1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "test_precomp.hpp"
44 #include <opencv2/ts/cuda_test.hpp>
45 #include "../src/fisheye.hpp"
46 
47 class fisheyeTest : public ::testing::Test {
48 
49 protected:
50     const static cv::Size imageSize;
51     const static cv::Matx33d K;
52     const static cv::Vec4d D;
53     const static cv::Matx33d R;
54     const static cv::Vec3d T;
55     std::string datasets_repository_path;
56 
SetUp()57     virtual void SetUp() {
58         datasets_repository_path = combine(cvtest::TS::ptr()->get_data_path(), "cv/cameracalibration/fisheye");
59     }
60 
61 protected:
62     std::string combine(const std::string& _item1, const std::string& _item2);
63     cv::Mat mergeRectification(const cv::Mat& l, const cv::Mat& r);
64 };
65 
66 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
67 ///  TESTS::
68 
TEST_F(fisheyeTest,projectPoints)69 TEST_F(fisheyeTest, projectPoints)
70 {
71     double cols = this->imageSize.width,
72            rows = this->imageSize.height;
73 
74     const int N = 20;
75     cv::Mat distorted0(1, N*N, CV_64FC2), undist1, undist2, distorted1, distorted2;
76     undist2.create(distorted0.size(), CV_MAKETYPE(distorted0.depth(), 3));
77     cv::Vec2d* pts = distorted0.ptr<cv::Vec2d>();
78 
79     cv::Vec2d c(this->K(0, 2), this->K(1, 2));
80     for(int y = 0, k = 0; y < N; ++y)
81         for(int x = 0; x < N; ++x)
82         {
83             cv::Vec2d point(x*cols/(N-1.f), y*rows/(N-1.f));
84             pts[k++] = (point - c) * 0.85 + c;
85         }
86 
87     cv::fisheye::undistortPoints(distorted0, undist1, this->K, this->D);
88 
89     cv::Vec2d* u1 = undist1.ptr<cv::Vec2d>();
90     cv::Vec3d* u2 = undist2.ptr<cv::Vec3d>();
91     for(int i = 0; i  < (int)distorted0.total(); ++i)
92         u2[i] = cv::Vec3d(u1[i][0], u1[i][1], 1.0);
93 
94     cv::fisheye::distortPoints(undist1, distorted1, this->K, this->D);
95     cv::fisheye::projectPoints(undist2, distorted2, cv::Vec3d::all(0), cv::Vec3d::all(0), this->K, this->D);
96 
97     EXPECT_MAT_NEAR(distorted0, distorted1, 1e-10);
98     EXPECT_MAT_NEAR(distorted0, distorted2, 1e-10);
99 }
100 
TEST_F(fisheyeTest,DISABLED_undistortImage)101 TEST_F(fisheyeTest, DISABLED_undistortImage)
102 {
103     cv::Matx33d K = this->K;
104     cv::Mat D = cv::Mat(this->D);
105     std::string file = combine(datasets_repository_path, "/calib-3_stereo_from_JY/left/stereo_pair_014.jpg");
106     cv::Matx33d newK = K;
107     cv::Mat distorted = cv::imread(file), undistorted;
108     {
109         newK(0, 0) = 100;
110         newK(1, 1) = 100;
111         cv::fisheye::undistortImage(distorted, undistorted, K, D, newK);
112         cv::Mat correct = cv::imread(combine(datasets_repository_path, "new_f_100.png"));
113         if (correct.empty())
114             CV_Assert(cv::imwrite(combine(datasets_repository_path, "new_f_100.png"), undistorted));
115         else
116             EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
117     }
118     {
119         double balance = 1.0;
120         cv::fisheye::estimateNewCameraMatrixForUndistortRectify(K, D, distorted.size(), cv::noArray(), newK, balance);
121         cv::fisheye::undistortImage(distorted, undistorted, K, D, newK);
122         cv::Mat correct = cv::imread(combine(datasets_repository_path, "balance_1.0.png"));
123         if (correct.empty())
124             CV_Assert(cv::imwrite(combine(datasets_repository_path, "balance_1.0.png"), undistorted));
