1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                          License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16 // Third party copyrights are property of their respective owners.
17 //
18 // Redistribution and use in source and binary forms, with or without modification,
19 // are permitted provided that the following conditions are met:
20 //
21 //   * Redistribution's of source code must retain the above copyright notice,
22 //     this list of conditions and the following disclaimer.
23 //
24 //   * Redistribution's in binary form must reproduce the above copyright notice,
25 //     this list of conditions and the following disclaimer in the documentation
26 //     and/or other materials provided with the distribution.
27 //
28 //   * The name of the copyright holders may not be used to endorse or promote products
29 //     derived from this software without specific prior written permission.
30 //
31 // This software is provided by the copyright holders and contributors "as is" and
32 // any express or implied warranties, including, but not limited to, the implied
33 // warranties of merchantability and fitness for a particular purpose are disclaimed.
34 // In no event shall the Intel Corporation or contributors be liable for any direct,
35 // indirect, incidental, special, exemplary, or consequential damages
36 // (including, but not limited to, procurement of substitute goods or services;
37 // loss of use, data, or profits; or business interruption) however caused
38 // and on any theory of liability, whether in contract, strict liability,
39 // or tort (including negligence or otherwise) arising in any way out of
40 // the use of this software, even if advised of the possibility of such damage.
41 //
42 //M*/
43 
44 #ifndef __OPENCV_CALIB3D_HPP__
45 #define __OPENCV_CALIB3D_HPP__
46 
47 #include "opencv2/core.hpp"
48 #include "opencv2/features2d.hpp"
49 #include "opencv2/core/affine.hpp"
50 
51 /**
52   @defgroup calib3d Camera Calibration and 3D Reconstruction
53 
54 The functions in this section use a so-called pinhole camera model. In this model, a scene view is
55 formed by projecting 3D points into the image plane using a perspective transformation.
56 
57 \f[s  \; m' = A [R|t] M'\f]
58 
59 or
60 
61 \f[s  \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}
62 \begin{bmatrix}
63 r_{11} & r_{12} & r_{13} & t_1  \\
64 r_{21} & r_{22} & r_{23} & t_2  \\
65 r_{31} & r_{32} & r_{33} & t_3
66 \end{bmatrix}
67 \begin{bmatrix}
68 X \\
69 Y \\
70 Z \\
71 1
72 \end{bmatrix}\f]
73 
74 where:
75 
76 -   \f$(X, Y, Z)\f$ are the coordinates of a 3D point in the world coordinate space
77 -   \f$(u, v)\f$ are the coordinates of the projection point in pixels
78 -   \f$A\f$ is a camera matrix, or a matrix of intrinsic parameters
79 -   \f$(cx, cy)\f$ is a principal point that is usually at the image center
80 -   \f$fx, fy\f$ are the focal lengths expressed in pixel units.
81 
82 Thus, if an image from the camera is scaled by a factor, all of these parameters should be scaled
83 (multiplied/divided, respectively) by the same factor. The matrix of intrinsic parameters does not
84 depend on the scene viewed. So, once estimated, it can be re-used as long as the focal length is
85 fixed (in case of zoom lens). The joint rotation-translation matrix \f$[R|t]\f$ is called a matrix of
86 extrinsic parameters. It is used to describe the camera motion around a static scene, or vice versa,
87 rigid motion of an object in front of a still camera. That is, \f$[R|t]\f$ translates coordinates of a
88 point \f$(X, Y, Z)\f$ to a coordinate system, fixed with respect to the camera. The transformation above
89 is equivalent to the following (when \f$z \ne 0\f$ ):
90 
91 \f[\begin{array}{l}
92 \vecthree{x}{y}{z} = R  \vecthree{X}{Y}{Z} + t \\
93 x' = x/z \\
94 y' = y/z \\
95 u = f_x*x' + c_x \\
96 v = f_y*y' + c_y
97 \end{array}\f]
98 
99 Real lenses usually have some distortion, mostly radial distortion and slight tangential distortion.
100 So, the above model is extended as:
101 
102 \f[\begin{array}{l} \vecthree{x}{y}{z} = R  \vecthree{X}{Y}{Z} + t \\ x' = x/z \\ y' = y/z \\ x'' = x'  \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\ y'' = y'  \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_1 r^2 + s_2 r^4 \\ \text{where} \quad r^2 = x'^2 + y'^2  \\ u = f_x*x'' + c_x \\ v = f_y*y'' + c_y \end{array}\f]
103 
104 \f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$ are radial distortion coefficients. \f$p_1\f$ and \f$p_2\f$ are
105 tangential distortion coefficients. \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$, are the thin prism distortion
106 coefficients. Higher-order coefficients are not considered in OpenCV. In the functions below the
107 coefficients are passed or returned as
108 
109 \f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f]
110 
111 vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion
112 coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera
113 parameters. And they remain the same regardless of the captured image resolution. If, for example, a
114 camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion
115 coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$, \f$c_x\f$, and
116 \f$c_y\f$ need to be scaled appropriately.
117 
118 The functions below use the above model to do the following:
119 
120 -   Project 3D points to the image plane given intrinsic and extrinsic parameters.
121 -   Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their
122 projections.
123 -   Estimate intrinsic and extrinsic camera parameters from several views of a known calibration
124 pattern (every view is described by several 3D-2D point correspondences).
125 -   Estimate the relative position and orientation of the stereo camera "heads" and compute the
126 *rectification* transformation that makes the camera optical axes parallel.
127 
128 @note
129    -   A calibration sample for 3 cameras in horizontal position can be found at
130         opencv_source_code/samples/cpp/3calibration.cpp
131     -   A calibration sample based on a sequence of images can be found at
132         opencv_source_code/samples/cpp/calibration.cpp
133     -   A calibration sample in order to do 3D reconstruction can be found at
134         opencv_source_code/samples/cpp/build3dmodel.cpp
135     -   A calibration sample of an artificially generated camera and chessboard patterns can be
136         found at opencv_source_code/samples/cpp/calibration_artificial.cpp
137     -   A calibration example on stereo calibration can be found at
138         opencv_source_code/samples/cpp/stereo_calib.cpp
139     -   A calibration example on stereo matching can be found at
140         opencv_source_code/samples/cpp/stereo_match.cpp
141     -   (Python) A camera calibration sample can be found at
142         opencv_source_code/samples/python2/calibrate.py
143 
144   @{
145     @defgroup calib3d_fisheye Fisheye camera model
146 
147     Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the
148     matrix X) The coordinate vector of P in the camera reference frame is:
149 
150     \f[Xc = R X + T\f]
151 
152     where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y
153     and z the 3 coordinates of Xc:
154 
155     \f[x = Xc_1 \\ y = Xc_2 \\ z = Xc_3\f]
156 
157     The pinehole projection coordinates of P is [a; b] where
158 
159     \f[a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r)\f]
160 
161     Fisheye distortion:
162 
163     \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f]
164 
165     The distorted point coordinates are [x'; y'] where
166 
167     \f[x' = (\theta_d / r) x \\ y' = (\theta_d / r) y \f]
168 
169     Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:
170 
171     \f[u = f_x (x' + \alpha y') + c_x \\
172     v = f_y yy + c_y\f]
173 
174     @defgroup calib3d_c C API
175 
176   @}
177  */
178 
179 namespace cv
180 {
181 
182 //! @addtogroup calib3d
183 //! @{
184 
185 //! type of the robust estimation algorithm
186 enum { LMEDS  = 4, //!< least-median algorithm
187        RANSAC = 8, //!< RANSAC algorithm
188        RHO    = 16 //!< RHO algorithm
189      };
190 
191 enum { SOLVEPNP_ITERATIVE = 0,
192        SOLVEPNP_EPNP      = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation"
193        SOLVEPNP_P3P       = 2, // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
194        SOLVEPNP_DLS       = 3, // Joel A. Hesch and Stergios I. Roumeliotis. "A Direct Least-Squares (DLS) Method for PnP"
195        SOLVEPNP_UPNP      = 4  // A.Penate-Sanchez, J.Andrade-Cetto, F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation"
196 
197 };
198 
199 enum { CALIB_CB_ADAPTIVE_THRESH = 1,
200        CALIB_CB_NORMALIZE_IMAGE = 2,
201        CALIB_CB_FILTER_QUADS    = 4,
202        CALIB_CB_FAST_CHECK      = 8
203      };
204 
205 enum { CALIB_CB_SYMMETRIC_GRID  = 1,
206        CALIB_CB_ASYMMETRIC_GRID = 2,
207        CALIB_CB_CLUSTERING      = 4
208      };
209 
210 enum { CALIB_USE_INTRINSIC_GUESS = 0x00001,
211        CALIB_FIX_ASPECT_RATIO    = 0x00002,
212        CALIB_FIX_PRINCIPAL_POINT = 0x00004,
213        CALIB_ZERO_TANGENT_DIST   = 0x00008,
214        CALIB_FIX_FOCAL_LENGTH    = 0x00010,
215        CALIB_FIX_K1              = 0x00020,
216        CALIB_FIX_K2              = 0x00040,
217        CALIB_FIX_K3              = 0x00080,
218        CALIB_FIX_K4              = 0x00800,
219        CALIB_FIX_K5              = 0x01000,
220        CALIB_FIX_K6              = 0x02000,
221        CALIB_RATIONAL_MODEL      = 0x04000,
222        CALIB_THIN_PRISM_MODEL    = 0x08000,
223        CALIB_FIX_S1_S2_S3_S4     = 0x10000,
224        // only for stereo
225        CALIB_FIX_INTRINSIC       = 0x00100,
226        CALIB_SAME_FOCAL_LENGTH   = 0x00200,
227        // for stereo rectification
228        CALIB_ZERO_DISPARITY      = 0x00400
229      };
230 
231 //! the algorithm for finding fundamental matrix
232 enum { FM_7POINT = 1, //!< 7-point algorithm
233        FM_8POINT = 2, //!< 8-point algorithm
234        FM_LMEDS  = 4, //!< least-median algorithm
235        FM_RANSAC = 8  //!< RANSAC algorithm
236      };
237 
238 
239 
240 /** @brief Converts a rotation matrix to a rotation vector or vice versa.
