1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "test_precomp.hpp"
44 #include <time.h>
45 
46 #define CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE 1
47 #define CALIB3D_HOMOGRAPHY_ERROR_MATRIX_DIFF 2
48 #define CALIB3D_HOMOGRAPHY_ERROR_REPROJ_DIFF 3
49 #define CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK 4
50 #define CALIB3D_HOMOGRAPHY_ERROR_RANSAC_DIFF 5
51 
52 #define MESSAGE_MATRIX_SIZE "Homography matrix must have 3*3 sizes."
53 #define MESSAGE_MATRIX_DIFF "Accuracy of homography transformation matrix less than required."
54 #define MESSAGE_REPROJ_DIFF_1 "Reprojection error for current pair of points more than required."
55 #define MESSAGE_REPROJ_DIFF_2 "Reprojection error is not optimal."
56 #define MESSAGE_RANSAC_MASK_1 "Sizes of inliers/outliers mask are incorrect."
57 #define MESSAGE_RANSAC_MASK_2 "Mask mustn't have any outliers."
58 #define MESSAGE_RANSAC_MASK_3 "All values of mask must be 1 (true) or 0 (false)."
59 #define MESSAGE_RANSAC_MASK_4 "Mask of inliers/outliers is incorrect."
60 #define MESSAGE_RANSAC_MASK_5 "Inlier in original mask shouldn't be outlier in found mask."
61 #define MESSAGE_RANSAC_DIFF "Reprojection error for current pair of points more than required."
62 
63 #define MAX_COUNT_OF_POINTS 303
64 #define COUNT_NORM_TYPES 3
65 #define METHODS_COUNT 4
66 
67 int NORM_TYPE[COUNT_NORM_TYPES] = {cv::NORM_L1, cv::NORM_L2, cv::NORM_INF};
68 int METHOD[METHODS_COUNT] = {0, cv::RANSAC, cv::LMEDS, cv::RHO};
69 
70 using namespace cv;
71 using namespace std;
72 
73 class CV_HomographyTest: public cvtest::ArrayTest
74 {
75 public:
76     CV_HomographyTest();
77     ~CV_HomographyTest();
78 
79     void run (int);
80 
81 protected:
82 
83     int method;
84     int image_size;
85     double reproj_threshold;
86     double sigma;
87 
88 private:
89     float max_diff, max_2diff;
90     bool check_matrix_size(const cv::Mat& H);
91     bool check_matrix_diff(const cv::Mat& original, const cv::Mat& found, const int norm_type, double &diff);
92     int check_ransac_mask_1(const Mat& src, const Mat& mask);
93     int check_ransac_mask_2(const Mat& original_mask, const Mat& found_mask);
94 
95     void print_information_1(int j, int N, int method, const Mat& H);
96     void print_information_2(int j, int N, int method, const Mat& H, const Mat& H_res, int k, double diff);
97     void print_information_3(int method, int j, int N, const Mat& mask);
98     void print_information_4(int method, int j, int N, int k, int l, double diff);
99     void print_information_5(int method, int j, int N, int l, double diff);
100     void print_information_6(int method, int j, int N, int k, double diff, bool value);
101     void print_information_7(int method, int j, int N, int k, double diff, bool original_value, bool found_value);
102     void print_information_8(int method, int j, int N, int k, int l, double diff);
103 };
104 
CV_HomographyTest()105 CV_HomographyTest::CV_HomographyTest() : max_diff(1e-2f), max_2diff(2e-2f)
106 {
107     method = 0;
108     image_size = 100;
109     reproj_threshold = 3.0;
110     sigma = 0.01;
111 }
112 
~CV_HomographyTest()113 CV_HomographyTest::~CV_HomographyTest() {}
114 
check_matrix_size(const cv::Mat & H)115 bool CV_HomographyTest::check_matrix_size(const cv::Mat& H)
116 {
117     return (H.rows == 3) && (H.cols == 3);
118 }
119 
check_matrix_diff(const cv::Mat & original,const cv::Mat & found,const int norm_type,double & diff)120 bool CV_HomographyTest::check_matrix_diff(const cv::Mat& original, const cv::Mat& found, const int norm_type, double &diff)
121 {
122     diff = cvtest::norm(original, found, norm_type);
123     return diff <= max_diff;
124 }
125 
check_ransac_mask_1(const Mat & src,const Mat & mask)126 int CV_HomographyTest::check_ransac_mask_1(const Mat& src, const Mat& mask)
127 {
128     if (!(mask.cols == 1) && (mask.rows == src.cols)) return 1;
129     if (countNonZero(mask) < mask.rows) return 2;
130     for (int i = 0; i < mask.rows; ++i) if (mask.at<uchar>(i, 0) > 1) return 3;
131     return 0;
132 }
133 
check_ransac_mask_2(const Mat & original_mask,const Mat & found_mask)134 int CV_HomographyTest::check_ransac_mask_2(const Mat& original_mask, const Mat& found_mask)
135 {
