;
272 int minutes = (int(seconds) / 60) % 60;
273 int seconds_left = int(seconds) % 60;
274 cout << "Training until now has taken " << days << " days " << hours << " hours " << minutes << " minutes " << seconds_left <<" seconds." << endl;
275 }
276
277 if(stageClassifiers.size() == 0)
278 {
279 cout << "Cascade classifier can't be trained. Check the used training parameters." << endl;
280 return false;
281 }
282
283 save( dirName + CC_CASCADE_FILENAME, baseFormatSave );
284
285 return true;
286 }
287
predict(int sampleIdx)288 int CvCascadeClassifier::predict( int sampleIdx )
289 {
290 CV_DbgAssert( sampleIdx < numPos + numNeg );
291 for (vector< Ptr<CvCascadeBoost> >::iterator it = stageClassifiers.begin();
292 it != stageClassifiers.end(); it++ )
293 {
294 if ( (*it)->predict( sampleIdx ) == 0.f )
295 return 0;
296 }
297 return 1;
298 }
299
updateTrainingSet(double & acceptanceRatio)300 bool CvCascadeClassifier::updateTrainingSet( double& acceptanceRatio)
301 {
302 int64 posConsumed = 0, negConsumed = 0;
303 imgReader.restart();
304 int posCount = fillPassedSamples( 0, numPos, true, posConsumed );
305 if( !posCount )
306 return false;
307 cout << "POS count : consumed " << posCount << " : " << (int)posConsumed << endl;
308
309 int proNumNeg = cvRound( ( ((double)numNeg) * ((double)posCount) ) / numPos ); // apply only a fraction of negative samples. double is required since overflow is possible
310 int negCount = fillPassedSamples( posCount, proNumNeg, false, negConsumed );
311 if ( !negCount )
312 return false;
313
314 curNumSamples = posCount + negCount;
315 acceptanceRatio = negConsumed == 0 ? 0 : ( (double)negCount/(double)(int64)negConsumed );
316 cout << "NEG count : acceptanceRatio " << negCount << " : " << acceptanceRatio << endl;
317 return true;
318 }
319
fillPassedSamples(int first,int count,bool isPositive,int64 & consumed)320 int CvCascadeClassifier::fillPassedSamples( int first, int count, bool isPositive, int64& consumed )
321 {
322 int getcount = 0;
323 Mat img(cascadeParams.winSize, CV_8UC1);
324 for( int i = first; i < first + count; i++ )
325 {
326 for( ; ; )
327 {
328 bool isGetImg = isPositive ? imgReader.getPos( img ) :
329 imgReader.getNeg( img );
330 if( !isGetImg )
331 return getcount;
332 consumed++;
333
334 featureEvaluator->setImage( img, isPositive ? 1 : 0, i );
335 if( predict( i ) == 1.0F )
336 {
337 getcount++;
338 printf("%s current samples: %d\r", isPositive ? "POS":"NEG", getcount);
339 break;
340 }
341 }
342 }
343 return getcount;
344 }
345
writeParams(FileStorage & fs) const346 void CvCascadeClassifier::writeParams( FileStorage &fs ) const
347 {
348 cascadeParams.write( fs );
349 fs << CC_STAGE_PARAMS << "{"; stageParams->write( fs ); fs << "}";
350 fs << CC_FEATURE_PARAMS << "{"; featureParams->write( fs ); fs << "}";
351 }
352
writeFeatures(FileStorage & fs,const Mat & featureMap) const353 void CvCascadeClassifier::writeFeatures( FileStorage &fs, const Mat& featureMap ) const
354 {
355 featureEvaluator->writeFeatures( fs, featureMap );
356 }
357
writeStages(FileStorage & fs,const Mat & featureMap) const358 void CvCascadeClassifier::writeStages( FileStorage &fs, const Mat& featureMap ) const
359 {
360 char cmnt[30];
361 int i = 0;
362 fs << CC_STAGES << "[";