125         else
126             EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
127     }
128 
129     {
130         double balance = 0.0;
131         cv::fisheye::estimateNewCameraMatrixForUndistortRectify(K, D, distorted.size(), cv::noArray(), newK, balance);
132         cv::fisheye::undistortImage(distorted, undistorted, K, D, newK);
133         cv::Mat correct = cv::imread(combine(datasets_repository_path, "balance_0.0.png"));
134         if (correct.empty())
135             CV_Assert(cv::imwrite(combine(datasets_repository_path, "balance_0.0.png"), undistorted));
136         else
137             EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
138     }
139 }
140 
TEST_F(fisheyeTest,jacobians)141 TEST_F(fisheyeTest, jacobians)
142 {
143     int n = 10;
144     cv::Mat X(1, n, CV_64FC3);
145     cv::Mat om(3, 1, CV_64F), T(3, 1, CV_64F);
146     cv::Mat f(2, 1, CV_64F), c(2, 1, CV_64F);
147     cv::Mat k(4, 1, CV_64F);
148     double alpha;
149 
150     cv::RNG r;
151 
152     r.fill(X, cv::RNG::NORMAL, 2, 1);
153     X = cv::abs(X) * 10;
154 
155     r.fill(om, cv::RNG::NORMAL, 0, 1);
156     om = cv::abs(om);
157 
158     r.fill(T, cv::RNG::NORMAL, 0, 1);
159     T = cv::abs(T); T.at<double>(2) = 4; T *= 10;
160 
161     r.fill(f, cv::RNG::NORMAL, 0, 1);
162     f = cv::abs(f) * 1000;
163 
164     r.fill(c, cv::RNG::NORMAL, 0, 1);
165     c = cv::abs(c) * 1000;
166 
167     r.fill(k, cv::RNG::NORMAL, 0, 1);
168     k*= 0.5;
169 
170     alpha = 0.01*r.gaussian(1);
171 
172     cv::Mat x1, x2, xpred;
173     cv::Matx33d K(f.at<double>(0), alpha * f.at<double>(0), c.at<double>(0),
174                      0,            f.at<double>(1), c.at<double>(1),
175                      0,            0,    1);
176 
177     cv::Mat jacobians;
178     cv::fisheye::projectPoints(X, x1, om, T, K, k, alpha, jacobians);
179 
180     //test on T:
181     cv::Mat dT(3, 1, CV_64FC1);
182     r.fill(dT, cv::RNG::NORMAL, 0, 1);
183     dT *= 1e-9*cv::norm(T);
184     cv::Mat T2 = T + dT;
185     cv::fisheye::projectPoints(X, x2, om, T2, K, k, alpha, cv::noArray());
186     xpred = x1 + cv::Mat(jacobians.colRange(11,14) * dT).reshape(2, 1);
187     CV_Assert (cv::norm(x2 - xpred) < 1e-10);
188 
189     //test on om:
190     cv::Mat dom(3, 1, CV_64FC1);
191     r.fill(dom, cv::RNG::NORMAL, 0, 1);
192     dom *= 1e-9*cv::norm(om);
193     cv::Mat om2 = om + dom;
194     cv::fisheye::projectPoints(X, x2, om2, T, K, k, alpha, cv::noArray());
195     xpred = x1 + cv::Mat(jacobians.colRange(8,11) * dom).reshape(2, 1);
196     CV_Assert (cv::norm(x2 - xpred) < 1e-10);
197 
198     //test on f:
199     cv::Mat df(2, 1, CV_64FC1);
200     r.fill(df, cv::RNG::NORMAL, 0, 1);
201     df *= 1e-9*cv::norm(f);
202     cv::Matx33d K2 = K + cv::Matx33d(df.at<double>(0), df.at<double>(0) * alpha, 0, 0, df.at<double>(1), 0, 0, 0, 0);
203     cv::fisheye::projectPoints(X, x2, om, T, K2, k, alpha, cv::noArray());
204     xpred = x1 + cv::Mat(jacobians.colRange(0,2) * df).reshape(2, 1);
205     CV_Assert (cv::norm(x2 - xpred) < 1e-10);
206 
207     //test on c:
208     cv::Mat dc(2, 1, CV_64FC1);
209     r.fill(dc, cv::RNG::NORMAL, 0, 1);
210     dc *= 1e-9*cv::norm(c);
211     K2 = K + cv::Matx33d(0, 0, dc.at<double>(0), 0, 0, dc.at<double>(1), 0, 0, 0);
212     cv::fisheye::projectPoints(X, x2, om, T, K2, k, alpha, cv::noArray());
213     xpred = x1 + cv::Mat(jacobians.colRange(2,4) * dc).reshape(2, 1);
214     CV_Assert (cv::norm(x2 - xpred) < 1e-10);