136     if (!(found_mask.cols == 1) && (found_mask.rows == original_mask.rows)) return 1;
137     for (int i = 0; i < found_mask.rows; ++i) if (found_mask.at<uchar>(i, 0) > 1) return 2;
138     return 0;
139 }
140 
print_information_1(int j,int N,int _method,const Mat & H)141 void CV_HomographyTest::print_information_1(int j, int N, int _method, const Mat& H)
142 {
143     cout << endl; cout << "Checking for homography matrix sizes..." << endl; cout << endl;
144     cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else  cout << "vector <Point2f>";
145     cout << "   Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
146     cout << "Count of points: " << N << endl; cout << endl;
147     cout << "Method: "; if (_method == 0) cout << 0; else if (_method == 8) cout << "RANSAC"; else if (_method == cv::RHO) cout << "RHO"; else cout << "LMEDS"; cout << endl;
148     cout << "Homography matrix:" << endl; cout << endl;
149     cout << H << endl; cout << endl;
150     cout << "Number of rows: " << H.rows << "   Number of cols: " << H.cols << endl; cout << endl;
151 }
152 
print_information_2(int j,int N,int _method,const Mat & H,const Mat & H_res,int k,double diff)153 void CV_HomographyTest::print_information_2(int j, int N, int _method, const Mat& H, const Mat& H_res, int k, double diff)
154 {
155     cout << endl; cout << "Checking for accuracy of homography matrix computing..." << endl; cout << endl;
156     cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else  cout << "vector <Point2f>";
157     cout << "   Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
158     cout << "Count of points: " << N << endl; cout << endl;
159     cout << "Method: "; if (_method == 0) cout << 0; else if (_method == 8) cout << "RANSAC"; else if (_method == cv::RHO) cout << "RHO"; else cout << "LMEDS"; cout << endl;
160     cout << "Original matrix:" << endl; cout << endl;
161     cout << H << endl; cout << endl;
162     cout << "Found matrix:" << endl; cout << endl;
163     cout << H_res << endl; cout << endl;
164     cout << "Norm type using in criteria: "; if (NORM_TYPE[k] == 1) cout << "INF"; else if (NORM_TYPE[k] == 2) cout << "L1"; else cout << "L2"; cout << endl;
165     cout << "Difference between matrices: " << diff << endl;
166     cout << "Maximum allowed difference: " << max_diff << endl; cout << endl;
167 }
168 
print_information_3(int _method,int j,int N,const Mat & mask)169 void CV_HomographyTest::print_information_3(int _method, int j, int N, const Mat& mask)
170 {
171     cout << endl; cout << "Checking for inliers/outliers mask..." << endl; cout << endl;
172     cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else  cout << "vector <Point2f>";
173     cout << "   Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
174     cout << "Count of points: " << N << endl; cout << endl;
175     cout << "Method: "; if (_method == RANSAC) cout << "RANSAC" << endl; else if (_method == cv::RHO) cout << "RHO" << endl; else cout << _method << endl;
176     cout << "Found mask:" << endl; cout << endl;
177     cout << mask << endl; cout << endl;
178     cout << "Number of rows: " << mask.rows << "   Number of cols: " << mask.cols << endl; cout << endl;
179 }
180 
print_information_4(int _method,int j,int N,int k,int l,double diff)181 void CV_HomographyTest::print_information_4(int _method, int j, int N, int k, int l, double diff)
182 {
183     cout << endl; cout << "Checking for accuracy of reprojection error computing..." << endl; cout << endl;
184     cout << "Method: "; if (_method == 0) cout << 0 << endl; else cout << "CV_LMEDS" << endl;
185     cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else  cout << "vector <Point2f>";
186     cout << "   Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
187     cout << "Sigma of normal noise: " << sigma << endl;
188     cout << "Count of points: " << N << endl;
189     cout << "Number of point: " << k << endl;
190     cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl;
191     cout << "Difference with noise of point: " << diff << endl;
192     cout << "Maxumum allowed difference: " << max_2diff << endl; cout << endl;
193 }
194 