363 for( vector< Ptr<CvCascadeBoost> >::const_iterator it = stageClassifiers.begin();
364 it != stageClassifiers.end(); it++, i++ )
365 {
366 sprintf( cmnt, "stage %d", i );
367 cvWriteComment( fs.fs, cmnt, 0 );
368 fs << "{";
369 (*it)->write( fs, featureMap );
370 fs << "}";
371 }
372 fs << "]";
373 }
374
readParams(const FileNode & node)375 bool CvCascadeClassifier::readParams( const FileNode &node )
376 {
377 if ( !node.isMap() || !cascadeParams.read( node ) )
378 return false;
379
380 stageParams = makePtr<CvCascadeBoostParams>();
381 FileNode rnode = node[CC_STAGE_PARAMS];
382 if ( !stageParams->read( rnode ) )
383 return false;
384
385 featureParams = CvFeatureParams::create(cascadeParams.featureType);
386 rnode = node[CC_FEATURE_PARAMS];
387 if ( !featureParams->read( rnode ) )
388 return false;
389 return true;
390 }
391
readStages(const FileNode & node)392 bool CvCascadeClassifier::readStages( const FileNode &node)
393 {
394 FileNode rnode = node[CC_STAGES];
395 if (!rnode.empty() || !rnode.isSeq())
396 return false;
397 stageClassifiers.reserve(numStages);
398 FileNodeIterator it = rnode.begin();
399 for( int i = 0; i < min( (int)rnode.size(), numStages ); i++, it++ )
400 {
401 Ptr<CvCascadeBoost> tempStage = makePtr<CvCascadeBoost>();
402 if ( !tempStage->read( *it, featureEvaluator, *stageParams) )
403 return false;
404 stageClassifiers.push_back(tempStage);
405 }
406 return true;
407 }
408
409 // For old Haar Classifier file saving
410 #define ICV_HAAR_SIZE_NAME "size"
411 #define ICV_HAAR_STAGES_NAME "stages"
412 #define ICV_HAAR_TREES_NAME "trees"
413 #define ICV_HAAR_FEATURE_NAME "feature"
414 #define ICV_HAAR_RECTS_NAME "rects"
415 #define ICV_HAAR_TILTED_NAME "tilted"
416 #define ICV_HAAR_THRESHOLD_NAME "threshold"
417 #define ICV_HAAR_LEFT_NODE_NAME "left_node"
418 #define ICV_HAAR_LEFT_VAL_NAME "left_val"
419 #define ICV_HAAR_RIGHT_NODE_NAME "right_node"
420 #define ICV_HAAR_RIGHT_VAL_NAME "right_val"
421 #define ICV_HAAR_STAGE_THRESHOLD_NAME "stage_threshold"
422 #define ICV_HAAR_PARENT_NAME "parent"
423 #define ICV_HAAR_NEXT_NAME "next"
424
save(const string filename,bool baseFormat)425 void CvCascadeClassifier::save( const string filename, bool baseFormat )
426 {
427 FileStorage fs( filename, FileStorage::WRITE );
428
429 if ( !fs.isOpened() )
430 return;
431
432 fs << FileStorage::getDefaultObjectName(filename) << "{";
433 if ( !baseFormat )
434 {
435 Mat featureMap;
436 getUsedFeaturesIdxMap( featureMap );
437 writeParams( fs );
438 fs << CC_STAGE_NUM << (int)stageClassifiers.size();
439 writeStages( fs, featureMap );
440 writeFeatures( fs, featureMap );
441 }
442 else
443 {
444 //char buf[256];
445 CvSeq* weak;
446 if ( cascadeParams.featureType != CvFeatureParams::HAAR )
447 CV_Error( CV_StsBadFunc, "old file format is used for Haar-like features only");
448 fs << ICV_HAAR_SIZE_NAME << "[:" << cascadeParams.winSize.width <<
449 cascadeParams.winSize.height << "]";
450 fs << ICV_HAAR_STAGES_NAME << "[";
451 for( size_t si = 0; si < stageClassifiers.size(); si++ )
452 {
453 fs << "{"; //stage
454 /*sprintf( buf, "stage %d", si );
455 CV_CALL( cvWriteComment( fs, buf, 1 ) );*/
456 weak = stageClassifiers[si]->get_weak_predictors();
457 fs << ICV_HAAR_TREES_NAME << "[";
458 for( int wi = 0; wi < weak->total; wi++ )
459 {
460 int inner_node_idx = -1, total_inner_node_idx = -1;
