1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16 // Third party copyrights are property of their respective owners.
17 //
18 // Redistribution and use in source and binary forms, with or without modification,
19 // are permitted provided that the following conditions are met:
20 //
21 // * Redistribution's of source code must retain the above copyright notice,
22 // this list of conditions and the following disclaimer.
23 //
24 // * Redistribution's in binary form must reproduce the above copyright notice,
25 // this list of conditions and the following disclaimer in the documentation
26 // and/or other materials provided with the distribution.
27 //
28 // * The name of the copyright holders may not be used to endorse or promote products
29 // derived from this software without specific prior written permission.
30 //
31 // This software is provided by the copyright holders and contributors "as is" and
32 // any express or implied warranties, including, but not limited to, the implied
33 // warranties of merchantability and fitness for a particular purpose are disclaimed.
34 // In no event shall the Intel Corporation or contributors be liable for any direct,
35 // indirect, incidental, special, exemplary, or consequential damages
36 // (including, but not limited to, procurement of substitute goods or services;
37 // loss of use, data, or profits; or business interruption) however caused
38 // and on any theory of liability, whether in contract, strict liability,
39 // or tort (including negligence or otherwise) arising in any way out of
40 // the use of this software, even if advised of the possibility of such damage.
41 //
42 //M*/
43
44 #include "precomp.hpp"
45
46 ////////////////////////////////////////// kmeans ////////////////////////////////////////////
47
48 namespace cv
49 {
50
generateRandomCenter(const std::vector<Vec2f> & box,float * center,RNG & rng)51 static void generateRandomCenter(const std::vector<Vec2f>& box, float* center, RNG& rng)
52 {
53 size_t j, dims = box.size();
54 float margin = 1.f/dims;
55 for( j = 0; j < dims; j++ )
56 center[j] = ((float)rng*(1.f+margin*2.f)-margin)*(box[j][1] - box[j][0]) + box[j][0];
57 }
58
59 class KMeansPPDistanceComputer : public ParallelLoopBody
60 {
61 public:
KMeansPPDistanceComputer(float * _tdist2,const float * _data,const float * _dist,int _dims,size_t _step,size_t _stepci)62 KMeansPPDistanceComputer( float *_tdist2,
63 const float *_data,
64 const float *_dist,
65 int _dims,
66 size_t _step,
67 size_t _stepci )
68 : tdist2(_tdist2),
69 data(_data),
70 dist(_dist),
71 dims(_dims),
72 step(_step),
73 stepci(_stepci) { }
74
operator ()(const cv::Range & range) const75 void operator()( const cv::Range& range ) const
76 {
77 const int begin = range.start;
78 const int end = range.end;
79
80 for ( int i = begin; i<end; i++ )
81 {
82 tdist2[i] = std::min(normL2Sqr(data + step*i, data + stepci, dims), dist[i]);
83 }
84 }
85
86 private:
87 KMeansPPDistanceComputer& operator=(const KMeansPPDistanceComputer&); // to quiet MSVC
88
89 float *tdist2;
90 const float *data;
91 const float *dist;
92 const int dims;
93 const size_t step;
94 const size_t stepci;
95 };
96
97 /*
98 k-means center initialization using the following algorithm:
99 Arthur & Vassilvitskii (2007) k-means++: The Advantages of Careful Seeding
100 */
generateCentersPP(const Mat & _data,Mat & _out_centers,int K,RNG & rng,int trials)101 static void generateCentersPP(const Mat& _data, Mat& _out_centers,
102 int K, RNG& rng, int trials)
103 {
104 int i, j, k, dims = _data.cols, N = _data.rows;
105 const float* data = _data.ptr<float>(0);
106 size_t step = _data.step/sizeof(data[0]);
107 std::vector<int> _centers(K);
108 int* centers = &_centers[0];
109 std::vector<float> _dist(N*3);
110 float* dist = &_dist[0], *tdist = dist + N, *tdist2 = tdist + N;
111 double sum0 = 0;
112
113 centers[0] = (unsigned)rng % N;
114
115 for( i = 0; i < N; i++ )
116 {
117 dist[i] = normL2Sqr(data + step*i, data + step*centers[0], dims);
118 sum0 += dist[i];
119 }
120
121 for( k = 1; k < K; k++ )
122 {
123 double bestSum = DBL_MAX;
124 int bestCenter = -1;
125