215 
216     //test on k:
217     cv::Mat dk(4, 1, CV_64FC1);
218     r.fill(dk, cv::RNG::NORMAL, 0, 1);
219     dk *= 1e-9*cv::norm(k);
220     cv::Mat k2 = k + dk;
221     cv::fisheye::projectPoints(X, x2, om, T, K, k2, alpha, cv::noArray());
222     xpred = x1 + cv::Mat(jacobians.colRange(4,8) * dk).reshape(2, 1);
223     CV_Assert (cv::norm(x2 - xpred) < 1e-10);
224 
225     //test on alpha:
226     cv::Mat dalpha(1, 1, CV_64FC1);
227     r.fill(dalpha, cv::RNG::NORMAL, 0, 1);
228     dalpha *= 1e-9*cv::norm(f);
229     double alpha2 = alpha + dalpha.at<double>(0);
230     K2 = K + cv::Matx33d(0, f.at<double>(0) * dalpha.at<double>(0), 0, 0, 0, 0, 0, 0, 0);
231     cv::fisheye::projectPoints(X, x2, om, T, K, k, alpha2, cv::noArray());
232     xpred = x1 + cv::Mat(jacobians.col(14) * dalpha).reshape(2, 1);
233     CV_Assert (cv::norm(x2 - xpred) < 1e-10);
234 }
235 
TEST_F(fisheyeTest,Calibration)236 TEST_F(fisheyeTest, Calibration)
237 {
238     const int n_images = 34;
239 
240     std::vector<std::vector<cv::Point2d> > imagePoints(n_images);
241     std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
242 
243     const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY");
244     cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
245     CV_Assert(fs_left.isOpened());
246     for(int i = 0; i < n_images; ++i)
247     fs_left[cv::format("image_%d", i )] >> imagePoints[i];
248     fs_left.release();
249 
250     cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
251     CV_Assert(fs_object.isOpened());
252     for(int i = 0; i < n_images; ++i)
253     fs_object[cv::format("image_%d", i )] >> objectPoints[i];
254     fs_object.release();
255 
256     int flag = 0;
257     flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC;
258     flag |= cv::fisheye::CALIB_CHECK_COND;
259     flag |= cv::fisheye::CALIB_FIX_SKEW;
260 
261     cv::Matx33d K;
262     cv::Vec4d D;
263 
264     cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, K, D,
265                            cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6));
266 
267     EXPECT_MAT_NEAR(K, this->K, 1e-10);
268     EXPECT_MAT_NEAR(D, this->D, 1e-10);
269 }
270 
TEST_F(fisheyeTest,Homography)271 TEST_F(fisheyeTest, Homography)
272 {
273     const int n_images = 1;
274 
275     std::vector<std::vector<cv::Point2d> > imagePoints(n_images);
276     std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
277 
278     const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY");
279     cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
280     CV_Assert(fs_left.isOpened());
281     for(int i = 0; i < n_images; ++i)
282     fs_left[cv::format("image_%d", i )] >> imagePoints[i];
283     fs_left.release();
284 
285     cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
286     CV_Assert(fs_object.isOpened());
287     for(int i = 0; i < n_images; ++i)
288     fs_object[cv::format("image_%d", i )] >> objectPoints[i];
289     fs_object.release();
290 
291     cv::internal::IntrinsicParams param;
292     param.Init(cv::Vec2d(cv::max(imageSize.width, imageSize.height) / CV_PI, cv::max(imageSize.width, imageSize.height) / CV_PI),
293                cv::Vec2d(imageSize.width  / 2.0 - 0.5, imageSize.height / 2.0 - 0.5));
294 
295     cv::Mat _imagePoints (imagePoints[0]);
296     cv::Mat _objectPoints(objectPoints[0]);
297 
298     cv::Mat imagePointsNormalized = NormalizePixels(_imagePoints, param).reshape(1).t();