241 
242 @param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
243 @param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
244 @param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
245 derivatives of the output array components with respect to the input array components.
246 
247 \f[\begin{array}{l} \theta \leftarrow norm(r) \\ r  \leftarrow r/ \theta \\ R =  \cos{\theta} I + (1- \cos{\theta} ) r r^T +  \sin{\theta} \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f]
248 
249 Inverse transformation can be also done easily, since
250 
251 \f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f]
252 
253 A rotation vector is a convenient and most compact representation of a rotation matrix (since any
254 rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
255 optimization procedures like calibrateCamera, stereoCalibrate, or solvePnP .
256  */
257 CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() );
258 
259 /** @brief Finds a perspective transformation between two planes.
260 
261 @param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2
262 or vector\<Point2f\> .
263 @param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
264 a vector\<Point2f\> .
265 @param method Method used to computed a homography matrix. The following methods are possible:
266 -   **0** - a regular method using all the points
267 -   **RANSAC** - RANSAC-based robust method
268 -   **LMEDS** - Least-Median robust method
269 -   **RHO**    - PROSAC-based robust method
270 @param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier
271 (used in the RANSAC and RHO methods only). That is, if
272 \f[\| \texttt{dstPoints} _i -  \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|  >  \texttt{ransacReprojThreshold}\f]
273 then the point \f$i\f$ is considered an outlier. If srcPoints and dstPoints are measured in pixels,
274 it usually makes sense to set this parameter somewhere in the range of 1 to 10.
275 @param mask Optional output mask set by a robust method ( RANSAC or LMEDS ). Note that the input
276 mask values are ignored.
277 @param maxIters The maximum number of RANSAC iterations, 2000 is the maximum it can be.
278 @param confidence Confidence level, between 0 and 1.
279 
280 The functions find and return the perspective transformation \f$H\f$ between the source and the
281 destination planes:
282 
283 \f[s_i  \vecthree{x'_i}{y'_i}{1} \sim H  \vecthree{x_i}{y_i}{1}\f]
284 
285 so that the back-projection error
286 
287 \f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f]
288 
289 is minimized. If the parameter method is set to the default value 0, the function uses all the point
290 pairs to compute an initial homography estimate with a simple least-squares scheme.
291 
292 However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective
293 transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
294 you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
295 random subsets of the corresponding point pairs (of four pairs each), estimate the homography matrix
296 using this subset and a simple least-square algorithm, and then compute the quality/goodness of the
297 computed homography (which is the number of inliers for RANSAC or the median re-projection error for
298 LMeDs). The best subset is then used to produce the initial estimate of the homography matrix and
299 the mask of inliers/outliers.
300 
301 Regardless of the method, robust or not, the computed homography matrix is refined further (using
302 inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
303 re-projection error even more.
304 
305 The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
306 distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
307 correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
308 noise is rather small, use the default method (method=0).
309 
310 The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
311 determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an H matrix
312 cannot be estimated, an empty one will be returned.
313 
314 @sa
315    getAffineTransform, getPerspectiveTransform, estimateRigidTransform, warpPerspective,
316     perspectiveTransform
317 
318 @note
319    -   A example on calculating a homography for image matching can be found at
320         opencv_source_code/samples/cpp/video_homography.cpp
321 
322  */
323 CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
324                                  int method = 0, double ransacReprojThreshold = 3,
325                                  OutputArray mask=noArray(), const int maxIters = 2000,
326                                  const double confidence = 0.995);
327 
328 /** @overload */
329 CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
330                                OutputArray mask, int method = 0, double ransacReprojThreshold = 3 );
331 
332 /** @brief Computes an RQ decomposition of 3x3 matrices.
333 
334 @param src 3x3 input matrix.
335 @param mtxR Output 3x3 upper-triangular matrix.
336 @param mtxQ Output 3x3 orthogonal matrix.
337 @param Qx Optional output 3x3 rotation matrix around x-axis.
338 @param Qy Optional output 3x3 rotation matrix around y-axis.
339 @param Qz Optional output 3x3 rotation matrix around z-axis.
340 
341 The function computes a RQ decomposition using the given rotations. This function is used in
342 decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
343 and a rotation matrix.
344 
345 It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
346 degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
347 sequence of rotations about the three principle axes that results in the same orientation of an
348 object, eg. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angules
349 are only one of the possible solutions.
350  */
351 CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
352                                 OutputArray Qx = noArray(),
353                                 OutputArray Qy = noArray(),
354                                 OutputArray Qz = noArray());
355 
356 /** @brief Decomposes a projection matrix into a rotation matrix and a camera matrix.
357 
358 @param projMatrix 3x4 input projection matrix P.
359 @param cameraMatrix Output 3x3 camera matrix K.
360 @param rotMatrix Output 3x3 external rotation matrix R.
361 @param transVect Output 4x1 translation vector T.
362 @param rotMatrixX Optional 3x3 rotation matrix around x-axis.
363 @param rotMatrixY Optional 3x3 rotation matrix around y-axis.
364 @param rotMatrixZ Optional 3x3 rotation matrix around z-axis.
365 @param eulerAngles Optional three-element vector containing three Euler angles of rotation in
366 degrees.
367 
368 The function computes a decomposition of a projection matrix into a calibration and a rotation
369 matrix and the position of a camera.
370 
371 It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
372 be used in OpenGL. Note, there is always more than one sequence of rotations about the three
373 principle axes that results in the same orientation of an object, eg. see @cite Slabaugh . Returned
374 tree rotation matrices and corresponding three Euler angules are only one of the possible solutions.
375 
376 The function is based on RQDecomp3x3 .
377  */
378 CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
379                                              OutputArray rotMatrix, OutputArray transVect,
380                                              OutputArray rotMatrixX = noArray(),
381                                              OutputArray rotMatrixY = noArray(),
382                                              OutputArray rotMatrixZ = noArray(),
383                                              OutputArray eulerAngles =noArray() );
384 
385 /** @brief Computes partial derivatives of the matrix product for each multiplied matrix.
386 
387 @param A First multiplied matrix.
388 @param B Second multiplied matrix.
389 @param dABdA First output derivative matrix d(A\*B)/dA of size
390 \f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ .
391 @param dABdB Second output derivative matrix d(A\*B)/dB of size
392 \f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ .
393 
394 The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to
395 the elements of each of the two input matrices. The function is used to compute the Jacobian
396 matrices in stereoCalibrate but can also be used in any other similar optimization function.
397  */
398 CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB );
399 
400 /** @brief Combines two rotation-and-shift transformations.
401 
402 @param rvec1 First rotation vector.
403 @param tvec1 First translation vector.
404 @param rvec2 Second rotation vector.
405 @param tvec2 Second translation vector.
406 @param rvec3 Output rotation vector of the superposition.
407 @param tvec3 Output translation vector of the superposition.
408 @param dr3dr1
409 @param dr3dt1
410 @param dr3dr2
411 @param dr3dt2
412 @param dt3dr1
413 @param dt3dt1
414 @param dt3dr2
415 @param dt3dt2 Optional output derivatives of rvec3 or tvec3 with regard to rvec1, rvec2, tvec1 and
416 tvec2, respectively.
417 
418 The functions compute:
419 
420 \f[\begin{array}{l} \texttt{rvec3} =  \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right )  \\ \texttt{tvec3} =  \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \texttt{tvec1} +  \texttt{tvec2} \end{array} ,\f]
421 
422 where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and
423 \f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See Rodrigues for details.
424 
425 Also, the functions can compute the derivatives of the output vectors with regards to the input
426 vectors (see matMulDeriv ). The functions are used inside stereoCalibrate but can also be used in
427 your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
428 function that contains a matrix multiplication.
429  */
430 CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
431                              InputArray rvec2, InputArray tvec2,
432                              OutputArray rvec3, OutputArray tvec3,
433                              OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(),
434                              OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(),
435                              OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(),
436                              OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() );
437 
438 /** @brief Projects 3D points to an image plane.
439 
440 @param objectPoints Array of object points, 3xN/Nx3 1-channel or 1xN/Nx1 3-channel (or
441 vector\<Point3f\> ), where N is the number of points in the view.
442 @param rvec Rotation vector. See Rodrigues for details.
443 @param tvec Translation vector.
444 @param cameraMatrix Camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$ .
445 @param distCoeffs Input vector of distortion coefficients
446 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements. If
447 the vector is NULL/empty, the zero distortion coefficients are assumed.
448 @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
449 vector\<Point2f\> .
450 @param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image
451 points with respect to components of the rotation vector, translation vector, focal lengths,
452 coordinates of the principal point and the distortion coefficients. In the old interface different
453 components of the jacobian are returned via different output parameters.
454 @param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
455 function assumes that the aspect ratio (*fx/fy*) is fixed and correspondingly adjusts the jacobian
456 matrix.
457 
458 The function computes projections of 3D points to the image plane given intrinsic and extrinsic
459 camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
460 image points coordinates (as functions of all the input parameters) with respect to the particular
461 parameters, intrinsic and/or extrinsic. The Jacobians are used during the global optimization in
462 calibrateCamera, solvePnP, and stereoCalibrate . The function itself can also be used to compute a
463 re-projection error given the current intrinsic and extrinsic parameters.
