1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "opencv2/opencv_modules.hpp"
44 
45 #ifndef HAVE_OPENCV_CUDEV
46 
47 #error "opencv_cudev is required"
48 
49 #else
50 
51 #include "opencv2/core/cuda.hpp"
52 #include "opencv2/cudev.hpp"
53 
54 using namespace cv;
55 using namespace cv::cuda;
56 using namespace cv::cudev;
57 
58 namespace
59 {
60     class DefaultAllocator : public GpuMat::Allocator
61     {
62     public:
63         bool allocate(GpuMat* mat, int rows, int cols, size_t elemSize);
64         void free(GpuMat* mat);
65     };
66 
allocate(GpuMat * mat,int rows,int cols,size_t elemSize)67     bool DefaultAllocator::allocate(GpuMat* mat, int rows, int cols, size_t elemSize)
68     {
69         if (rows > 1 && cols > 1)
70         {
71             CV_CUDEV_SAFE_CALL( cudaMallocPitch(&mat->data, &mat->step, elemSize * cols, rows) );
72         }
73         else
74         {
75             // Single row or single column must be continuous
76             CV_CUDEV_SAFE_CALL( cudaMalloc(&mat->data, elemSize * cols * rows) );
77             mat->step = elemSize * cols;
78         }
79 
80         mat->refcount = (int*) fastMalloc(sizeof(int));
81 
82         return true;
83     }
84 
free(GpuMat * mat)85     void DefaultAllocator::free(GpuMat* mat)
86     {
87         cudaFree(mat->datastart);
88         fastFree(mat->refcount);
89     }
90 
91     DefaultAllocator cudaDefaultAllocator;
92     GpuMat::Allocator* g_defaultAllocator = &cudaDefaultAllocator;
93 }
94 
defaultAllocator()95 GpuMat::Allocator* cv::cuda::GpuMat::defaultAllocator()
96 {
97     return g_defaultAllocator;
98 }
99 
setDefaultAllocator(Allocator * allocator)100 void cv::cuda::GpuMat::setDefaultAllocator(Allocator* allocator)
101 {
102     CV_Assert( allocator != 0 );
103     g_defaultAllocator = allocator;
104 }
105 
106 /////////////////////////////////////////////////////
107 /// create
108 
create(int _rows,int _cols,int _type)109 void cv::cuda::GpuMat::create(int _rows, int _cols, int _type)
110 {
111     CV_DbgAssert( _rows >= 0 && _cols >= 0 );
112 
113     _type &= Mat::TYPE_MASK;
114 
115     if (rows == _rows && cols == _cols && type() == _type && data)
116         return;
117 
118     if (data)
119         release();
120 
121     if (_rows > 0 && _cols > 0)
122     {
123         flags = Mat::MAGIC_VAL + _type;
124         rows = _rows;
125         cols = _cols;
126 
127         const size_t esz = elemSize();
128 
129         bool allocSuccess = allocator->allocate(this, rows, cols, esz);
130 
131         if (!allocSuccess)
132         {
133             // custom allocator fails, try default allocator
134             allocator = defaultAllocator();
135             allocSuccess = allocator->allocate(this, rows, cols, esz);
136             CV_Assert( allocSuccess );
137         }
138 
139         if (esz * cols == step)
140             flags |= Mat::CONTINUOUS_FLAG;
141 
142         int64 _nettosize = static_cast<int64>(step) * rows;
143         size_t nettosize = static_cast<size_t>(_nettosize);
144 
145         datastart = data;
146         dataend = data + nettosize;
147 
148         if (refcount)
149             *refcount = 1;
150     }
151 }
152 
153 /////////////////////////////////////////////////////
154 /// release
155 
release()156 void cv::cuda::GpuMat::release()
157 {
158     CV_DbgAssert( allocator != 0 );
159 
160     if (refcount && CV_XADD(refcount, -1) == 1)
161         allocator->free(this);
162 