299     _objectPoints = _objectPoints.reshape(1).t();
300     cv::Mat objectPointsMean, covObjectPoints;
301 
302     int Np = imagePointsNormalized.cols;
303     cv::calcCovarMatrix(_objectPoints, covObjectPoints, objectPointsMean, cv::COVAR_NORMAL | cv::COVAR_COLS);
304     cv::SVD svd(covObjectPoints);
305     cv::Mat R(svd.vt);
306 
307     if (cv::norm(R(cv::Rect(2, 0, 1, 2))) < 1e-6)
308         R = cv::Mat::eye(3,3, CV_64FC1);
309     if (cv::determinant(R) < 0)
310         R = -R;
311 
312     cv::Mat T = -R * objectPointsMean;
313     cv::Mat X_new = R * _objectPoints + T * cv::Mat::ones(1, Np, CV_64FC1);
314     cv::Mat H = cv::internal::ComputeHomography(imagePointsNormalized, X_new.rowRange(0, 2));
315 
316     cv::Mat M = cv::Mat::ones(3, X_new.cols, CV_64FC1);
317     X_new.rowRange(0, 2).copyTo(M.rowRange(0, 2));
318     cv::Mat mrep = H * M;
319 
320     cv::divide(mrep, cv::Mat::ones(3,1, CV_64FC1) * mrep.row(2).clone(), mrep);
321 
322     cv::Mat merr = (mrep.rowRange(0, 2) - imagePointsNormalized).t();
323 
324     cv::Vec2d std_err;
325     cv::meanStdDev(merr.reshape(2), cv::noArray(), std_err);
326     std_err *= sqrt((double)merr.reshape(2).total() / (merr.reshape(2).total() - 1));
327 
328     cv::Vec2d correct_std_err(0.00516740156010384, 0.00644205331553901);
329     EXPECT_MAT_NEAR(std_err, correct_std_err, 1e-12);
330 }
331 
TEST_F(fisheyeTest,EtimateUncertainties)332 TEST_F(fisheyeTest, EtimateUncertainties)
333 {
334     const int n_images = 34;
335 
336     std::vector<std::vector<cv::Point2d> > imagePoints(n_images);
337     std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
338 
339     const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY");
340     cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
341     CV_Assert(fs_left.isOpened());
342     for(int i = 0; i < n_images; ++i)
343     fs_left[cv::format("image_%d", i )] >> imagePoints[i];
344     fs_left.release();
345 
346     cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
347     CV_Assert(fs_object.isOpened());
348     for(int i = 0; i < n_images; ++i)
349     fs_object[cv::format("image_%d", i )] >> objectPoints[i];
350     fs_object.release();
351 
352     int flag = 0;
353     flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC;
354     flag |= cv::fisheye::CALIB_CHECK_COND;
355     flag |= cv::fisheye::CALIB_FIX_SKEW;
356 
357     cv::Matx33d K;
358     cv::Vec4d D;
359     std::vector<cv::Vec3d> rvec;
360     std::vector<cv::Vec3d> tvec;
361 
362     cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, K, D,
363                            rvec, tvec, flag, cv::TermCriteria(3, 20, 1e-6));
364 
365     cv::internal::IntrinsicParams param, errors;
366     cv::Vec2d err_std;
367     double thresh_cond = 1e6;
368     int check_cond = 1;
369     param.Init(cv::Vec2d(K(0,0), K(1,1)), cv::Vec2d(K(0,2), K(1, 2)), D);
370     param.isEstimate = std::vector<int>(9, 1);
371     param.isEstimate[4] = 0;
372 
373     errors.isEstimate = param.isEstimate;
374 
375     double rms;
376 
377     cv::internal::EstimateUncertainties(objectPoints, imagePoints, param,  rvec, tvec,
378                                         errors, err_std, thresh_cond, check_cond, rms);
379 
380     EXPECT_MAT_NEAR(errors.f, cv::Vec2d(1.29837104202046,  1.31565641071524), 1e-10);
381     EXPECT_MAT_NEAR(errors.c, cv::Vec2d(0.890439368129246, 0.816096854937896), 1e-10);
382     EXPECT_MAT_NEAR(errors.k, cv::Vec4d(0.00516248605191506, 0.0168181467500934, 0.0213118690274604, 0.00916010877545648), 1e-10);