464 
465 @note By setting rvec=tvec=(0,0,0) or by setting cameraMatrix to a 3x3 identity matrix, or by
466 passing zero distortion coefficients, you can get various useful partial cases of the function. This
467 means that you can compute the distorted coordinates for a sparse set of points or apply a
468 perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
469  */
470 CV_EXPORTS_W void projectPoints( InputArray objectPoints,
471                                  InputArray rvec, InputArray tvec,
472                                  InputArray cameraMatrix, InputArray distCoeffs,
473                                  OutputArray imagePoints,
474                                  OutputArray jacobian = noArray(),
475                                  double aspectRatio = 0 );
476 
477 /** @brief Finds an object pose from 3D-2D point correspondences.
478 
479 @param objectPoints Array of object points in the object coordinate space, 3xN/Nx3 1-channel or
480 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
481 @param imagePoints Array of corresponding image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel,
482 where N is the number of points. vector\<Point2f\> can be also passed here.
483 @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
484 @param distCoeffs Input vector of distortion coefficients
485 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements. If
486 the vector is NULL/empty, the zero distortion coefficients are assumed.
487 @param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from
488 the model coordinate system to the camera coordinate system.
489 @param tvec Output translation vector.
490 @param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses
491 the provided rvec and tvec values as initial approximations of the rotation and translation
492 vectors, respectively, and further optimizes them.
493 @param flags Method for solving a PnP problem:
494 -   **SOLVEPNP_ITERATIVE** Iterative method is based on Levenberg-Marquardt optimization. In
495 this case the function finds such a pose that minimizes reprojection error, that is the sum
496 of squared distances between the observed projections imagePoints and the projected (using
497 projectPoints ) objectPoints .
498 -   **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
499 "Complete Solution Classification for the Perspective-Three-Point Problem". In this case the
500 function requires exactly four object and image points.
501 -   **SOLVEPNP_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the
502 paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation".
503 -   **SOLVEPNP_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis.
504 "A Direct Least-Squares (DLS) Method for PnP".
505 -   **SOLVEPNP_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto,
506 F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
507 Estimation". In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$
508 assuming that both have the same value. Then the cameraMatrix is updated with the estimated
509 focal length.
510 
511 The function estimates the object pose given a set of object points, their corresponding image
512 projections, as well as the camera matrix and the distortion coefficients.
513 
514 @note
515    -   An example of how to use solvePnP for planar augmented reality can be found at
516         opencv_source_code/samples/python2/plane_ar.py
517    -   If you are using Python:
518         - Numpy array slices won't work as input because solvePnP requires contiguous
519         arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
520         modules/calib3d/src/solvepnp.cpp version 2.4.9)
521         - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
522         to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
523         which requires 2-channel information.
524         - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
525         it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
526         np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
527  */
528 CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
529                             InputArray cameraMatrix, InputArray distCoeffs,
530                             OutputArray rvec, OutputArray tvec,
531                             bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE );
532 
533 /** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
534 
535 @param objectPoints Array of object points in the object coordinate space, 3xN/Nx3 1-channel or
536 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
537 @param imagePoints Array of corresponding image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel,
538 where N is the number of points. vector\<Point2f\> can be also passed here.
539 @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
540 @param distCoeffs Input vector of distortion coefficients
541 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements. If
542 the vector is NULL/empty, the zero distortion coefficients are assumed.
543 @param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from
544 the model coordinate system to the camera coordinate system.
545 @param tvec Output translation vector.
546 @param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses
547 the provided rvec and tvec values as initial approximations of the rotation and translation
548 vectors, respectively, and further optimizes them.
549 @param iterationsCount Number of iterations.
550 @param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value
551 is the maximum allowed distance between the observed and computed point projections to consider it
552 an inlier.
553 @param confidence The probability that the algorithm produces a useful result.
554 @param inliers Output vector that contains indices of inliers in objectPoints and imagePoints .
555 @param flags Method for solving a PnP problem (see solvePnP ).
556 
557 The function estimates an object pose given a set of object points, their corresponding image
558 projections, as well as the camera matrix and the distortion coefficients. This function finds such
559 a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
560 projections imagePoints and the projected (using projectPoints ) objectPoints. The use of RANSAC
561 makes the function resistant to outliers.
562 
563 @note
564    -   An example of how to use solvePNPRansac for object detection can be found at
565         opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
566  */
567 CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
568                                   InputArray cameraMatrix, InputArray distCoeffs,
569                                   OutputArray rvec, OutputArray tvec,
570                                   bool useExtrinsicGuess = false, int iterationsCount = 100,
571                                   float reprojectionError = 8.0, double confidence = 0.99,
572                                   OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE );
573 
574 /** @brief Finds an initial camera matrix from 3D-2D point correspondences.
575 
576 @param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern
577 coordinate space. In the old interface all the per-view vectors are concatenated. See
578 calibrateCamera for details.
579 @param imagePoints Vector of vectors of the projections of the calibration pattern points. In the
580 old interface all the per-view vectors are concatenated.
581 @param imageSize Image size in pixels used to initialize the principal point.
582 @param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently.
583 Otherwise, \f$f_x = f_y * \texttt{aspectRatio}\f$ .
584 
585 The function estimates and returns an initial camera matrix for the camera calibration process.
586 Currently, the function only supports planar calibration patterns, which are patterns where each
587 object point has z-coordinate =0.
588  */
589 CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
590                                      InputArrayOfArrays imagePoints,
591                                      Size imageSize, double aspectRatio = 1.0 );
592 
593 /** @brief Finds the positions of internal corners of the chessboard.
594 
595 @param image Source chessboard view. It must be an 8-bit grayscale or color image.
596 @param patternSize Number of inner corners per a chessboard row and column
597 ( patternSize = cvSize(points_per_row,points_per_colum) = cvSize(columns,rows) ).
598 @param corners Output array of detected corners.
599 @param flags Various operation flags that can be zero or a combination of the following values:
600 -   **CV_CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black
601 and white, rather than a fixed threshold level (computed from the average image brightness).
602 -   **CV_CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before
603 applying fixed or adaptive thresholding.
604 -   **CV_CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter,
605 square-like shape) to filter out false quads extracted at the contour retrieval stage.
606 -   **CALIB_CB_FAST_CHECK** Run a fast check on the image that looks for chessboard corners,
607 and shortcut the call if none is found. This can drastically speed up the call in the
608 degenerate condition when no chessboard is observed.
609 
610 The function attempts to determine whether the input image is a view of the chessboard pattern and
611 locate the internal chessboard corners. The function returns a non-zero value if all of the corners
612 are found and they are placed in a certain order (row by row, left to right in every row).
613 Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
614 a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
615 squares touch each other. The detected coordinates are approximate, and to determine their positions
616 more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with
617 different parameters if returned coordinates are not accurate enough.
618 
619 Sample usage of detecting and drawing chessboard corners: :
620 @code
621     Size patternsize(8,6); //interior number of corners
622     Mat gray = ....; //source image
623     vector<Point2f> corners; //this will be filled by the detected corners
624 
625     //CALIB_CB_FAST_CHECK saves a lot of time on images
626     //that do not contain any chessboard corners
627     bool patternfound = findChessboardCorners(gray, patternsize, corners,
628             CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
629             + CALIB_CB_FAST_CHECK);
630 
631     if(patternfound)
632       cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
633         TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
634 
635     drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
636 @endcode
637 @note The function requires white space (like a square-thick border, the wider the better) around
638 the board to make the detection more robust in various environments. Otherwise, if there is no
639 border and the background is dark, the outer black squares cannot be segmented properly and so the
640 square grouping and ordering algorithm fails.
641  */
642 CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners,
643                                          int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE );
644 
645 //! finds subpixel-accurate positions of the chessboard corners
646 CV_EXPORTS bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size );
647 
648 /** @brief Renders the detected chessboard corners.
649 
650 @param image Destination image. It must be an 8-bit color image.
651 @param patternSize Number of inner corners per a chessboard row and column
652 (patternSize = cv::Size(points_per_row,points_per_column)).
653 @param corners Array of detected corners, the output of findChessboardCorners.
654 @param patternWasFound Parameter indicating whether the complete board was found or not. The
655 return value of findChessboardCorners should be passed here.
656 
657 The function draws individual chessboard corners detected either as red circles if the board was not
658 found, or as colored corners connected with lines if the board was found.
659  */
660 CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
661                                          InputArray corners, bool patternWasFound );
662 
663 /** @brief Finds centers in the grid of circles.
664 
665 @param image grid view of input circles; it must be an 8-bit grayscale or color image.
666 @param patternSize number of circles per row and column
667 ( patternSize = Size(points_per_row, points_per_colum) ).
668 @param centers output array of detected centers.
669 @param flags various operation flags that can be one of the following values:
670 -   **CALIB_CB_SYMMETRIC_GRID** uses symmetric pattern of circles.
671 -   **CALIB_CB_ASYMMETRIC_GRID** uses asymmetric pattern of circles.
672 -   **CALIB_CB_CLUSTERING** uses a special algorithm for grid detection. It is more robust to
673 perspective distortions but much more sensitive to background clutter.
674 @param blobDetector feature detector that finds blobs like dark circles on light background.