163     dataend = data = datastart = 0;
164     step = rows = cols = 0;
165     refcount = 0;
166 }
167 
168 /////////////////////////////////////////////////////
169 /// upload
170 
upload(InputArray arr)171 void cv::cuda::GpuMat::upload(InputArray arr)
172 {
173     Mat mat = arr.getMat();
174 
175     CV_DbgAssert( !mat.empty() );
176 
177     create(mat.size(), mat.type());
178 
179     CV_CUDEV_SAFE_CALL( cudaMemcpy2D(data, step, mat.data, mat.step, cols * elemSize(), rows, cudaMemcpyHostToDevice) );
180 }
181 
upload(InputArray arr,Stream & _stream)182 void cv::cuda::GpuMat::upload(InputArray arr, Stream& _stream)
183 {
184     Mat mat = arr.getMat();
185 
186     CV_DbgAssert( !mat.empty() );
187 
188     create(mat.size(), mat.type());
189 
190     cudaStream_t stream = StreamAccessor::getStream(_stream);
191     CV_CUDEV_SAFE_CALL( cudaMemcpy2DAsync(data, step, mat.data, mat.step, cols * elemSize(), rows, cudaMemcpyHostToDevice, stream) );
192 }
193 
194 /////////////////////////////////////////////////////
195 /// download
196 
download(OutputArray _dst) const197 void cv::cuda::GpuMat::download(OutputArray _dst) const
198 {
199     CV_DbgAssert( !empty() );
200 
201     _dst.create(size(), type());
202     Mat dst = _dst.getMat();
203 
204     CV_CUDEV_SAFE_CALL( cudaMemcpy2D(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost) );
205 }
206 
download(OutputArray _dst,Stream & _stream) const207 void cv::cuda::GpuMat::download(OutputArray _dst, Stream& _stream) const
208 {
209     CV_DbgAssert( !empty() );
210 
211     _dst.create(size(), type());
212     Mat dst = _dst.getMat();
213 
214     cudaStream_t stream = StreamAccessor::getStream(_stream);
215     CV_CUDEV_SAFE_CALL( cudaMemcpy2DAsync(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost, stream) );
216 }
217 
218 /////////////////////////////////////////////////////
219 /// copyTo
220 
copyTo(OutputArray _dst) const221 void cv::cuda::GpuMat::copyTo(OutputArray _dst) const
222 {
223     CV_DbgAssert( !empty() );
224 
225     _dst.create(size(), type());
226     GpuMat dst = _dst.getGpuMat();
227 
228     CV_CUDEV_SAFE_CALL( cudaMemcpy2D(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice) );
229 }
230 
copyTo(OutputArray _dst,Stream & _stream) const231 void cv::cuda::GpuMat::copyTo(OutputArray _dst, Stream& _stream) const
232 {
233     CV_DbgAssert( !empty() );
234 
235     _dst.create(size(), type());
236     GpuMat dst = _dst.getGpuMat();
237 
238     cudaStream_t stream = StreamAccessor::getStream(_stream);
239     CV_CUDEV_SAFE_CALL( cudaMemcpy2DAsync(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice, stream) );
240 }
241 
242 namespace
243 {
244     template <size_t size> struct CopyToPolicy : DefaultTransformPolicy
245     {
246     };
247     template <> struct CopyToPolicy<4> : DefaultTransformPolicy
248     {
249         enum {
250             shift = 2
251         };
252     };
253     template <> struct CopyToPolicy<8> : DefaultTransformPolicy
254     {
255         enum {
256             shift = 1
257         };
258     };
259 
260     template <typename T>
copyWithMask(const GpuMat & src,const GpuMat & dst,const GpuMat & mask,Stream & stream)261     void copyWithMask(const GpuMat& src, const GpuMat& dst, const GpuMat& mask, Stream& stream)
262     {
263         gridTransformUnary_< CopyToPolicy<sizeof(typename VecTraits<T>::elem_type)> >(globPtr<T>(src), globPtr<T>(dst), identity<T>(), globPtr<uchar>(mask), stream);