383     EXPECT_MAT_NEAR(err_std, cv::Vec2d(0.187475975266883, 0.185678953263995), 1e-10);
384     CV_Assert(fabs(rms - 0.263782587133546) < 1e-10);
385     CV_Assert(errors.alpha == 0);
386 }
387 
388 #ifdef HAVE_TEGRA_OPTIMIZATION
389 // not passing accuracy constrains
TEST_F(fisheyeTest,DISABLED_rectify)390 TEST_F(fisheyeTest, DISABLED_rectify)
391 #else
392 TEST_F(fisheyeTest, rectify)
393 #endif
394 {
395     const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY");
396 
397     cv::Size calibration_size = this->imageSize, requested_size = calibration_size;
398     cv::Matx33d K1 = this->K, K2 = K1;
399     cv::Mat D1 = cv::Mat(this->D), D2 = D1;
400 
401     cv::Vec3d T = this->T;
402     cv::Matx33d R = this->R;
403 
404     double balance = 0.0, fov_scale = 1.1;
405     cv::Mat R1, R2, P1, P2, Q;
406     cv::fisheye::stereoRectify(K1, D1, K2, D2, calibration_size, R, T, R1, R2, P1, P2, Q,
407                       cv::CALIB_ZERO_DISPARITY, requested_size, balance, fov_scale);
408 
409     cv::Mat lmapx, lmapy, rmapx, rmapy;
410     //rewrite for fisheye
411     cv::fisheye::initUndistortRectifyMap(K1, D1, R1, P1, requested_size, CV_32F, lmapx, lmapy);
412     cv::fisheye::initUndistortRectifyMap(K2, D2, R2, P2, requested_size, CV_32F, rmapx, rmapy);
413 
414     cv::Mat l, r, lundist, rundist;
415     cv::VideoCapture lcap(combine(folder, "left/stereo_pair_%03d.jpg")),
416                      rcap(combine(folder, "right/stereo_pair_%03d.jpg"));
417 
418     for(int i = 0;; ++i)
419     {
420         lcap >> l; rcap >> r;
421         if (l.empty() || r.empty())
422             break;
423 
424         int ndisp = 128;
425         cv::rectangle(l, cv::Rect(255,       0, 829,       l.rows-1), cv::Scalar(0, 0, 255));
426         cv::rectangle(r, cv::Rect(255,       0, 829,       l.rows-1), cv::Scalar(0, 0, 255));
427         cv::rectangle(r, cv::Rect(255-ndisp, 0, 829+ndisp ,l.rows-1), cv::Scalar(0, 0, 255));
428         cv::remap(l, lundist, lmapx, lmapy, cv::INTER_LINEAR);
429         cv::remap(r, rundist, rmapx, rmapy, cv::INTER_LINEAR);
430 
431         cv::Mat rectification = mergeRectification(lundist, rundist);
432 
433         cv::Mat correct = cv::imread(combine(datasets_repository_path, cv::format("rectification_AB_%03d.png", i)));
434 
435         if (correct.empty())
436             cv::imwrite(combine(datasets_repository_path, cv::format("rectification_AB_%03d.png", i)), rectification);
437          else
438              EXPECT_MAT_NEAR(correct, rectification, 1e-10);
439      }
440 }
441 
TEST_F(fisheyeTest,stereoCalibrate)442 TEST_F(fisheyeTest, stereoCalibrate)
443 {
444     const int n_images = 34;
445 
446     const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY");
447 
448     std::vector<std::vector<cv::Point2d> > leftPoints(n_images);
449     std::vector<std::vector<cv::Point2d> > rightPoints(n_images);
450     std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
451 
452     cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
453     CV_Assert(fs_left.isOpened());
454     for(int i = 0; i < n_images; ++i)
455     fs_left[cv::format("image_%d", i )] >> leftPoints[i];
456     fs_left.release();
457 
458     cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ);
459     CV_Assert(fs_right.isOpened());
460     for(int i = 0; i < n_images; ++i)
461     fs_right[cv::format("image_%d", i )] >> rightPoints[i];
462     fs_right.release();