675 
676 The function attempts to determine whether the input image contains a grid of circles. If it is, the
677 function locates centers of the circles. The function returns a non-zero value if all of the centers
678 have been found and they have been placed in a certain order (row by row, left to right in every
679 row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
680 
681 Sample usage of detecting and drawing the centers of circles: :
682 @code
683     Size patternsize(7,7); //number of centers
684     Mat gray = ....; //source image
685     vector<Point2f> centers; //this will be filled by the detected centers
686 
687     bool patternfound = findCirclesGrid(gray, patternsize, centers);
688 
689     drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
690 @endcode
691 @note The function requires white space (like a square-thick border, the wider the better) around
692 the board to make the detection more robust in various environments.
693  */
694 CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
695                                    OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID,
696                                    const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create());
697 
698 /** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
699 
700 @param objectPoints In the new interface it is a vector of vectors of calibration pattern points in
701 the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
702 vector contains as many elements as the number of the pattern views. If the same calibration pattern
703 is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
704 possible to use partially occluded patterns, or even different patterns in different views. Then,
705 the vectors will be different. The points are 3D, but since they are in a pattern coordinate system,
706 then, if the rig is planar, it may make sense to put the model to a XY coordinate plane so that
707 Z-coordinate of each input object point is 0.
708 In the old interface all the vectors of object points from different views are concatenated
709 together.
710 @param imagePoints In the new interface it is a vector of vectors of the projections of calibration
711 pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
712 objectPoints.size() and imagePoints[i].size() must be equal to objectPoints[i].size() for each i.
713 In the old interface all the vectors of object points from different views are concatenated
714 together.
715 @param imageSize Size of the image used only to initialize the intrinsic camera matrix.
716 @param cameraMatrix Output 3x3 floating-point camera matrix
717 \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS
718 and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
719 initialized before calling the function.
720 @param distCoeffs Output vector of distortion coefficients
721 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements.
722 @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view
723 (e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
724 k-th translation vector (see the next output parameter description) brings the calibration pattern
725 from the model coordinate space (in which object points are specified) to the world coordinate
726 space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
727 @param tvecs Output vector of translation vectors estimated for each pattern view.
728 @param flags Different flags that may be zero or a combination of the following values:
729 -   **CV_CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
730 fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
731 center ( imageSize is used), and focal distances are computed in a least-squares fashion.
732 Note, that if intrinsic parameters are known, there is no need to use this function just to
733 estimate extrinsic parameters. Use solvePnP instead.
734 -   **CV_CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
735 optimization. It stays at the center or at a different location specified when
736 CV_CALIB_USE_INTRINSIC_GUESS is set too.
737 -   **CV_CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The
738 ratio fx/fy stays the same as in the input cameraMatrix . When
739 CV_CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
740 ignored, only their ratio is computed and used further.
741 -   **CV_CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
742 to zeros and stay zero.
743 -   **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** The corresponding radial distortion
744 coefficient is not changed during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is
745 set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
746 -   **CV_CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the
747 backward compatibility, this extra flag should be explicitly specified to make the
748 calibration function use the rational model and return 8 coefficients. If the flag is not
749 set, the function computes and returns only 5 distortion coefficients.
750 -   **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
751 backward compatibility, this extra flag should be explicitly specified to make the
752 calibration function use the thin prism model and return 12 coefficients. If the flag is not
753 set, the function computes and returns only 5 distortion coefficients.
754 -   **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
755 the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
756 supplied distCoeffs matrix is used. Otherwise, it is set to 0.
757 @param criteria Termination criteria for the iterative optimization algorithm.
758 
759 The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
760 views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object
761 points and their corresponding 2D projections in each view must be specified. That may be achieved
762 by using an object with a known geometry and easily detectable feature points. Such an object is
763 called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
764 a calibration rig (see findChessboardCorners ). Currently, initialization of intrinsic parameters
765 (when CV_CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
766 patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
767 be used as long as initial cameraMatrix is provided.
768 
769 The algorithm performs the following steps:
770 
771 -   Compute the initial intrinsic parameters (the option only available for planar calibration
772     patterns) or read them from the input parameters. The distortion coefficients are all set to
773     zeros initially unless some of CV_CALIB_FIX_K? are specified.
774 
775 -   Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
776     done using solvePnP .
777 
778 -   Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
779     that is, the total sum of squared distances between the observed feature points imagePoints and
780     the projected (using the current estimates for camera parameters and the poses) object points
781     objectPoints. See projectPoints for details.
782 
783 The function returns the final re-projection error.
784 
785 @note
786    If you use a non-square (=non-NxN) grid and findChessboardCorners for calibration, and
787     calibrateCamera returns bad values (zero distortion coefficients, an image center very far from
788     (w/2-0.5,h/2-0.5), and/or large differences between \f$f_x\f$ and \f$f_y\f$ (ratios of 10:1 or more)),
789     then you have probably used patternSize=cvSize(rows,cols) instead of using
790     patternSize=cvSize(cols,rows) in findChessboardCorners .
791 
792 @sa
793    findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
794  */
795 CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
796                                      InputArrayOfArrays imagePoints, Size imageSize,
797                                      InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
798                                      OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
799                                      int flags = 0, TermCriteria criteria = TermCriteria(
800                                         TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
801 
802 /** @brief Computes useful camera characteristics from the camera matrix.
803 
804 @param cameraMatrix Input camera matrix that can be estimated by calibrateCamera or
805 stereoCalibrate .
806 @param imageSize Input image size in pixels.
807 @param apertureWidth Physical width in mm of the sensor.
808 @param apertureHeight Physical height in mm of the sensor.
809 @param fovx Output field of view in degrees along the horizontal sensor axis.
810 @param fovy Output field of view in degrees along the vertical sensor axis.
811 @param focalLength Focal length of the lens in mm.
812 @param principalPoint Principal point in mm.
813 @param aspectRatio \f$f_y/f_x\f$
814 
815 The function computes various useful camera characteristics from the previously estimated camera
816 matrix.
817 
818 @note
819    Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
820     the chessboard pitch (it can thus be any value).
821  */
822 CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize,
823                                            double apertureWidth, double apertureHeight,
824                                            CV_OUT double& fovx, CV_OUT double& fovy,
825                                            CV_OUT double& focalLength, CV_OUT Point2d& principalPoint,
826                                            CV_OUT double& aspectRatio );
827 
828 /** @brief Calibrates the stereo camera.
829 
830 @param objectPoints Vector of vectors of the calibration pattern points.
831 @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
832 observed by the first camera.
833 @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
834 observed by the second camera.
835 @param cameraMatrix1 Input/output first camera matrix:
836 \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
837 any of CV_CALIB_USE_INTRINSIC_GUESS , CV_CALIB_FIX_ASPECT_RATIO ,
838 CV_CALIB_FIX_INTRINSIC , or CV_CALIB_FIX_FOCAL_LENGTH are specified, some or all of the
839 matrix components must be initialized. See the flags description for details.
840 @param distCoeffs1 Input/output vector of distortion coefficients
841 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 ot 12 elements. The
842 output vector length depends on the flags.
843 @param cameraMatrix2 Input/output second camera matrix. The parameter is similar to cameraMatrix1
844 @param distCoeffs2 Input/output lens distortion coefficients for the second camera. The parameter
845 is similar to distCoeffs1 .
846 @param imageSize Size of the image used only to initialize intrinsic camera matrix.
847 @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
848 @param T Output translation vector between the coordinate systems of the cameras.
849 @param E Output essential matrix.
850 @param F Output fundamental matrix.
851 @param flags Different flags that may be zero or a combination of the following values:
852 -   **CV_CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F
853 matrices are estimated.
854 -   **CV_CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters
855 according to the specified flags. Initial values are provided by the user.
856 -   **CV_CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization.
857 -   **CV_CALIB_FIX_FOCAL_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
858 -   **CV_CALIB_FIX_ASPECT_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
859 .
860 -   **CV_CALIB_SAME_FOCAL_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
861 -   **CV_CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to
862 zeros and fix there.
863 -   **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** Do not change the corresponding radial
864 distortion coefficient during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set,
865 the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
866 -   **CV_CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward
867 compatibility, this extra flag should be explicitly specified to make the calibration
868 function use the rational model and return 8 coefficients. If the flag is not set, the
869 function computes and returns only 5 distortion coefficients.
870 -   **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
871 backward compatibility, this extra flag should be explicitly specified to make the
872 calibration function use the thin prism model and return 12 coefficients. If the flag is not
873 set, the function computes and returns only 5 distortion coefficients.
874 -   **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
875 the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
876 supplied distCoeffs matrix is used. Otherwise, it is set to 0.
877 @param criteria Termination criteria for the iterative optimization algorithm.
878 
879 The function estimates transformation between two cameras making a stereo pair. If you have a stereo
880 camera where the relative position and orientation of two cameras is fixed, and if you computed
881 poses of an object relative to the first camera and to the second camera, (R1, T1) and (R2, T2),
882 respectively (this can be done with solvePnP ), then those poses definitely relate to each other.
883 This means that, given ( \f$R_1\f$,\f$T_1\f$ ), it should be possible to compute ( \f$R_2\f$,\f$T_2\f$ ). You only
884 need to know the position and orientation of the second camera relative to the first camera. This is
885 what the described function does. It computes ( \f$R\f$,\f$T\f$ ) so that:
886 
887 \f[R_2=R*R_1
888 T_2=R*T_1 + T,\f]
889 
890 Optionally, it computes the essential matrix E:
891 
892 \f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} *R\f]
893 
894 where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ . And the function
895 can also compute the fundamental matrix F:
896 
897 \f[F = cameraMatrix2^{-T} E cameraMatrix1^{-1}\f]
898 
899 Besides the stereo-related information, the function can also perform a full calibration of each of
900 two cameras. However, due to the high dimensionality of the parameter space and noise in the input
901 data, the function can diverge from the correct solution. If the intrinsic parameters can be
902 estimated with high accuracy for each of the cameras individually (for example, using
903 calibrateCamera ), you are recommended to do so and then pass CV_CALIB_FIX_INTRINSIC flag to the
904 function along with the computed intrinsic parameters. Otherwise, if all the parameters are
905 estimated at once, it makes sense to restrict some parameters, for example, pass
906 CV_CALIB_SAME_FOCAL_LENGTH and CV_CALIB_ZERO_TANGENT_DIST flags, which is usually a
907 reasonable assumption.