print_information_5(int _method,int j,int N,int l,double diff)195 void CV_HomographyTest::print_information_5(int _method, int j, int N, int l, double diff)
196 {
197     cout << endl; cout << "Checking for accuracy of reprojection error computing..." << endl; cout << endl;
198     cout << "Method: "; if (_method == 0) cout << 0 << endl; else cout << "CV_LMEDS" << endl;
199     cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else  cout << "vector <Point2f>";
200     cout << "   Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
201     cout << "Sigma of normal noise: " << sigma << endl;
202     cout << "Count of points: " << N << endl;
203     cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl;
204     cout << "Difference with noise of points: " << diff << endl;
205     cout << "Maxumum allowed difference: " << max_diff << endl; cout << endl;
206 }
207 
print_information_6(int _method,int j,int N,int k,double diff,bool value)208 void CV_HomographyTest::print_information_6(int _method, int j, int N, int k, double diff, bool value)
209 {
210     cout << endl; cout << "Checking for inliers/outliers mask..." << endl; cout << endl;
211     cout << "Method: "; if (_method == RANSAC) cout << "RANSAC" << endl; else if (_method == cv::RHO) cout << "RHO" << endl; else cout << _method << endl;
212     cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else  cout << "vector <Point2f>";
213     cout << "   Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
214     cout << "Count of points: " << N << "   " << endl;
215     cout << "Number of point: " << k << "   " << endl;
216     cout << "Reprojection error for this point: " << diff << "   " << endl;
217     cout << "Reprojection error threshold: " << reproj_threshold << "   " << endl;
218     cout << "Value of found mask: "<< value << endl; cout << endl;
219 }
220 
print_information_7(int _method,int j,int N,int k,double diff,bool original_value,bool found_value)221 void CV_HomographyTest::print_information_7(int _method, int j, int N, int k, double diff, bool original_value, bool found_value)
222 {
223     cout << endl; cout << "Checking for inliers/outliers mask..." << endl; cout << endl;
224     cout << "Method: "; if (_method == RANSAC) cout << "RANSAC" << endl; else if (_method == cv::RHO) cout << "RHO" << endl; else cout << _method << endl;
225     cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else  cout << "vector <Point2f>";
226     cout << "   Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
227     cout << "Count of points: " << N << "   " << endl;
228     cout << "Number of point: " << k << "   " << endl;
229     cout << "Reprojection error for this point: " << diff << "   " << endl;
230     cout << "Reprojection error threshold: " << reproj_threshold << "   " << endl;
231     cout << "Value of original mask: "<< original_value << "   Value of found mask: " << found_value << endl; cout << endl;
232 }
233 
print_information_8(int _method,int j,int N,int k,int l,double diff)234 void CV_HomographyTest::print_information_8(int _method, int j, int N, int k, int l, double diff)
235 {
236     cout << endl; cout << "Checking for reprojection error of inlier..." << endl; cout << endl;
237     cout << "Method: "; if (_method == RANSAC) cout << "RANSAC" << endl; else if (_method == cv::RHO) cout << "RHO" << endl; else cout << _method << endl;
238     cout << "Sigma of normal noise: " << sigma << endl;
239     cout << "Type of srcPoints: "; if ((j>-1) && (j<2)) cout << "Mat of CV_32FC2"; else  cout << "vector <Point2f>";
240     cout << "   Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector <Point2f>"; cout << endl;
241     cout << "Count of points: " << N << "   " << endl;
242     cout << "Number of point: " << k << "   " << endl;
243     cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl;
244     cout << "Difference with noise of point: " << diff << endl;
245     cout << "Maxumum allowed difference: " << max_2diff << endl; cout << endl;
246 }
247 
run(int)248 void CV_HomographyTest::run(int)
249 {
250     for (int N = 4; N <= MAX_COUNT_OF_POINTS; ++N)
251     {
252         RNG& rng = ts->get_rng();
253 
254         float *src_data = new float [2*N];
255 
256         for (int i = 0; i < N; ++i)
257         {