264     }
265 }
266 
copyTo(OutputArray _dst,InputArray _mask,Stream & stream) const267 void cv::cuda::GpuMat::copyTo(OutputArray _dst, InputArray _mask, Stream& stream) const
268 {
269     CV_DbgAssert( !empty() );
270     CV_DbgAssert( depth() <= CV_64F && channels() <= 4 );
271 
272     GpuMat mask = _mask.getGpuMat();
273     CV_DbgAssert( size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == channels()) );
274 
275     uchar* data0 = _dst.getGpuMat().data;
276 
277     _dst.create(size(), type());
278     GpuMat dst = _dst.getGpuMat();
279 
280     // do not leave dst uninitialized
281     if (dst.data != data0)
282         dst.setTo(Scalar::all(0), stream);
283 
284     typedef void (*func_t)(const GpuMat& src, const GpuMat& dst, const GpuMat& mask, Stream& stream);
285     static const func_t funcs[9][4] =
286     {
287         {0,0,0,0},
288         {copyWithMask<uchar>, copyWithMask<uchar2>, copyWithMask<uchar3>, copyWithMask<uchar4>},
289         {copyWithMask<ushort>, copyWithMask<ushort2>, copyWithMask<ushort3>, copyWithMask<ushort4>},
290         {0,0,0,0},
291         {copyWithMask<int>, copyWithMask<int2>, copyWithMask<int3>, copyWithMask<int4>},
292         {0,0,0,0},
293         {0,0,0,0},
294         {0,0,0,0},
295         {copyWithMask<double>, copyWithMask<double2>, copyWithMask<double3>, copyWithMask<double4>}
296     };
297 
298     if (mask.channels() == channels())
299     {
300         const func_t func = funcs[elemSize1()][0];
301         CV_DbgAssert( func != 0 );
302         func(reshape(1), dst.reshape(1), mask.reshape(1), stream);
303     }
304     else
305     {
306         const func_t func = funcs[elemSize1()][channels() - 1];
307         CV_DbgAssert( func != 0 );
308         func(*this, dst, mask, stream);
309     }
310 }
311 
312 /////////////////////////////////////////////////////
313 /// setTo
314 
315 namespace
316 {
317     template <typename T>
setToWithOutMask(const GpuMat & mat,Scalar _scalar,Stream & stream)318     void setToWithOutMask(const GpuMat& mat, Scalar _scalar, Stream& stream)
319     {
320         Scalar_<typename VecTraits<T>::elem_type> scalar = _scalar;
321         gridTransformUnary(constantPtr(VecTraits<T>::make(scalar.val), mat.rows, mat.cols), globPtr<T>(mat), identity<T>(), stream);
322     }
323 
324     template <typename T>
setToWithMask(const GpuMat & mat,const GpuMat & mask,Scalar _scalar,Stream & stream)325     void setToWithMask(const GpuMat& mat, const GpuMat& mask, Scalar _scalar, Stream& stream)
326     {
327         Scalar_<typename VecTraits<T>::elem_type> scalar = _scalar;
328         gridTransformUnary(constantPtr(VecTraits<T>::make(scalar.val), mat.rows, mat.cols), globPtr<T>(mat), identity<T>(), globPtr<uchar>(mask), stream);
329     }
330 }
331 
setTo(Scalar value,Stream & stream)332 GpuMat& cv::cuda::GpuMat::setTo(Scalar value, Stream& stream)
333 {
334     CV_DbgAssert( !empty() );
335     CV_DbgAssert( depth() <= CV_64F && channels() <= 4 );
336 
337     if (value[0] == 0.0 && value[1] == 0.0 && value[2] == 0.0 && value[3] == 0.0)
338     {
339         // Zero fill
340 
341         if (stream)
342             CV_CUDEV_SAFE_CALL( cudaMemset2DAsync(data, step, 0, cols * elemSize(), rows, StreamAccessor::getStream(stream)) );
343         else
344             CV_CUDEV_SAFE_CALL( cudaMemset2D(data, step, 0, cols * elemSize(), rows) );
345 
346         return *this;
347     }
348 
349     if (depth() == CV_8U)