908 
909 Similarly to calibrateCamera , the function minimizes the total re-projection error for all the
910 points in all the available views from both cameras. The function returns the final value of the
911 re-projection error.
912  */
913 CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
914                                      InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
915                                      InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
916                                      InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
917                                      Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F,
918                                      int flags = CALIB_FIX_INTRINSIC,
919                                      TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
920 
921 
922 /** @brief Computes rectification transforms for each head of a calibrated stereo camera.
923 
924 @param cameraMatrix1 First camera matrix.
925 @param cameraMatrix2 Second camera matrix.
926 @param distCoeffs1 First camera distortion parameters.
927 @param distCoeffs2 Second camera distortion parameters.
928 @param imageSize Size of the image used for stereo calibration.
929 @param R Rotation matrix between the coordinate systems of the first and the second cameras.
930 @param T Translation vector between coordinate systems of the cameras.
931 @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
932 @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
933 @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
934 camera.
935 @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
936 camera.
937 @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
938 @param flags Operation flags that may be zero or CV_CALIB_ZERO_DISPARITY . If the flag is set,
939 the function makes the principal points of each camera have the same pixel coordinates in the
940 rectified views. And if the flag is not set, the function may still shift the images in the
941 horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
942 useful image area.
943 @param alpha Free scaling parameter. If it is -1 or absent, the function performs the default
944 scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
945 images are zoomed and shifted so that only valid pixels are visible (no black areas after
946 rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
947 pixels from the original images from the cameras are retained in the rectified images (no source
948 image pixels are lost). Obviously, any intermediate value yields an intermediate result between
949 those two extreme cases.
950 @param newImageSize New image resolution after rectification. The same size should be passed to
951 initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
952 is passed (default), it is set to the original imageSize . Setting it to larger value can help you
953 preserve details in the original image, especially when there is a big radial distortion.
954 @param validPixROI1 Optional output rectangles inside the rectified images where all the pixels
955 are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
956 (see the picture below).
957 @param validPixROI2 Optional output rectangles inside the rectified images where all the pixels
958 are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
959 (see the picture below).
960 
961 The function computes the rotation matrices for each camera that (virtually) make both camera image
962 planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
963 the dense stereo correspondence problem. The function takes the matrices computed by stereoCalibrate
964 as input. As output, it provides two rotation matrices and also two projection matrices in the new
965 coordinates. The function distinguishes the following two cases:
966 
967 -   **Horizontal stereo**: the first and the second camera views are shifted relative to each other
968     mainly along the x axis (with possible small vertical shift). In the rectified images, the
969     corresponding epipolar lines in the left and right cameras are horizontal and have the same
970     y-coordinate. P1 and P2 look like:
971 
972     \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx_1 & 0 \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]
973 
974     \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx_2 & T_x*f \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]
975 
976     where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
977     CV_CALIB_ZERO_DISPARITY is set.
978 
979 -   **Vertical stereo**: the first and the second camera views are shifted relative to each other
980     mainly in vertical direction (and probably a bit in the horizontal direction too). The epipolar
981     lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
982 
983     \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]
984 
985     \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_2 & T_y*f \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]
986 
987     where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if CALIB_ZERO_DISPARITY is
988     set.
989 
990 As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
991 matrices. The matrices, together with R1 and R2 , can then be passed to initUndistortRectifyMap to
992 initialize the rectification map for each camera.
993 
994 See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
995 the corresponding image regions. This means that the images are well rectified, which is what most
996 stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
997 their interiors are all valid pixels.
998 
999 ![image](pics/stereo_undistort.jpg)
1000  */
1001 CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
1002                                  InputArray cameraMatrix2, InputArray distCoeffs2,
1003                                  Size imageSize, InputArray R, InputArray T,
1004                                  OutputArray R1, OutputArray R2,
1005                                  OutputArray P1, OutputArray P2,
1006                                  OutputArray Q, int flags = CALIB_ZERO_DISPARITY,
1007                                  double alpha = -1, Size newImageSize = Size(),
1008                                  CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 );
1009 
1010 /** @brief Computes a rectification transform for an uncalibrated stereo camera.
1011 
1012 @param points1 Array of feature points in the first image.
1013 @param points2 The corresponding points in the second image. The same formats as in
1014 findFundamentalMat are supported.
1015 @param F Input fundamental matrix. It can be computed from the same set of point pairs using
1016 findFundamentalMat .
1017 @param imgSize Size of the image.
1018 @param H1 Output rectification homography matrix for the first image.
1019 @param H2 Output rectification homography matrix for the second image.
1020 @param threshold Optional threshold used to filter out the outliers. If the parameter is greater
1021 than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
1022 for which \f$|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|>\texttt{threshold}\f$ ) are
1023 rejected prior to computing the homographies. Otherwise,all the points are considered inliers.
1024 
1025 The function computes the rectification transformations without knowing intrinsic parameters of the
1026 cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
1027 related difference from stereoRectify is that the function outputs not the rectification
1028 transformations in the object (3D) space, but the planar perspective transformations encoded by the
1029 homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 .
1030 
1031 @note
1032    While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
1033     depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
1034     it would be better to correct it before computing the fundamental matrix and calling this
1035     function. For example, distortion coefficients can be estimated for each head of stereo camera
1036     separately by using calibrateCamera . Then, the images can be corrected using undistort , or
1037     just the point coordinates can be corrected with undistortPoints .
1038  */
1039 CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
1040                                              InputArray F, Size imgSize,
1041                                              OutputArray H1, OutputArray H2,
1042                                              double threshold = 5 );
1043 
1044 //! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
1045 CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
1046                                       InputArray cameraMatrix2, InputArray distCoeffs2,
1047                                       InputArray cameraMatrix3, InputArray distCoeffs3,
1048                                       InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3,
1049                                       Size imageSize, InputArray R12, InputArray T12,
1050                                       InputArray R13, InputArray T13,
1051                                       OutputArray R1, OutputArray R2, OutputArray R3,
1052                                       OutputArray P1, OutputArray P2, OutputArray P3,
1053                                       OutputArray Q, double alpha, Size newImgSize,
1054                                       CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );
1055 
1056 /** @brief Returns the new camera matrix based on the free scaling parameter.
1057 
1058 @param cameraMatrix Input camera matrix.
1059 @param distCoeffs Input vector of distortion coefficients
1060 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements. If
1061 the vector is NULL/empty, the zero distortion coefficients are assumed.
1062 @param imageSize Original image size.
1063 @param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are
1064 valid) and 1 (when all the source image pixels are retained in the undistorted image). See
1065 stereoRectify for details.
1066 @param newImgSize Image size after rectification. By default,it is set to imageSize .
1067 @param validPixROI Optional output rectangle that outlines all-good-pixels region in the
1068 undistorted image. See roi1, roi2 description in stereoRectify .
1069 @param centerPrincipalPoint Optional flag that indicates whether in the new camera matrix the
1070 principal point should be at the image center or not. By default, the principal point is chosen to
1071 best fit a subset of the source image (determined by alpha) to the corrected image.
1072 @return new_camera_matrix Output new camera matrix.
1073 
1074 The function computes and returns the optimal new camera matrix based on the free scaling parameter.
1075 By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
1076 image pixels if there is valuable information in the corners alpha=1 , or get something in between.
1077 When alpha\>0 , the undistortion result is likely to have some black pixels corresponding to
1078 "virtual" pixels outside of the captured distorted image. The original camera matrix, distortion
1079 coefficients, the computed new camera matrix, and newImageSize should be passed to
1080 initUndistortRectifyMap to produce the maps for remap .
1081  */
1082 CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
1083                                             Size imageSize, double alpha, Size newImgSize = Size(),
1084                                             CV_OUT Rect* validPixROI = 0,
1085                                             bool centerPrincipalPoint = false);
1086 
1087 /** @brief Converts points from Euclidean to homogeneous space.
1088 
1089 @param src Input vector of N-dimensional points.
1090 @param dst Output vector of N+1-dimensional points.
1091 
1092 The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
1093 point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
1094  */
1095 CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );
1096 
1097 /** @brief Converts points from homogeneous to Euclidean space.
1098 
1099 @param src Input vector of N-dimensional points.
1100 @param dst Output vector of N-1-dimensional points.
1101 
1102 The function converts points homogeneous to Euclidean space using perspective projection. That is,
1103 each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
1104 output point coordinates will be (0,0,0,...).
1105  */
1106 CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );
1107 
1108 /** @brief Converts points to/from homogeneous coordinates.
1109 
1110 @param src Input array or vector of 2D, 3D, or 4D points.
1111 @param dst Output vector of 2D, 3D, or 4D points.
1112 
1113 The function converts 2D or 3D points from/to homogeneous coordinates by calling either
1114 convertPointsToHomogeneous or convertPointsFromHomogeneous.
1115 
1116 @note The function is obsolete. Use one of the previous two functions instead.
1117  */
1118 CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
1119 
1120 /** @brief Calculates a fundamental matrix from the corresponding points in two images.