463 
464     cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
465     CV_Assert(fs_object.isOpened());
466     for(int i = 0; i < n_images; ++i)
467     fs_object[cv::format("image_%d", i )] >> objectPoints[i];
468     fs_object.release();
469 
470     cv::Matx33d K1, K2, R;
471     cv::Vec3d T;
472     cv::Vec4d D1, D2;
473 
474     int flag = 0;
475     flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC;
476     flag |= cv::fisheye::CALIB_CHECK_COND;
477     flag |= cv::fisheye::CALIB_FIX_SKEW;
478    // flag |= cv::fisheye::CALIB_FIX_INTRINSIC;
479 
480     cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints,
481                     K1, D1, K2, D2, imageSize, R, T, flag,
482                     cv::TermCriteria(3, 12, 0));
483 
484     cv::Matx33d R_correct(   0.9975587205950972,   0.06953016383322372, 0.006492709911733523,
485                            -0.06956823121068059,    0.9975601387249519, 0.005833595226966235,
486                           -0.006071257768382089, -0.006271040135405457, 0.9999619062167968);
487     cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699);
488     cv::Matx33d K1_correct (561.195925927249,                0, 621.282400272412,
489                                    0, 562.849402029712, 380.555455380889,
490                                    0,                0,                1);
491 
492     cv::Matx33d K2_correct (560.395452535348,                0, 678.971652040359,
493                                    0,  561.90171021422, 380.401340535339,
494                                    0,                0,                1);
495 
496     cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771);
497     cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222);
498 
499     EXPECT_MAT_NEAR(R, R_correct, 1e-10);
500     EXPECT_MAT_NEAR(T, T_correct, 1e-10);
501 
502     EXPECT_MAT_NEAR(K1, K1_correct, 1e-10);
503     EXPECT_MAT_NEAR(K2, K2_correct, 1e-10);
504 
505     EXPECT_MAT_NEAR(D1, D1_correct, 1e-10);
506     EXPECT_MAT_NEAR(D2, D2_correct, 1e-10);
507 
508 }
509 
TEST_F(fisheyeTest,stereoCalibrateFixIntrinsic)510 TEST_F(fisheyeTest, stereoCalibrateFixIntrinsic)
511 {
512     const int n_images = 34;
513 
514     const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY");
515 
516     std::vector<std::vector<cv::Point2d> > leftPoints(n_images);
517     std::vector<std::vector<cv::Point2d> > rightPoints(n_images);
518     std::vector<std::vector<cv::Point3d> > objectPoints(n_images);
519 
520     cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
521     CV_Assert(fs_left.isOpened());
522     for(int i = 0; i < n_images; ++i)
523     fs_left[cv::format("image_%d", i )] >> leftPoints[i];
524     fs_left.release();
525 
526     cv::FileStorage fs_right(combine(folder, "right.xml"), cv::FileStorage::READ);
527     CV_Assert(fs_right.isOpened());
528     for(int i = 0; i < n_images; ++i)
529     fs_right[cv::format("image_%d", i )] >> rightPoints[i];
530     fs_right.release();
531 
532     cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
533     CV_Assert(fs_object.isOpened());
534     for(int i = 0; i < n_images; ++i)
535     fs_object[cv::format("image_%d", i )] >> objectPoints[i];
536     fs_object.release();
537 
538     cv::Matx33d R;
539     cv::Vec3d T;
540 
541     int flag = 0;
542     flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC;
543     flag |= cv::fisheye::CALIB_CHECK_COND;
544     flag |= cv::fisheye::CALIB_FIX_SKEW;