350     {
351         const int cn = channels();
352 
353         if (cn == 1
354                 || (cn == 2 && value[0] == value[1])
355                 || (cn == 3 && value[0] == value[1] && value[0] == value[2])
356                 || (cn == 4 && value[0] == value[1] && value[0] == value[2] && value[0] == value[3]))
357         {
358             const int val = cv::saturate_cast<uchar>(value[0]);
359 
360             if (stream)
361                 CV_CUDEV_SAFE_CALL( cudaMemset2DAsync(data, step, val, cols * elemSize(), rows, StreamAccessor::getStream(stream)) );
362             else
363                 CV_CUDEV_SAFE_CALL( cudaMemset2D(data, step, val, cols * elemSize(), rows) );
364 
365             return *this;
366         }
367     }
368 
369     typedef void (*func_t)(const GpuMat& mat, Scalar scalar, Stream& stream);
370     static const func_t funcs[7][4] =
371     {
372         {setToWithOutMask<uchar>,setToWithOutMask<uchar2>,setToWithOutMask<uchar3>,setToWithOutMask<uchar4>},
373         {setToWithOutMask<schar>,setToWithOutMask<char2>,setToWithOutMask<char3>,setToWithOutMask<char4>},
374         {setToWithOutMask<ushort>,setToWithOutMask<ushort2>,setToWithOutMask<ushort3>,setToWithOutMask<ushort4>},
375         {setToWithOutMask<short>,setToWithOutMask<short2>,setToWithOutMask<short3>,setToWithOutMask<short4>},
376         {setToWithOutMask<int>,setToWithOutMask<int2>,setToWithOutMask<int3>,setToWithOutMask<int4>},
377         {setToWithOutMask<float>,setToWithOutMask<float2>,setToWithOutMask<float3>,setToWithOutMask<float4>},
378         {setToWithOutMask<double>,setToWithOutMask<double2>,setToWithOutMask<double3>,setToWithOutMask<double4>}
379     };
380 
381     funcs[depth()][channels() - 1](*this, value, stream);
382 
383     return *this;
384 }
385 
setTo(Scalar value,InputArray _mask,Stream & stream)386 GpuMat& cv::cuda::GpuMat::setTo(Scalar value, InputArray _mask, Stream& stream)
387 {
388     CV_DbgAssert( !empty() );
389     CV_DbgAssert( depth() <= CV_64F && channels() <= 4 );
390 
391     GpuMat mask = _mask.getGpuMat();
392 
393     if (mask.empty())
394     {
395         return setTo(value, stream);
396     }
397 
398     CV_DbgAssert( size() == mask.size() && mask.type() == CV_8UC1 );
399 
400     typedef void (*func_t)(const GpuMat& mat, const GpuMat& mask, Scalar scalar, Stream& stream);
401     static const func_t funcs[7][4] =
402     {
403         {setToWithMask<uchar>,setToWithMask<uchar2>,setToWithMask<uchar3>,setToWithMask<uchar4>},
404         {setToWithMask<schar>,setToWithMask<char2>,setToWithMask<char3>,setToWithMask<char4>},
405         {setToWithMask<ushort>,setToWithMask<ushort2>,setToWithMask<ushort3>,setToWithMask<ushort4>},
406         {setToWithMask<short>,setToWithMask<short2>,setToWithMask<short3>,setToWithMask<short4>},
407         {setToWithMask<int>,setToWithMask<int2>,setToWithMask<int3>,setToWithMask<int4>},
408         {setToWithMask<float>,setToWithMask<float2>,setToWithMask<float3>,setToWithMask<float4>},
409         {setToWithMask<double>,setToWithMask<double2>,setToWithMask<double3>,setToWithMask<double4>}
410     };
411 
412     funcs[depth()][channels() - 1](*this, mask, value, stream);
413 
414     return *this;
415 }
416 
417 /////////////////////////////////////////////////////
418 /// convertTo
419 
420 namespace
421 {
422     template <typename T> struct ConvertToPolicy : DefaultTransformPolicy
423     {
424     };