1121 
1122 @param points1 Array of N points from the first image. The point coordinates should be
1123 floating-point (single or double precision).
1124 @param points2 Array of the second image points of the same size and format as points1 .
1125 @param method Method for computing a fundamental matrix.
1126 -   **CV_FM_7POINT** for a 7-point algorithm. \f$N = 7\f$
1127 -   **CV_FM_8POINT** for an 8-point algorithm. \f$N \ge 8\f$
1128 -   **CV_FM_RANSAC** for the RANSAC algorithm. \f$N \ge 8\f$
1129 -   **CV_FM_LMEDS** for the LMedS algorithm. \f$N \ge 8\f$
1130 @param param1 Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
1131 line in pixels, beyond which the point is considered an outlier and is not used for computing the
1132 final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
1133 point localization, image resolution, and the image noise.
1134 @param param2 Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level
1135 of confidence (probability) that the estimated matrix is correct.
1136 @param mask
1137 
1138 The epipolar geometry is described by the following equation:
1139 
1140 \f[[p_2; 1]^T F [p_1; 1] = 0\f]
1141 
1142 where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
1143 second images, respectively.
1144 
1145 The function calculates the fundamental matrix using one of four methods listed above and returns
1146 the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
1147 algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3
1148 matrices sequentially).
1149 
1150 The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the
1151 epipolar lines corresponding to the specified points. It can also be passed to
1152 stereoRectifyUncalibrated to compute the rectification transformation. :
1153 @code
1154     // Example. Estimation of fundamental matrix using the RANSAC algorithm
1155     int point_count = 100;
1156     vector<Point2f> points1(point_count);
1157     vector<Point2f> points2(point_count);
1158 
1159     // initialize the points here ...
1160     for( int i = 0; i < point_count; i++ )
1161     {
1162         points1[i] = ...;
1163         points2[i] = ...;
1164     }
1165 
1166     Mat fundamental_matrix =
1167      findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
1168 @endcode
1169  */
1170 CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
1171                                      int method = FM_RANSAC,
1172                                      double param1 = 3., double param2 = 0.99,
1173                                      OutputArray mask = noArray() );
1174 
1175 /** @overload */
1176 CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
1177                                    OutputArray mask, int method = FM_RANSAC,
1178                                    double param1 = 3., double param2 = 0.99 );
1179 
1180 /** @brief Calculates an essential matrix from the corresponding points in two images.
1181 
1182 @param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
1183 be floating-point (single or double precision).
1184 @param points2 Array of the second image points of the same size and format as points1 .
1185 @param focal focal length of the camera. Note that this function assumes that points1 and points2
1186 are feature points from cameras with same focal length and principle point.
1187 @param pp principle point of the camera.
1188 @param method Method for computing a fundamental matrix.
1189 -   **RANSAC** for the RANSAC algorithm.
1190 -   **MEDS** for the LMedS algorithm.
1191 @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
1192 line in pixels, beyond which the point is considered an outlier and is not used for computing the
1193 final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
1194 point localization, image resolution, and the image noise.
1195 @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
1196 confidence (probability) that the estimated matrix is correct.
1197 @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
1198 for the other points. The array is computed only in the RANSAC and LMedS methods.
1199 
1200 This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
1201 @cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
1202 
1203 \f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0 \\\f]\f[K =
1204 \begin{bmatrix}
1205 f & 0 & x_{pp}  \\
1206 0 & f & y_{pp}  \\
1207 0 & 0 & 1
1208 \end{bmatrix}\f]
1209 
1210 where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
1211 second images, respectively. The result of this function may be passed further to
1212 decomposeEssentialMat or recoverPose to recover the relative pose between cameras.
1213  */
1214 CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
1215                                  double focal = 1.0, Point2d pp = Point2d(0, 0),
1216                                  int method = RANSAC, double prob = 0.999,
1217                                  double threshold = 1.0, OutputArray mask = noArray() );
1218 
1219 /** @brief Decompose an essential matrix to possible rotations and translation.
1220 
1221 @param E The input essential matrix.
1222 @param R1 One possible rotation matrix.
1223 @param R2 Another possible rotation matrix.
1224 @param t One possible translation.
1225 
1226 This function decompose an essential matrix E using svd decomposition @cite HartleyZ00 . Generally 4
1227 possible poses exists for a given E. They are \f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$. By
1228 decomposing E, you can only get the direction of the translation, so the function returns unit t.
1229  */
1230 CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t );
1231 
1232 /** @brief Recover relative camera rotation and translation from an estimated essential matrix and the
1233 corresponding points in two images, using cheirality check. Returns the number of inliers which pass
1234 the check.
1235 
1236 @param E The input essential matrix.
1237 @param points1 Array of N 2D points from the first image. The point coordinates should be
1238 floating-point (single or double precision).
1239 @param points2 Array of the second image points of the same size and format as points1 .
1240 @param R Recovered relative rotation.
1241 @param t Recoverd relative translation.
1242 @param focal Focal length of the camera. Note that this function assumes that points1 and points2
1243 are feature points from cameras with same focal length and principle point.
1244 @param pp Principle point of the camera.
1245 @param mask Input/output mask for inliers in points1 and points2.
1246 :   If it is not empty, then it marks inliers in points1 and points2 for then given essential
1247 matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
1248 which pass the cheirality check.
1249 This function decomposes an essential matrix using decomposeEssentialMat and then verifies possible
1250 pose hypotheses by doing cheirality check. The cheirality check basically means that the
1251 triangulated 3D points should have positive depth. Some details can be found in @cite Nister03 .
1252 
1253 This function can be used to process output E and mask from findEssentialMat. In this scenario,
1254 points1 and points2 are the same input for findEssentialMat. :
1255 @code
1256     // Example. Estimation of fundamental matrix using the RANSAC algorithm
1257     int point_count = 100;
1258     vector<Point2f> points1(point_count);
1259     vector<Point2f> points2(point_count);
1260 
1261     // initialize the points here ...
1262     for( int i = 0; i < point_count; i++ )
1263     {
1264         points1[i] = ...;
1265         points2[i] = ...;
1266     }
1267 
1268     double focal = 1.0;
1269     cv::Point2d pp(0.0, 0.0);
1270     Mat E, R, t, mask;
1271 
1272     E = findEssentialMat(points1, points2, focal, pp, RANSAC, 0.999, 1.0, mask);
1273     recoverPose(E, points1, points2, R, t, focal, pp, mask);
1274 @endcode
1275  */
1276 CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
1277                             OutputArray R, OutputArray t,
1278                             double focal = 1.0, Point2d pp = Point2d(0, 0),
1279                             InputOutputArray mask = noArray() );
1280 
1281 
1282 /** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image.
1283 
1284 @param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
1285 vector\<Point2f\> .
1286 @param whichImage Index of the image (1 or 2) that contains the points .
1287 @param F Fundamental matrix that can be estimated using findFundamentalMat or stereoRectify .
1288 @param lines Output vector of the epipolar lines corresponding to the points in the other image.
1289 Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ .
1290 
1291 For every point in one of the two images of a stereo pair, the function finds the equation of the
1292 corresponding epipolar line in the other image.
1293 
1294 From the fundamental matrix definition (see findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second
1295 image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as:
1296 
1297 \f[l^{(2)}_i = F p^{(1)}_i\f]
1298 
1299 And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as:
1300 
1301 \f[l^{(1)}_i = F^T p^{(2)}_i\f]
1302 
1303 Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ .
1304  */
1305 CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage,
1306                                              InputArray F, OutputArray lines );
1307 
1308 /** @brief Reconstructs points by triangulation.
1309 
1310 @param projMatr1 3x4 projection matrix of the first camera.
1311 @param projMatr2 3x4 projection matrix of the second camera.
1312 @param projPoints1 2xN array of feature points in the first image. In case of c++ version it can
1313 be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
1314 @param projPoints2 2xN array of corresponding points in the second image. In case of c++ version
1315 it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
1316 @param points4D 4xN array of reconstructed points in homogeneous coordinates.
1317 
1318 The function reconstructs 3-dimensional points (in homogeneous coordinates) by using their
1319 observations with a stereo camera. Projections matrices can be obtained from stereoRectify.
1320 
1321 @note
1322    Keep in mind that all input data should be of float type in order for this function to work.
1323 
1324 @sa
1325    reprojectImageTo3D
1326  */
1327 CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
1328                                      InputArray projPoints1, InputArray projPoints2,
1329                                      OutputArray points4D );
1330 
1331 /** @brief Refines coordinates of corresponding points.
1332 
1333 @param F 3x3 fundamental matrix.
1334 @param points1 1xN array containing the first set of points.
1335 @param points2 1xN array containing the second set of points.
1336 @param newPoints1 The optimized points1.
1337 @param newPoints2 The optimized points2.
1338 
1339 The function implements the Optimal Triangulation Method (see Multiple View Geometry for details).
1340 For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it
1341 computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric
1342 error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the
1343 geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint
1344 \f$newPoints2^T * F * newPoints1 = 0\f$ .
1345  */
1346 CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
1347                                   OutputArray newPoints1, OutputArray newPoints2 );
1348 
1349 /** @brief Filters off small noise blobs (speckles) in the disparity map
1350 
1351 @param img The input 16-bit signed disparity image
1352 @param newVal The disparity value used to paint-off the speckles
1353 @param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
1354 affected by the algorithm
1355 @param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
1356 blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
1357 disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
1358 account when specifying this parameter value.
1359 @param buf The optional temporary buffer to avoid memory allocation within the function.