258             src_data[2*i] = (float)cvtest::randReal(rng)*image_size;
259             src_data[2*i+1] = (float)cvtest::randReal(rng)*image_size;
260         }
261 
262         cv::Mat src_mat_2f(1, N, CV_32FC2, src_data),
263         src_mat_2d(2, N, CV_32F, src_data),
264         src_mat_3d(3, N, CV_32F);
265         cv::Mat dst_mat_2f, dst_mat_2d, dst_mat_3d;
266 
267         vector <Point2f> src_vec, dst_vec;
268 
269         for (int i = 0; i < N; ++i)
270         {
271             float *tmp = src_mat_2d.ptr<float>()+2*i;
272             src_mat_3d.at<float>(0, i) = tmp[0];
273             src_mat_3d.at<float>(1, i) = tmp[1];
274             src_mat_3d.at<float>(2, i) = 1.0f;
275 
276             src_vec.push_back(Point2f(tmp[0], tmp[1]));
277         }
278 
279         double fi = cvtest::randReal(rng)*2*CV_PI;
280 
281         double t_x = cvtest::randReal(rng)*sqrt(image_size*1.0),
282         t_y = cvtest::randReal(rng)*sqrt(image_size*1.0);
283 
284         double Hdata[9] = { cos(fi), -sin(fi), t_x,
285                             sin(fi),  cos(fi), t_y,
286                             0.0f,     0.0f, 1.0f };
287 
288         cv::Mat H_64(3, 3, CV_64F, Hdata), H_32;
289 
290         H_64.convertTo(H_32, CV_32F);
291 
292         dst_mat_3d = H_32*src_mat_3d;
293 
294         dst_mat_2d.create(2, N, CV_32F); dst_mat_2f.create(1, N, CV_32FC2);
295 
296         for (int i = 0; i < N; ++i)
297         {
298             float *tmp_2f = dst_mat_2f.ptr<float>()+2*i;
299             tmp_2f[0] = dst_mat_2d.at<float>(0, i) = dst_mat_3d.at<float>(0, i) /= dst_mat_3d.at<float>(2, i);
300             tmp_2f[1] = dst_mat_2d.at<float>(1, i) = dst_mat_3d.at<float>(1, i) /= dst_mat_3d.at<float>(2, i);
301             dst_mat_3d.at<float>(2, i) = 1.0f;
302 
303             dst_vec.push_back(Point2f(tmp_2f[0], tmp_2f[1]));
304         }
305 
306         for (int i = 0; i < METHODS_COUNT; ++i)
307         {
308             method = METHOD[i];
309             switch (method)
310             {
311             case 0:
312             case LMEDS:
313                 {
314                     Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, method),
315                                          cv::findHomography(src_mat_2f, dst_vec, method),
316                                          cv::findHomography(src_vec, dst_mat_2f, method),
317                                          cv::findHomography(src_vec, dst_vec, method) };
318 
319                     for (int j = 0; j < 4; ++j)
320                     {
321 
322                         if (!check_matrix_size(H_res_64[j]))
323                         {
324                             print_information_1(j, N, method, H_res_64[j]);
325                             CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE);
326                             return;
327                         }
328 
329                         double diff;
330 
331                         for (int k = 0; k < COUNT_NORM_TYPES; ++k)
332                             if (!check_matrix_diff(H_64, H_res_64[j], NORM_TYPE[k], diff))
333                             {
334                             print_information_2(j, N, method, H_64, H_res_64[j], k, diff);
335                             CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_DIFF, MESSAGE_MATRIX_DIFF);
336                             return;
337                         }
338                     }
339 
340                     continue;
341                 }
342             case cv::RHO:
343             case RANSAC:
344                 {
345                     cv::Mat mask [4]; double diff;
346 
347                     Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, method, reproj_threshold, mask[0]),
348                                          cv::findHomography(src_mat_2f, dst_vec, method, reproj_threshold, mask[1]),
349                                          cv::findHomography(src_vec, dst_mat_2f, method, reproj_threshold, mask[2]),
350                                          cv::findHomography(src_vec, dst_vec, method, reproj_threshold, mask[3]) };
351 
352                     for (int j = 0; j < 4; ++j)
353                     {
354 
355                         if (!check_matrix_size(H_res_64[j]))