545     flag |= cv::fisheye::CALIB_FIX_INTRINSIC;
546 
547     cv::Matx33d K1 (561.195925927249,                0, 621.282400272412,
548                                    0, 562.849402029712, 380.555455380889,
549                                    0,                0,                1);
550 
551     cv::Matx33d K2 (560.395452535348,                0, 678.971652040359,
552                                    0,  561.90171021422, 380.401340535339,
553                                    0,                0,                1);
554 
555     cv::Vec4d D1 (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771);
556     cv::Vec4d D2 (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222);
557 
558     cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints,
559                     K1, D1, K2, D2, imageSize, R, T, flag,
560                     cv::TermCriteria(3, 12, 0));
561 
562     cv::Matx33d R_correct(   0.9975587205950972,   0.06953016383322372, 0.006492709911733523,
563                            -0.06956823121068059,    0.9975601387249519, 0.005833595226966235,
564                           -0.006071257768382089, -0.006271040135405457, 0.9999619062167968);
565     cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699);
566 
567 
568     EXPECT_MAT_NEAR(R, R_correct, 1e-10);
569     EXPECT_MAT_NEAR(T, T_correct, 1e-10);
570 }
571 
572 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
573 ///  fisheyeTest::
574 
575 const cv::Size fisheyeTest::imageSize(1280, 800);
576 
577 const cv::Matx33d fisheyeTest::K(558.478087865323,               0, 620.458515360843,
578                               0, 560.506767351568, 381.939424848348,
579                               0,               0,                1);
580 
581 const cv::Vec4d fisheyeTest::D(-0.0014613319981768, -0.00329861110580401, 0.00605760088590183, -0.00374209380722371);
582 
583 const cv::Matx33d fisheyeTest::R ( 9.9756700084424932e-01, 6.9698277640183867e-02, 1.4929569991321144e-03,
584                             -6.9711825162322980e-02, 9.9748249845531767e-01, 1.2997180766418455e-02,
585                             -5.8331736398316541e-04,-1.3069635393884985e-02, 9.9991441852366736e-01);
586 
587 const cv::Vec3d fisheyeTest::T(-9.9217369356044638e-02, 3.1741831972356663e-03, 1.8551007952921010e-04);
588 
combine(const std::string & _item1,const std::string & _item2)589 std::string fisheyeTest::combine(const std::string& _item1, const std::string& _item2)
590 {
591     std::string item1 = _item1, item2 = _item2;
592     std::replace(item1.begin(), item1.end(), '\\', '/');
593     std::replace(item2.begin(), item2.end(), '\\', '/');
594 
595     if (item1.empty())
596         return item2;
597 
598     if (item2.empty())
599         return item1;
600 
601     char last = item1[item1.size()-1];
602     return item1 + (last != '/' ? "/" : "") + item2;
603 }
604 
mergeRectification(const cv::Mat & l,const cv::Mat & r)605 cv::Mat fisheyeTest::mergeRectification(const cv::Mat& l, const cv::Mat& r)
606 {
607     CV_Assert(l.type() == r.type() && l.size() == r.size());
608     cv::Mat merged(l.rows, l.cols * 2, l.type());
609     cv::Mat lpart = merged.colRange(0, l.cols);
610     cv::Mat rpart = merged.colRange(l.cols, merged.cols);
611     l.copyTo(lpart);
612     r.copyTo(rpart);
613 
614     for(int i = 0; i < l.rows; i+=20)
615         cv::line(merged, cv::Point(0, i), cv::Point(merged.cols, i), cv::Scalar(0, 255, 0));
616 
617     return merged;
618 }
619