1360  */
1361 CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
1362                                   int maxSpeckleSize, double maxDiff,
1363                                   InputOutputArray buf = noArray() );
1364 
1365 //! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
1366 CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
1367                                         int minDisparity, int numberOfDisparities,
1368                                         int SADWindowSize );
1369 
1370 //! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
1371 CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
1372                                      int minDisparity, int numberOfDisparities,
1373                                      int disp12MaxDisp = 1 );
1374 
1375 /** @brief Reprojects a disparity image to 3D space.
1376 
1377 @param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
1378 floating-point disparity image.
1379 @param _3dImage Output 3-channel floating-point image of the same size as disparity . Each
1380 element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity
1381 map.
1382 @param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with stereoRectify.
1383 @param handleMissingValues Indicates, whether the function should handle missing values (i.e.
1384 points where the disparity was not computed). If handleMissingValues=true, then pixels with the
1385 minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
1386 to 3D points with a very large Z value (currently set to 10000).
1387 @param ddepth The optional output array depth. If it is -1, the output image will have CV_32F
1388 depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
1389 
1390 The function transforms a single-channel disparity map to a 3-channel image representing a 3D
1391 surface. That is, for each pixel (x,y) andthe corresponding disparity d=disparity(x,y) , it
1392 computes:
1393 
1394 \f[\begin{array}{l} [X \; Y \; Z \; W]^T =  \texttt{Q} *[x \; y \; \texttt{disparity} (x,y) \; 1]^T  \\ \texttt{\_3dImage} (x,y) = (X/W, \; Y/W, \; Z/W) \end{array}\f]
1395 
1396 The matrix Q can be an arbitrary \f$4 \times 4\f$ matrix (for example, the one computed by
1397 stereoRectify). To reproject a sparse set of points {(x,y,d),...} to 3D space, use
1398 perspectiveTransform .
1399  */
1400 CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
1401                                       OutputArray _3dImage, InputArray Q,
1402                                       bool handleMissingValues = false,
1403                                       int ddepth = -1 );
1404 
1405 /** @brief Computes an optimal affine transformation between two 3D point sets.
1406 
1407 @param src First input 3D point set.
1408 @param dst Second input 3D point set.
1409 @param out Output 3D affine transformation matrix \f$3 \times 4\f$ .
1410 @param inliers Output vector indicating which points are inliers.
1411 @param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
1412 an inlier.
1413 @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
1414 between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
1415 significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
1416 
1417 The function estimates an optimal 3D affine transformation between two 3D point sets using the
1418 RANSAC algorithm.
1419  */
1420 CV_EXPORTS_W  int estimateAffine3D(InputArray src, InputArray dst,
1421                                    OutputArray out, OutputArray inliers,
1422                                    double ransacThreshold = 3, double confidence = 0.99);
1423 
1424 /** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
1425 
1426 @param H The input homography matrix between two images.
1427 @param K The input intrinsic camera calibration matrix.
1428 @param rotations Array of rotation matrices.
1429 @param translations Array of translation matrices.
1430 @param normals Array of plane normal matrices.
1431 
1432 This function extracts relative camera motion between two views observing a planar object from the
1433 homography H induced by the plane. The intrinsic camera matrix K must also be provided. The function
1434 may return up to four mathematical solution sets. At least two of the solutions may further be
1435 invalidated if point correspondences are available by applying positive depth constraint (all points
1436 must be in front of the camera). The decomposition method is described in detail in @cite Malis .
1437  */
1438 CV_EXPORTS_W int decomposeHomographyMat(InputArray H,
1439                                         InputArray K,
1440                                         OutputArrayOfArrays rotations,
1441                                         OutputArrayOfArrays translations,
1442                                         OutputArrayOfArrays normals);
1443 
1444 /** @brief The base class for stereo correspondence algorithms.
1445  */
1446 class CV_EXPORTS_W StereoMatcher : public Algorithm
1447 {
1448 public:
1449     enum { DISP_SHIFT = 4,
1450            DISP_SCALE = (1 << DISP_SHIFT)
1451          };
1452 
1453     /** @brief Computes disparity map for the specified stereo pair
1454 
1455     @param left Left 8-bit single-channel image.
1456     @param right Right image of the same size and the same type as the left one.
1457     @param disparity Output disparity map. It has the same size as the input images. Some algorithms,
1458     like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
1459     has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
1460      */
1461     CV_WRAP virtual void compute( InputArray left, InputArray right,
1462                                   OutputArray disparity ) = 0;
1463 
1464     CV_WRAP virtual int getMinDisparity() const = 0;
1465     CV_WRAP virtual void setMinDisparity(int minDisparity) = 0;
1466 
1467     CV_WRAP virtual int getNumDisparities() const = 0;
1468     CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;
1469 
1470     CV_WRAP virtual int getBlockSize() const = 0;
1471     CV_WRAP virtual void setBlockSize(int blockSize) = 0;
1472 
1473     CV_WRAP virtual int getSpeckleWindowSize() const = 0;
1474     CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
1475 
1476     CV_WRAP virtual int getSpeckleRange() const = 0;
1477     CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0;
1478 
1479     CV_WRAP virtual int getDisp12MaxDiff() const = 0;
1480     CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
1481 };
1482 
1483 
1484 /** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and
1485 contributed to OpenCV by K. Konolige.
1486  */
1487 class CV_EXPORTS_W StereoBM : public StereoMatcher
1488 {
1489 public:
1490     enum { PREFILTER_NORMALIZED_RESPONSE = 0,
1491            PREFILTER_XSOBEL              = 1
1492          };
1493 
1494     CV_WRAP virtual int getPreFilterType() const = 0;
1495     CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;
1496 
1497     CV_WRAP virtual int getPreFilterSize() const = 0;
1498     CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0;
1499 
1500     CV_WRAP virtual int getPreFilterCap() const = 0;
1501     CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
1502 
1503     CV_WRAP virtual int getTextureThreshold() const = 0;
1504     CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0;
1505 
1506     CV_WRAP virtual int getUniquenessRatio() const = 0;
1507     CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
1508 
1509     CV_WRAP virtual int getSmallerBlockSize() const = 0;
1510     CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0;
1511 
1512     CV_WRAP virtual Rect getROI1() const = 0;
1513     CV_WRAP virtual void setROI1(Rect roi1) = 0;
1514 
1515     CV_WRAP virtual Rect getROI2() const = 0;
1516     CV_WRAP virtual void setROI2(Rect roi2) = 0;
1517 
1518     /** @brief Creates StereoBM object
1519 
1520     @param numDisparities the disparity search range. For each pixel algorithm will find the best
1521     disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
1522     shifted by changing the minimum disparity.
1523     @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
1524     (as the block is centered at the current pixel). Larger block size implies smoother, though less
1525     accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
1526     chance for algorithm to find a wrong correspondence.
1527 
1528     The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
1529     a specific stereo pair.
1530      */
1531     CV_WRAP static Ptr<StereoBM> create(int numDisparities = 0, int blockSize = 21);
1532 };
1533 
1534 /** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
1535 one as follows:
1536 
1537 -   By default, the algorithm is single-pass, which means that you consider only 5 directions
1538 instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
1539 algorithm but beware that it may consume a lot of memory.
1540 -   The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
1541 blocks to single pixels.
1542 -   Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
1543 sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
1544 -   Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
1545 example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
1546 check, quadratic interpolation and speckle filtering).
1547 
1548 @note
1549    -   (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
1550         at opencv_source_code/samples/python2/stereo_match.py
1551  */
1552 class CV_EXPORTS_W StereoSGBM : public StereoMatcher
1553 {
1554 public:
1555     enum
1556     {
1557         MODE_SGBM = 0,
1558         MODE_HH   = 1
1559     };
1560 
1561     CV_WRAP virtual int getPreFilterCap() const = 0;
1562     CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
1563 
1564     CV_WRAP virtual int getUniquenessRatio() const = 0;
1565     CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
1566 
1567     CV_WRAP virtual int getP1() const = 0;
1568     CV_WRAP virtual void setP1(int P1) = 0;
1569 
1570     CV_WRAP virtual int getP2() const = 0;
1571     CV_WRAP virtual void setP2(int P2) = 0;
1572 
1573     CV_WRAP virtual int getMode() const = 0;
1574     CV_WRAP virtual void setMode(int mode) = 0;
1575 
1576     /** @brief Creates StereoSGBM object
1577 
1578     @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
1579     rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
1580     @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
1581     zero. In the current implementation, this parameter must be divisible by 16.
1582     @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
1583     somewhere in the 3..11 range.
1584     @param P1 The first parameter controlling the disparity smoothness. See below.
1585     @param P2 The second parameter controlling the disparity smoothness. The larger the values are,
1586     the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
1587     between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
1588     pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
1589     P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and
1590     32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively).
1591     @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
1592     disparity check. Set it to a non-positive value to disable the check.
1593     @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
1594     computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
1595     The result values are passed to the Birchfield-Tomasi pixel cost function.
1596     @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
1597     value should "win" the second best value to consider the found match correct. Normally, a value
1598     within the 5-15 range is good enough.
1599     @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
1600     and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
1601     50-200 range.
1602     @param speckleRange Maximum disparity variation within each connected component. If you do speckle
1603     filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
1604     Normally, 1 or 2 is good enough.
1605     @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
1606     algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
1607     huge for HD-size pictures. By default, it is set to false .
1608 
1609     The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
1610     set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
1611     to a custom value.
1612      */
1613     CV_WRAP static Ptr<StereoSGBM> create(int minDisparity, int numDisparities, int blockSize,
1614                                           int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
1615                                           int preFilterCap = 0, int uniquenessRatio = 0,
1616                                           int speckleWindowSize = 0, int speckleRange = 0,
1617                                           int mode = StereoSGBM::MODE_SGBM);
1618 };
1619 
1620 //! @} calib3d
1621 
1622 /** @brief The methods in this namespace use a so-called fisheye camera model.