356                         {
357                             print_information_1(j, N, method, H_res_64[j]);
358                             CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE);
359                             return;
360                         }
361 
362                         for (int k = 0; k < COUNT_NORM_TYPES; ++k)
363                             if (!check_matrix_diff(H_64, H_res_64[j], NORM_TYPE[k], diff))
364                             {
365                             print_information_2(j, N, method, H_64, H_res_64[j], k, diff);
366                             CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_DIFF, MESSAGE_MATRIX_DIFF);
367                             return;
368                         }
369 
370                         int code = check_ransac_mask_1(src_mat_2f, mask[j]);
371 
372                         if (code)
373                         {
374                             print_information_3(method, j, N, mask[j]);
375 
376                             switch (code)
377                             {
378                             case 1: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_1); break; }
379                             case 2: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_2); break; }
380                             case 3: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_3); break; }
381 
382                             default: break;
383                             }
384 
385                             return;
386                         }
387 
388                     }
389 
390                     continue;
391                 }
392 
393             default: continue;
394             }
395         }
396 
397         Mat noise_2f(1, N, CV_32FC2);
398         rng.fill(noise_2f, RNG::NORMAL, Scalar::all(0), Scalar::all(sigma));
399 
400         cv::Mat mask(N, 1, CV_8UC1);
401 
402         for (int i = 0; i < N; ++i)
403         {
404             float *a = noise_2f.ptr<float>()+2*i, *_2f = dst_mat_2f.ptr<float>()+2*i;
405             _2f[0] += a[0]; _2f[1] += a[1];
406             mask.at<bool>(i, 0) = !(sqrt(a[0]*a[0]+a[1]*a[1]) > reproj_threshold);
407         }
408 
409         for (int i = 0; i < METHODS_COUNT; ++i)
410         {
411             method = METHOD[i];
412             switch (method)
413             {
414             case 0:
415             case LMEDS:
416                 {
417                     Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f),
418                                          cv::findHomography(src_mat_2f, dst_vec),
419                                          cv::findHomography(src_vec, dst_mat_2f),
420                                          cv::findHomography(src_vec, dst_vec) };
421 
422                     for (int j = 0; j < 4; ++j)
423                     {
424 
425                         if (!check_matrix_size(H_res_64[j]))
426                         {
427                             print_information_1(j, N, method, H_res_64[j]);
428                             CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE);
429                             return;
430                         }
431 
432                         Mat H_res_32; H_res_64[j].convertTo(H_res_32, CV_32F);
433 
434                         cv::Mat dst_res_3d(3, N, CV_32F), noise_2d(2, N, CV_32F);
435 
436                         for (int k = 0; k < N; ++k)
437                         {
438 
439                             Mat tmp_mat_3d = H_res_32*src_mat_3d.col(k);
440 
441                             dst_res_3d.at<float>(0, k) = tmp_mat_3d.at<float>(0, 0) /= tmp_mat_3d.at<float>(2, 0);
442                             dst_res_3d.at<float>(1, k) = tmp_mat_3d.at<float>(1, 0) /= tmp_mat_3d.at<float>(2, 0);
443                             dst_res_3d.at<float>(2, k) = tmp_mat_3d.at<float>(2, 0) = 1.0f;
444 
445                             float *a = noise_2f.ptr<float>()+2*k;
446                             noise_2d.at<float>(0, k) = a[0]; noise_2d.at<float>(1, k) = a[1];
447 
448                             for (int l = 0; l < COUNT_NORM_TYPES; ++l)
449                                 if (cv::norm(tmp_mat_3d, dst_mat_3d.col(k), NORM_TYPE[l]) - cv::norm(noise_2d.col(k), NORM_TYPE[l]) > max_2diff)