126 for( j = 0; j < trials; j++ )
127 {
128 double p = (double)rng*sum0, s = 0;
129 for( i = 0; i < N-1; i++ )
130 if( (p -= dist[i]) <= 0 )
131 break;
132 int ci = i;
133
134 parallel_for_(Range(0, N),
135 KMeansPPDistanceComputer(tdist2, data, dist, dims, step, step*ci));
136 for( i = 0; i < N; i++ )
137 {
138 s += tdist2[i];
139 }
140
141 if( s < bestSum )
142 {
143 bestSum = s;
144 bestCenter = ci;
145 std::swap(tdist, tdist2);
146 }
147 }
148 centers[k] = bestCenter;
149 sum0 = bestSum;
150 std::swap(dist, tdist);
151 }
152
153 for( k = 0; k < K; k++ )
154 {
155 const float* src = data + step*centers[k];
156 float* dst = _out_centers.ptr<float>(k);
157 for( j = 0; j < dims; j++ )
158 dst[j] = src[j];
159 }
160 }
161
162 class KMeansDistanceComputer : public ParallelLoopBody
163 {
164 public:
KMeansDistanceComputer(double * _distances,int * _labels,const Mat & _data,const Mat & _centers)165 KMeansDistanceComputer( double *_distances,
166 int *_labels,
167 const Mat& _data,
168 const Mat& _centers )
169 : distances(_distances),
170 labels(_labels),
171 data(_data),
172 centers(_centers)
173 {
174 }
175
operator ()(const Range & range) const176 void operator()( const Range& range ) const
177 {
178 const int begin = range.start;
179 const int end = range.end;
180 const int K = centers.rows;
181 const int dims = centers.cols;
182
183 for( int i = begin; i<end; ++i)
184 {
185 const float *sample = data.ptr<float>(i);
186 int k_best = 0;
187 double min_dist = DBL_MAX;
188
189 for( int k = 0; k < K; k++ )
190 {
191 const float* center = centers.ptr<float>(k);
192 const double dist = normL2Sqr(sample, center, dims);
193
194 if( min_dist > dist )
195 {
196 min_dist = dist;
197 k_best = k;
198 }
199 }
200
201 distances[i] = min_dist;
202 labels[i] = k_best;
203 }
204 }
205
206 private:
207 KMeansDistanceComputer& operator=(const KMeansDistanceComputer&); // to quiet MSVC
208
209 double *distances;
210 int *labels;
211 const Mat& data;
212 const Mat& centers;
213 };
214
215 }
216
kmeans(InputArray _data,int K,InputOutputArray _bestLabels,TermCriteria criteria,int attempts,int flags,OutputArray _centers)217 double cv::kmeans( InputArray _data, int K,
218 InputOutputArray _bestLabels,
219 TermCriteria criteria, int attempts,
220 int flags, OutputArray _centers )
221 {
222 const int SPP_TRIALS = 3;
223 Mat data0 = _data.getMat();
224 bool isrow = data0.rows == 1 && data0.channels() > 1;
225 int N = !isrow ? data0.rows : data0.cols;
226 int dims = (!isrow ? data0.cols : 1)*data0.channels();
227 int type = data0.depth();
228
229 attempts = std::max(attempts, 1);
230 CV_Assert( data0.dims <= 2 && type == CV_32F && K > 0 );
231 CV_Assert( N >= K );
232
233 Mat data(N, dims, CV_32F, data0.ptr(), isrow ? dims * sizeof(float) : static_cast<size_t>(data0.step));
234
235 _bestLabels.create(N, 1, CV_32S, -1, true);
236
237 Mat _labels, best_labels = _bestLabels.getMat();
238 if( flags & CV_KMEANS_USE_INITIAL_LABELS )
239 {
240 CV_Assert( (best_labels.cols == 1 || best_labels.rows == 1) &&
241 best_labels.cols*best_labels.rows == N &&
242 best_labels.type() == CV_32S &&
243 best_labels.isContinuous());
244 best_labels.copyTo(_labels);
245 }
246 else
247 {
248 if( !((best_labels.cols == 1 || best_labels.rows == 1) &&
249 best_labels.cols*best_labels.rows == N &&
250 best_labels.type() == CV_32S &&
251 best_labels.isContinuous()))
252 best_labels.create(N, 1, CV_32S);
253 _labels.create(best_labels.size(), best_labels.type());
254 }
255 int* labels = _labels.ptr<int>();
256
257 Mat centers(K, dims, type), old_centers(K, dims, type), temp(1, dims, type);
258 std::vector<int> counters(K);
259 std::vector<Vec2f> _box(dims);
260 Vec2f* box = &_box[0];
261 double best_compactness = DBL_MAX, compactness = 0;
262 RNG& rng = theRNG();
263 int a, iter, i, j, k;
264
265 if( criteria.type & TermCriteria::EPS )
266 criteria.epsilon = std::max(criteria.epsilon, 0.);
267 else
268 criteria.epsilon = FLT_EPSILON;
269 criteria.epsilon *= criteria.epsilon;
270
271 if( criteria.type & TermCriteria::COUNT )
272 criteria.maxCount = std::min(std::max(criteria.maxCount, 2), 100);
273 else
274 criteria.maxCount = 100;