461 queue<const CvDTreeNode*> inner_nodes_queue;
462 CvCascadeBoostTree* tree = *((CvCascadeBoostTree**) cvGetSeqElem( weak, wi ));
463
464 fs << "[";
465 /*sprintf( buf, "tree %d", wi );
466 CV_CALL( cvWriteComment( fs, buf, 1 ) );*/
467
468 const CvDTreeNode* tempNode;
469
470 inner_nodes_queue.push( tree->get_root() );
471 total_inner_node_idx++;
472
473 while (!inner_nodes_queue.empty())
474 {
475 tempNode = inner_nodes_queue.front();
476 inner_node_idx++;
477
478 fs << "{";
479 fs << ICV_HAAR_FEATURE_NAME << "{";
480 ((CvHaarEvaluator*)featureEvaluator.get())->writeFeature( fs, tempNode->split->var_idx );
481 fs << "}";
482
483 fs << ICV_HAAR_THRESHOLD_NAME << tempNode->split->ord.c;
484
485 if( tempNode->left->left || tempNode->left->right )
486 {
487 inner_nodes_queue.push( tempNode->left );
488 total_inner_node_idx++;
489 fs << ICV_HAAR_LEFT_NODE_NAME << total_inner_node_idx;
490 }
491 else
492 fs << ICV_HAAR_LEFT_VAL_NAME << tempNode->left->value;
493
494 if( tempNode->right->left || tempNode->right->right )
495 {
496 inner_nodes_queue.push( tempNode->right );
497 total_inner_node_idx++;
498 fs << ICV_HAAR_RIGHT_NODE_NAME << total_inner_node_idx;
499 }
500 else
501 fs << ICV_HAAR_RIGHT_VAL_NAME << tempNode->right->value;
502 fs << "}"; // ICV_HAAR_FEATURE_NAME
503 inner_nodes_queue.pop();
504 }
505 fs << "]";
506 }
507 fs << "]"; //ICV_HAAR_TREES_NAME
508 fs << ICV_HAAR_STAGE_THRESHOLD_NAME << stageClassifiers[si]->getThreshold();
509 fs << ICV_HAAR_PARENT_NAME << (int)si-1 << ICV_HAAR_NEXT_NAME << -1;
510 fs << "}"; //stage
511 } /* for each stage */
512 fs << "]"; //ICV_HAAR_STAGES_NAME
513 }
514 fs << "}";
515 }
516
load(const string cascadeDirName)517 bool CvCascadeClassifier::load( const string cascadeDirName )
518 {
519 FileStorage fs( cascadeDirName + CC_PARAMS_FILENAME, FileStorage::READ );
520 if ( !fs.isOpened() )
521 return false;
522 FileNode node = fs.getFirstTopLevelNode();
523 if ( !readParams( node ) )
524 return false;
525 featureEvaluator = CvFeatureEvaluator::create(cascadeParams.featureType);
526 featureEvaluator->init( featureParams, numPos + numNeg, cascadeParams.winSize );
527 fs.release();
528
529 char buf[10];
530 for ( int si = 0; si < numStages; si++ )
531 {
532 sprintf( buf, "%s%d", "stage", si);
533 fs.open( cascadeDirName + buf + ".xml", FileStorage::READ );
534 node = fs.getFirstTopLevelNode();
535 if ( !fs.isOpened() )
536 break;
537 Ptr<CvCascadeBoost> tempStage = makePtr<CvCascadeBoost>();
538
539 if ( !tempStage->read( node, featureEvaluator, *stageParams ))
540 {
541 fs.release();
542 break;
543 }
544 stageClassifiers.push_back(tempStage);
545 }
546 return true;
547 }
548
getUsedFeaturesIdxMap(Mat & featureMap)549 void CvCascadeClassifier::getUsedFeaturesIdxMap( Mat& featureMap )
550 {
551 int varCount = featureEvaluator->getNumFeatures() * featureEvaluator->getFeatureSize();
552 featureMap.create( 1, varCount, CV_32SC1 );
553 featureMap.setTo(Scalar(-1));
554
555 for( vector< Ptr<CvCascadeBoost> >::const_iterator it = stageClassifiers.begin();
556 it != stageClassifiers.end(); it++ )
557 (*it)->markUsedFeaturesInMap( featureMap );
558
559 for( int fi = 0, idx = 0; fi < varCount; fi++ )
560 if ( featureMap.at<int>(0, fi) >= 0 )
561 featureMap.ptr<int>(0)[fi] = idx++;
562 }
563