450                                 {
451                                 print_information_4(method, j, N, k, l, cv::norm(tmp_mat_3d, dst_mat_3d.col(k), NORM_TYPE[l]) - cv::norm(noise_2d.col(k), NORM_TYPE[l]));
452                                 CV_Error(CALIB3D_HOMOGRAPHY_ERROR_REPROJ_DIFF, MESSAGE_REPROJ_DIFF_1);
453                                 return;
454                             }
455 
456                         }
457 
458                         for (int l = 0; l < COUNT_NORM_TYPES; ++l)
459                             if (cv::norm(dst_res_3d, dst_mat_3d, NORM_TYPE[l]) - cv::norm(noise_2d, NORM_TYPE[l]) > max_diff)
460                             {
461                             print_information_5(method, j, N, l, cv::norm(dst_res_3d, dst_mat_3d, NORM_TYPE[l]) - cv::norm(noise_2d, NORM_TYPE[l]));
462                             CV_Error(CALIB3D_HOMOGRAPHY_ERROR_REPROJ_DIFF, MESSAGE_REPROJ_DIFF_2);
463                             return;
464                         }
465 
466                     }
467 
468                     continue;
469                 }
470             case cv::RHO:
471             case RANSAC:
472                 {
473                     cv::Mat mask_res [4];
474 
475                     Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, method, reproj_threshold, mask_res[0]),
476                                          cv::findHomography(src_mat_2f, dst_vec, method, reproj_threshold, mask_res[1]),
477                                          cv::findHomography(src_vec, dst_mat_2f, method, reproj_threshold, mask_res[2]),
478                                          cv::findHomography(src_vec, dst_vec, method, reproj_threshold, mask_res[3]) };
479 
480                     for (int j = 0; j < 4; ++j)
481                     {
482                         if (!check_matrix_size(H_res_64[j]))
483                         {
484                             print_information_1(j, N, method, H_res_64[j]);
485                             CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE);
486                             return;
487                         }
488 
489                         int code = check_ransac_mask_2(mask, mask_res[j]);
490 
491                         if (code)
492                         {
493                             print_information_3(method, j, N, mask_res[j]);
494 
495                             switch (code)
496                             {
497                             case 1: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_1); break; }
498                             case 2: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_3); break; }
499 
500                             default: break;
501                             }
502 
503                             return;
504                         }
505 
506                         cv::Mat H_res_32; H_res_64[j].convertTo(H_res_32, CV_32F);
507 
508                         cv::Mat dst_res_3d = H_res_32*src_mat_3d;
509 
510                         for (int k = 0; k < N; ++k)
511                         {
512                             dst_res_3d.at<float>(0, k) /= dst_res_3d.at<float>(2, k);
513                             dst_res_3d.at<float>(1, k) /= dst_res_3d.at<float>(2, k);
514                             dst_res_3d.at<float>(2, k) = 1.0f;
515 
516                             float *p = dst_mat_2f.ptr<float>()+2*k;
517 
518                             dst_mat_3d.at<float>(0, k) = p[0];
519                             dst_mat_3d.at<float>(1, k) = p[1];
520 
521                             double diff = cv::norm(dst_res_3d.col(k), dst_mat_3d.col(k), NORM_L2);
522 
523                             if (mask_res[j].at<bool>(k, 0) != (diff <= reproj_threshold))
524                             {
525                                 print_information_6(method, j, N, k, diff, mask_res[j].at<bool>(k, 0));
526                                 CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_4);
527                                 return;
528                             }
529 
530                             if (mask.at<bool>(k, 0) && !mask_res[j].at<bool>(k, 0))