275
276 if( K == 1 )
277 {
278 attempts = 1;
279 criteria.maxCount = 2;
280 }
281
282 const float* sample = data.ptr<float>(0);
283 for( j = 0; j < dims; j++ )
284 box[j] = Vec2f(sample[j], sample[j]);
285
286 for( i = 1; i < N; i++ )
287 {
288 sample = data.ptr<float>(i);
289 for( j = 0; j < dims; j++ )
290 {
291 float v = sample[j];
292 box[j][0] = std::min(box[j][0], v);
293 box[j][1] = std::max(box[j][1], v);
294 }
295 }
296
297 for( a = 0; a < attempts; a++ )
298 {
299 double max_center_shift = DBL_MAX;
300 for( iter = 0;; )
301 {
302 swap(centers, old_centers);
303
304 if( iter == 0 && (a > 0 || !(flags & KMEANS_USE_INITIAL_LABELS)) )
305 {
306 if( flags & KMEANS_PP_CENTERS )
307 generateCentersPP(data, centers, K, rng, SPP_TRIALS);
308 else
309 {
310 for( k = 0; k < K; k++ )
311 generateRandomCenter(_box, centers.ptr<float>(k), rng);
312 }
313 }
314 else
315 {
316 if( iter == 0 && a == 0 && (flags & KMEANS_USE_INITIAL_LABELS) )
317 {
318 for( i = 0; i < N; i++ )
319 CV_Assert( (unsigned)labels[i] < (unsigned)K );
320 }
321
322 // compute centers
323 centers = Scalar(0);
324 for( k = 0; k < K; k++ )
325 counters[k] = 0;
326
327 for( i = 0; i < N; i++ )
328 {
329 sample = data.ptr<float>(i);
330 k = labels[i];
331 float* center = centers.ptr<float>(k);
332 j=0;
333 #if CV_ENABLE_UNROLLED
334 for(; j <= dims - 4; j += 4 )
335 {
336 float t0 = center[j] + sample[j];
337 float t1 = center[j+1] + sample[j+1];
338
339 center[j] = t0;
340 center[j+1] = t1;
341
342 t0 = center[j+2] + sample[j+2];
343 t1 = center[j+3] + sample[j+3];
344
345 center[j+2] = t0;
346 center[j+3] = t1;
347 }
348 #endif
349 for( ; j < dims; j++ )
350 center[j] += sample[j];
351 counters[k]++;
352 }
353
354 if( iter > 0 )
355 max_center_shift = 0;
356
357 for( k = 0; k < K; k++ )
358 {
359 if( counters[k] != 0 )
360 continue;
361
362 // if some cluster appeared to be empty then:
363 // 1. find the biggest cluster
364 // 2. find the farthest from the center point in the biggest cluster
365 // 3. exclude the farthest point from the biggest cluster and form a new 1-point cluster.
366 int max_k = 0;
367 for( int k1 = 1; k1 < K; k1++ )
368 {
369 if( counters[max_k] < counters[k1] )
370 max_k = k1;
371 }
372
373 double max_dist = 0;
374 int farthest_i = -1;
375 float* new_center = centers.ptr<float>(k);
376 float* old_center = centers.ptr<float>(max_k);
377 float* _old_center = temp.ptr<float>(); // normalized
378 float scale = 1.f/counters[max_k];
379 for( j = 0; j < dims; j++ )
380 _old_center[j] = old_center[j]*scale;
381
382 for( i = 0; i < N; i++ )
383 {
384 if( labels[i] != max_k )
385 continue;
386 sample = data.ptr<float>(i);
387 double dist = normL2Sqr(sample, _old_center, dims);
388
389 if( max_dist <= dist )
390 {
391 max_dist = dist;
392 farthest_i = i;
393 }
394 }
395
396 counters[max_k]--;
397 counters[k]++;
398 labels[farthest_i] = k;
399 sample = data.ptr<float>(farthest_i);
400
401 for( j = 0; j < dims; j++ )
402 {
403 old_center[j] -= sample[j];
404 new_center[j] += sample[j];
405 }
406 }
407
408 for( k = 0; k < K; k++ )
409 {
410 float* center = centers.ptr<float>(k);
411 CV_Assert( counters[k] != 0 );
412
413 float scale = 1.f/counters[k];
414 for( j = 0; j < dims; j++ )
415 center[j] *= scale;
416
417 if( iter > 0 )
418 {
419 double dist = 0;
420 const float* old_center = old_centers.ptr<float>(k);
421 for( j = 0; j < dims; j++ )
422 {
423 double t = center[j] - old_center[j];
424 dist += t*t;
425 }
426 max_center_shift = std::max(max_center_shift, dist);
427 }
428 }
429 }
430
431 if( ++iter == MAX(criteria.maxCount, 2) || max_center_shift <= criteria.epsilon )
432 break;
433
434 // assign labels
435 Mat dists(1, N, CV_64F);
436 double* dist = dists.ptr<double>(0);
437 parallel_for_(Range(0, N),
438 KMeansDistanceComputer(dist, labels, data, centers));
439 compactness = 0;
440 for( i = 0; i < N; i++ )
441 {
442 compactness += dist[i];
443 }
444 }
445
446 if( compactness < best_compactness )
447 {
448 best_compactness = compactness;
449 if( _centers.needed() )
450 centers.copyTo(_centers);
451 _labels.copyTo(best_labels);
452 }
453 }
454
455 return best_compactness;
456 }
457