425     template <> struct ConvertToPolicy<double> : DefaultTransformPolicy
426     {
427         enum {
428             shift = 1
429         };
430     };
431 
432     template <typename T, typename D>
convertToNoScale(const GpuMat & src,const GpuMat & dst,Stream & stream)433     void convertToNoScale(const GpuMat& src, const GpuMat& dst, Stream& stream)
434     {
435         typedef typename VecTraits<T>::elem_type src_elem_type;
436         typedef typename VecTraits<D>::elem_type dst_elem_type;
437         typedef typename LargerType<src_elem_type, float>::type larger_elem_type;
438         typedef typename LargerType<float, dst_elem_type>::type scalar_type;
439 
440         gridTransformUnary_< ConvertToPolicy<scalar_type> >(globPtr<T>(src), globPtr<D>(dst), saturate_cast_func<T, D>(), stream);
441     }
442 
443     template <typename T, typename D, typename S> struct Convertor : unary_function<T, D>
444     {
445         S alpha;
446         S beta;
447 
operator ()__anon904728540611::Convertor448         __device__ __forceinline__ D operator ()(typename TypeTraits<T>::parameter_type src) const
449         {
450             return cudev::saturate_cast<D>(alpha * src + beta);
451         }
452     };
453 
454     template <typename T, typename D>
convertToScale(const GpuMat & src,const GpuMat & dst,double alpha,double beta,Stream & stream)455     void convertToScale(const GpuMat& src, const GpuMat& dst, double alpha, double beta, Stream& stream)
456     {
457         typedef typename VecTraits<T>::elem_type src_elem_type;
458         typedef typename VecTraits<D>::elem_type dst_elem_type;
459         typedef typename LargerType<src_elem_type, float>::type larger_elem_type;
460         typedef typename LargerType<float, dst_elem_type>::type scalar_type;
461 
462         Convertor<T, D, scalar_type> op;
463         op.alpha = cv::saturate_cast<scalar_type>(alpha);
464         op.beta = cv::saturate_cast<scalar_type>(beta);
465 
466         gridTransformUnary_< ConvertToPolicy<scalar_type> >(globPtr<T>(src), globPtr<D>(dst), op, stream);
467     }
468 }
469 
convertTo(OutputArray _dst,int rtype,Stream & stream) const470 void cv::cuda::GpuMat::convertTo(OutputArray _dst, int rtype, Stream& stream) const
471 {
472     if (rtype < 0)
473         rtype = type();
474     else
475         rtype = CV_MAKE_TYPE(CV_MAT_DEPTH(rtype), channels());
476 
477     const int sdepth = depth();
478     const int ddepth = CV_MAT_DEPTH(rtype);
479     if (sdepth == ddepth)
480     {
481         if (stream)
482             copyTo(_dst, stream);
483         else
484             copyTo(_dst);
485 
486         return;
487     }
488 
489     CV_DbgAssert( sdepth <= CV_64F && ddepth <= CV_64F );
490 
491     GpuMat src = *this;
492 
493     _dst.create(size(), rtype);
494     GpuMat dst = _dst.getGpuMat();
495 
496     typedef void (*func_t)(const GpuMat& src, const GpuMat& dst, Stream& stream);
497     static const func_t funcs[7][7] =
498     {
499         {0, convertToNoScale<uchar, schar>, convertToNoScale<uchar, ushort>, convertToNoScale<uchar, short>, convertToNoScale<uchar, int>, convertToNoScale<uchar, float>, convertToNoScale<uchar, double>},
500         {convertToNoScale<schar, uchar>, 0, convertToNoScale<schar, ushort>, convertToNoScale<schar, short>, convertToNoScale<schar, int>, convertToNoScale<schar, float>, convertToNoScale<schar, double>},