531                             {
532                                 print_information_7(method, j, N, k, diff, mask.at<bool>(k, 0), mask_res[j].at<bool>(k, 0));
533                                 CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_5);
534                                 return;
535                             }
536 
537                             if (mask_res[j].at<bool>(k, 0))
538                             {
539                                 float *a = noise_2f.ptr<float>()+2*k;
540                                 dst_mat_3d.at<float>(0, k) -= a[0];
541                                 dst_mat_3d.at<float>(1, k) -= a[1];
542 
543                                 cv::Mat noise_2d(2, 1, CV_32F);
544                                 noise_2d.at<float>(0, 0) = a[0]; noise_2d.at<float>(1, 0) = a[1];
545 
546                                 for (int l = 0; l < COUNT_NORM_TYPES; ++l)
547                                 {
548                                     diff = cv::norm(dst_res_3d.col(k), dst_mat_3d.col(k), NORM_TYPE[l]);
549 
550                                     if (diff - cv::norm(noise_2d, NORM_TYPE[l]) > max_2diff)
551                                     {
552                                         print_information_8(method, j, N, k, l, diff - cv::norm(noise_2d, NORM_TYPE[l]));
553                                         CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_DIFF, MESSAGE_RANSAC_DIFF);
554                                         return;
555                                     }
556                                 }
557                             }
558                         }
559                     }
560 
561                     continue;
562                 }
563 
564             default: continue;
565             }
566         }
567     }
568 }
569 
TEST(Calib3d_Homography,accuracy)570 TEST(Calib3d_Homography, accuracy) { CV_HomographyTest test; test.safe_run(); }
571 
TEST(Calib3d_Homography,EKcase)572 TEST(Calib3d_Homography, EKcase)
573 {
574     float pt1data[] =
575     {
576         2.80073029e+002f, 2.39591217e+002f, 2.21912201e+002f, 2.59783997e+002f,
577         2.16053192e+002f, 2.78826569e+002f, 2.22782532e+002f, 2.82330383e+002f,
578         2.09924820e+002f, 2.89122559e+002f, 2.11077698e+002f, 2.89384674e+002f,
579         2.25287689e+002f, 2.88795532e+002f, 2.11180801e+002f, 2.89653503e+002f,
580         2.24126404e+002f, 2.90466064e+002f, 2.10914429e+002f, 2.90886963e+002f,
581         2.23439362e+002f, 2.91657715e+002f, 2.24809387e+002f, 2.91891602e+002f,
582         2.09809082e+002f, 2.92891113e+002f, 2.08771164e+002f, 2.93093231e+002f,
583         2.23160095e+002f, 2.93259460e+002f, 2.07874023e+002f, 2.93989990e+002f,
584         2.08963638e+002f, 2.94209839e+002f, 2.23963165e+002f, 2.94479645e+002f,
585         2.23241791e+002f, 2.94887817e+002f, 2.09438782e+002f, 2.95233337e+002f,
586         2.08901886e+002f, 2.95762878e+002f, 2.21867981e+002f, 2.95747711e+002f,
587         2.24195511e+002f, 2.98270905e+002f, 2.09331345e+002f, 3.05958191e+002f,
588         2.24727875e+002f, 3.07186035e+002f, 2.26718842e+002f, 3.08095795e+002f,
589         2.25363953e+002f, 3.08200226e+002f, 2.19897797e+002f, 3.13845093e+002f,
590         2.25013474e+002f, 3.15558777e+002f
591     };
592 
593     float pt2data[] =
594     {
595         1.84072723e+002f, 1.43591202e+002f, 1.25912483e+002f, 1.63783859e+002f,
596         2.06439407e+002f, 2.20573929e+002f, 1.43801437e+002f, 1.80703903e+002f,
597         9.77904129e+000f, 2.49660202e+002f, 1.38458405e+001f, 2.14502701e+002f,
598         1.50636337e+002f, 2.15597183e+002f, 6.43103180e+001f, 2.51667648e+002f,
599         1.54952499e+002f, 2.20780014e+002f, 1.26638412e+002f, 2.43040924e+002f,
600         3.67568909e+002f, 1.83624954e+001f, 1.60657944e+002f, 2.21794052e+002f,
601         -1.29507828e+000f, 3.32472443e+002f, 8.51442242e+000f, 4.15561554e+002f,
602         1.27161377e+002f, 1.97260361e+002f, 5.40714645e+000f, 4.90978302e+002f,
603         2.25571690e+001f, 3.96912415e+002f, 2.95664978e+002f, 7.36064959e+000f,
604         1.27241104e+002f, 1.98887573e+002f, -1.25569367e+000f, 3.87713226e+002f,
605         1.04194012e+001f, 4.31495758e+002f, 1.25868874e+002f, 1.99751617e+002f,