1623   @ingroup calib3d_fisheye
1624 */
1625 namespace fisheye
1626 {
1627 //! @addtogroup calib3d_fisheye
1628 //! @{
1629 
1630     enum{
1631         CALIB_USE_INTRINSIC_GUESS   = 1,
1632         CALIB_RECOMPUTE_EXTRINSIC   = 2,
1633         CALIB_CHECK_COND            = 4,
1634         CALIB_FIX_SKEW              = 8,
1635         CALIB_FIX_K1                = 16,
1636         CALIB_FIX_K2                = 32,
1637         CALIB_FIX_K3                = 64,
1638         CALIB_FIX_K4                = 128,
1639         CALIB_FIX_INTRINSIC         = 256
1640     };
1641 
1642     /** @brief Projects points using fisheye model
1643 
1644     @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
1645     the number of points in the view.
1646     @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
1647     vector\<Point2f\>.
1648     @param affine
1649     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
1650     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
1651     @param alpha The skew coefficient.
1652     @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
1653     to components of the focal lengths, coordinates of the principal point, distortion coefficients,
1654     rotation vector, translation vector, and the skew. In the old interface different components of
1655     the jacobian are returned via different output parameters.
1656 
1657     The function computes projections of 3D points to the image plane given intrinsic and extrinsic
1658     camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
1659     image points coordinates (as functions of all the input parameters) with respect to the particular
1660     parameters, intrinsic and/or extrinsic.
1661      */
1662     CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
1663         InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
1664 
1665     /** @overload */
1666     CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec,
1667         InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
1668 
1669     /** @brief Distorts 2D points using fisheye model.
1670 
1671     @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
1672     the number of points in the view.
1673     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
1674     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
1675     @param alpha The skew coefficient.
1676     @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
1677      */
1678     CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0);
1679 
1680     /** @brief Undistorts 2D points using fisheye model
1681 
1682     @param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the
1683     number of points in the view.
1684     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
1685     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
1686     @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
1687     1-channel or 1x1 3-channel
1688     @param P New camera matrix (3x3) or new projection matrix (3x4)
1689     @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
1690      */
1691     CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted,
1692         InputArray K, InputArray D, InputArray R = noArray(), InputArray P  = noArray());
1693 
1694     /** @brief Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero
1695     distortion is used, if R or P is empty identity matrixes are used.
1696 
1697     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
1698     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
1699     @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
1700     1-channel or 1x1 3-channel
1701     @param P New camera matrix (3x3) or new projection matrix (3x4)
1702     @param size Undistorted image size.
1703     @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps()
1704     for details.
1705     @param map1 The first output map.
1706     @param map2 The second output map.
1707      */
1708     CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P,
1709         const cv::Size& size, int m1type, OutputArray map1, OutputArray map2);
1710 
1711     /** @brief Transforms an image to compensate for fisheye lens distortion.
1712 
1713     @param distorted image with fisheye lens distortion.
1714     @param undistorted Output image with compensated fisheye lens distortion.
1715     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
1716     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
1717     @param Knew Camera matrix of the distorted image. By default, it is the identity matrix but you
1718     may additionally scale and shift the result by using a different matrix.
1719     @param new_size
1720 
1721     The function transforms an image to compensate radial and tangential lens distortion.
1722 
1723     The function is simply a combination of fisheye::initUndistortRectifyMap (with unity R ) and remap
1724     (with bilinear interpolation). See the former function for details of the transformation being
1725     performed.
1726 
1727     See below the results of undistortImage.
1728        -   a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
1729             k_4, k_5, k_6) of distortion were optimized under calibration)
1730         -   b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
1731             k_3, k_4) of fisheye distortion were optimized under calibration)
1732         -   c\) original image was captured with fisheye lens
1733 
1734     Pictures a) and b) almost the same. But if we consider points of image located far from the center
1735     of image, we can notice that on image a) these points are distorted.
1736 
1737     ![image](pics/fisheye_undistorted.jpg)
1738      */
1739     CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted,
1740         InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size());
1741 
1742     /** @brief Estimates new camera matrix for undistortion or rectification.
1743 
1744     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
1745     @param image_size
1746     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
1747     @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
1748     1-channel or 1x1 3-channel
1749     @param P New camera matrix (3x3) or new projection matrix (3x4)
1750     @param balance Sets the new focal length in range between the min focal length and the max focal
1751     length. Balance is in range of [0, 1].
1752     @param new_size
1753     @param fov_scale Divisor for new focal length.
1754      */
1755     CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
1756         OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0);
1757 
1758     /** @brief Performs camera calibaration
1759 
1760     @param objectPoints vector of vectors of calibration pattern points in the calibration pattern
1761     coordinate space.
1762     @param imagePoints vector of vectors of the projections of calibration pattern points.
1763     imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
1764     objectPoints[i].size() for each i.
1765     @param image_size Size of the image used only to initialize the intrinsic camera matrix.
1766     @param K Output 3x3 floating-point camera matrix
1767     \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If
1768     fisheye::CALIB_USE_INTRINSIC_GUESS/ is specified, some or all of fx, fy, cx, cy must be
1769     initialized before calling the function.
1770     @param D Output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
1771     @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view.
1772     That is, each k-th rotation vector together with the corresponding k-th translation vector (see
1773     the next output parameter description) brings the calibration pattern from the model coordinate
1774     space (in which object points are specified) to the world coordinate space, that is, a real
1775     position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
1776     @param tvecs Output vector of translation vectors estimated for each pattern view.
1777     @param flags Different flags that may be zero or a combination of the following values:
1778     -   **fisheye::CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
1779     fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
1780     center ( imageSize is used), and focal distances are computed in a least-squares fashion.
1781     -   **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
1782     of intrinsic optimization.
1783     -   **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
1784     -   **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
1785     -   **fisheye::CALIB_FIX_K1..4** Selected distortion coefficients are set to zeros and stay
1786     zero.
1787     @param criteria Termination criteria for the iterative optimization algorithm.
1788      */
1789     CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size,
1790         InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0,
1791             TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
1792 
1793     /** @brief Stereo rectification for fisheye camera model
1794 
1795     @param K1 First camera matrix.
1796     @param D1 First camera distortion parameters.
1797     @param K2 Second camera matrix.
1798     @param D2 Second camera distortion parameters.
1799     @param imageSize Size of the image used for stereo calibration.
1800     @param R Rotation matrix between the coordinate systems of the first and the second
1801     cameras.
1802     @param tvec Translation vector between coordinate systems of the cameras.
1803     @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
1804     @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
1805     @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
1806     camera.
1807     @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
1808     camera.
1809     @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
1810     @param flags Operation flags that may be zero or CV_CALIB_ZERO_DISPARITY . If the flag is set,
1811     the function makes the principal points of each camera have the same pixel coordinates in the
1812     rectified views. And if the flag is not set, the function may still shift the images in the
1813     horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
1814     useful image area.
1815     @param newImageSize New image resolution after rectification. The same size should be passed to
1816     initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
1817     is passed (default), it is set to the original imageSize . Setting it to larger value can help you
1818     preserve details in the original image, especially when there is a big radial distortion.
1819     @param balance Sets the new focal length in range between the min focal length and the max focal
1820     length. Balance is in range of [0, 1].
1821     @param fov_scale Divisor for new focal length.
1822      */
1823     CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec,
1824         OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
1825         double balance = 0.0, double fov_scale = 1.0);
1826 
1827     /** @brief Performs stereo calibration
1828 
1829     @param objectPoints Vector of vectors of the calibration pattern points.
1830     @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
1831     observed by the first camera.
1832     @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
1833     observed by the second camera.
1834     @param K1 Input/output first camera matrix:
1835     \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
1836     any of fisheye::CALIB_USE_INTRINSIC_GUESS , fisheye::CV_CALIB_FIX_INTRINSIC are specified,
1837     some or all of the matrix components must be initialized.
1838     @param D1 Input/output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$ of 4 elements.
1839     @param K2 Input/output second camera matrix. The parameter is similar to K1 .
1840     @param D2 Input/output lens distortion coefficients for the second camera. The parameter is
1841     similar to D1 .
1842     @param imageSize Size of the image used only to initialize intrinsic camera matrix.
1843     @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
1844     @param T Output translation vector between the coordinate systems of the cameras.
1845     @param flags Different flags that may be zero or a combination of the following values:
1846     -   **fisheye::CV_CALIB_FIX_INTRINSIC** Fix K1, K2? and D1, D2? so that only R, T matrices
1847     are estimated.
1848     -   **fisheye::CALIB_USE_INTRINSIC_GUESS** K1, K2 contains valid initial values of
1849     fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
1850     center (imageSize is used), and focal distances are computed in a least-squares fashion.
1851     -   **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
1852     of intrinsic optimization.
1853     -   **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
1854     -   **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
1855     -   **fisheye::CALIB_FIX_K1..4** Selected distortion coefficients are set to zeros and stay
1856     zero.
1857     @param criteria Termination criteria for the iterative optimization algorithm.
1858      */
1859     CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1860                                   InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
1861                                   OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC,
1862                                   TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
1863 
1864 //! @} calib3d_fisheye
1865 }
1866 
1867 } // cv
1868 
1869 #ifndef DISABLE_OPENCV_24_COMPATIBILITY
1870 #include "opencv2/calib3d/calib3d_c.h"
1871 #endif
1872 
1873 #endif
1874