501         {convertToNoScale<ushort, uchar>, convertToNoScale<ushort, schar>, 0, convertToNoScale<ushort, short>, convertToNoScale<ushort, int>, convertToNoScale<ushort, float>, convertToNoScale<ushort, double>},
502         {convertToNoScale<short, uchar>, convertToNoScale<short, schar>, convertToNoScale<short, ushort>, 0, convertToNoScale<short, int>, convertToNoScale<short, float>, convertToNoScale<short, double>},
503         {convertToNoScale<int, uchar>, convertToNoScale<int, schar>, convertToNoScale<int, ushort>, convertToNoScale<int, short>, 0, convertToNoScale<int, float>, convertToNoScale<int, double>},
504         {convertToNoScale<float, uchar>, convertToNoScale<float, schar>, convertToNoScale<float, ushort>, convertToNoScale<float, short>, convertToNoScale<float, int>, 0, convertToNoScale<float, double>},
505         {convertToNoScale<double, uchar>, convertToNoScale<double, schar>, convertToNoScale<double, ushort>, convertToNoScale<double, short>, convertToNoScale<double, int>, convertToNoScale<double, float>, 0}
506     };
507 
508     funcs[sdepth][ddepth](reshape(1), dst.reshape(1), stream);
509 }
510 
convertTo(OutputArray _dst,int rtype,double alpha,double beta,Stream & stream) const511 void cv::cuda::GpuMat::convertTo(OutputArray _dst, int rtype, double alpha, double beta, Stream& stream) const
512 {
513     if (rtype < 0)
514         rtype = type();
515     else
516         rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());
517 
518     const int sdepth = depth();
519     const int ddepth = CV_MAT_DEPTH(rtype);
520 
521     GpuMat src = *this;
522 
523     _dst.create(size(), rtype);
524     GpuMat dst = _dst.getGpuMat();
525 
526     typedef void (*func_t)(const GpuMat& src, const GpuMat& dst, double alpha, double beta, Stream& stream);
527     static const func_t funcs[7][7] =
528     {
529         {convertToScale<uchar, uchar>, convertToScale<uchar, schar>, convertToScale<uchar, ushort>, convertToScale<uchar, short>, convertToScale<uchar, int>, convertToScale<uchar, float>, convertToScale<uchar, double>},
530         {convertToScale<schar, uchar>, convertToScale<schar, schar>, convertToScale<schar, ushort>, convertToScale<schar, short>, convertToScale<schar, int>, convertToScale<schar, float>, convertToScale<schar, double>},
531         {convertToScale<ushort, uchar>, convertToScale<ushort, schar>, convertToScale<ushort, ushort>, convertToScale<ushort, short>, convertToScale<ushort, int>, convertToScale<ushort, float>, convertToScale<ushort, double>},
532         {convertToScale<short, uchar>, convertToScale<short, schar>, convertToScale<short, ushort>, convertToScale<short, short>, convertToScale<short, int>, convertToScale<short, float>, convertToScale<short, double>},
533         {convertToScale<int, uchar>, convertToScale<int, schar>, convertToScale<int, ushort>, convertToScale<int, short>, convertToScale<int, int>, convertToScale<int, float>, convertToScale<int, double>},
534         {convertToScale<float, uchar>, convertToScale<float, schar>, convertToScale<float, ushort>, convertToScale<float, short>, convertToScale<float, int>, convertToScale<float, float>, convertToScale<float, double>},
535         {convertToScale<double, uchar>, convertToScale<double, schar>, convertToScale<double, ushort>, convertToScale<double, short>, convertToScale<double, int>, convertToScale<double, float>, convertToScale<double, double>}
536     };
537 
538     funcs[sdepth][ddepth](reshape(1), dst.reshape(1), alpha, beta, stream);
539 }
540 
541 #endif
542