606         1.28195480e+002f, 2.02270355e+002f, 2.23436356e+002f, 1.80489182e+002f,
607         1.28727692e+002f, 2.11185410e+002f, 2.03336639e+002f, 2.52182083e+002f,
608         1.29366486e+002f, 2.12201904e+002f, 1.23897598e+002f, 2.17847351e+002f,
609         1.29015259e+002f, 2.19560623e+002f
610     };
611 
612     int npoints = (int)(sizeof(pt1data)/sizeof(pt1data[0])/2);
613 
614     Mat p1(1, npoints, CV_32FC2, pt1data);
615     Mat p2(1, npoints, CV_32FC2, pt2data);
616     Mat mask;
617 
618     Mat h = findHomography(p1, p2, RANSAC, 0.01, mask);
619     ASSERT_TRUE(!h.empty());
620 
621     transpose(mask, mask);
622     Mat p3, mask2;
623     int ninliers = countNonZero(mask);
624     Mat nmask[] = { mask, mask };
625     merge(nmask, 2, mask2);
626     perspectiveTransform(p1, p3, h);
627     mask2 = mask2.reshape(1);
628     p2 = p2.reshape(1);
629     p3 = p3.reshape(1);
630     double err = norm(p2, p3, NORM_INF, mask2);
631 
632     printf("ninliers: %d, inliers err: %.2g\n", ninliers, err);
633     ASSERT_GE(ninliers, 10);
634     ASSERT_LE(err, 0.01);
635 }
636 
TEST(Calib3d_Homography,fromImages)637 TEST(Calib3d_Homography, fromImages)
638 {
639     Mat img_1 = imread(cvtest::TS::ptr()->get_data_path() + "cv/optflow/image1.png", 0);
640     Mat img_2 = imread(cvtest::TS::ptr()->get_data_path() + "cv/optflow/image2.png", 0);
641     Ptr<ORB> orb = ORB::create();
642     vector<KeyPoint> keypoints_1, keypoints_2;
643     Mat descriptors_1, descriptors_2;
644     orb->detectAndCompute( img_1, Mat(), keypoints_1, descriptors_1, false );
645     orb->detectAndCompute( img_2, Mat(), keypoints_2, descriptors_2, false );
646 
647     //-- Step 3: Matching descriptor vectors using Brute Force matcher
648     BFMatcher  matcher(NORM_HAMMING,false);
649     std::vector< DMatch > matches;
650     matcher.match( descriptors_1, descriptors_2, matches );
651 
652     double max_dist = 0; double min_dist = 100;
653     //-- Quick calculation of max and min distances between keypoints
654     for( int i = 0; i < descriptors_1.rows; i++ )
655     {
656         double dist = matches[i].distance;
657         if( dist < min_dist ) min_dist = dist;
658         if( dist > max_dist ) max_dist = dist;
659     }
660 
661     //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
662     std::vector< DMatch > good_matches;
663     for( int i = 0; i < descriptors_1.rows; i++ )
664     {
665         if( matches[i].distance <= 100 )
666             good_matches.push_back( matches[i]);
667     }
668 
669     //-- Localize the model
670     std::vector<Point2f> pointframe1;
671     std::vector<Point2f> pointframe2;
672     for( int i = 0; i < (int)good_matches.size(); i++ )
673     {
674         //-- Get the keypoints from the good matches
675         pointframe1.push_back( keypoints_1[ good_matches[i].queryIdx ].pt );
676         pointframe2.push_back( keypoints_2[ good_matches[i].trainIdx ].pt );
677     }
678 
679     Mat H0, H1, inliers0, inliers1;
680     double min_t0 = DBL_MAX, min_t1 = DBL_MAX;
681     for( int i = 0; i < 10; i++ )
682     {
683         double t = (double)getTickCount();
684         H0 = findHomography( pointframe1, pointframe2, RANSAC, 3.0, inliers0 );
685         t = (double)getTickCount() - t;
686         min_t0 = std::min(min_t0, t);
687     }
688     int ninliers0 = countNonZero(inliers0);
689     for( int i = 0; i < 10; i++ )
690     {
691         double t = (double)getTickCount();
692         H1 = findHomography( pointframe1, pointframe2, RHO, 3.0, inliers1 );
693         t = (double)getTickCount() - t;
694         min_t1 = std::min(min_t1, t);
695     }
696     int ninliers1 = countNonZero(inliers1);
697     double freq = getTickFrequency();
698     printf("nfeatures1 = %d, nfeatures2=%d, matches=%d, ninliers(RANSAC)=%d, "
699            "time(RANSAC)=%.2fmsec, ninliers(RHO)=%d, time(RHO)=%.2fmsec\n",
700            (int)keypoints_1.size(), (int)keypoints_2.size(),
701            (int)good_matches.size(), ninliers0, min_t0*1000./freq, ninliers1, min_t1*1000./freq);
702 
703     ASSERT_TRUE(!H0.empty());
704     ASSERT_GE(ninliers0, 80);
705     ASSERT_TRUE(!H1.empty());
706     ASSERT_GE(ninliers1, 80);
707 }
708