1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "opencv2/opencv_modules.hpp"
44 
45 #ifndef HAVE_OPENCV_CUDEV
46 
47 #error "opencv_cudev is required"
48 
49 #else
50 
51 #include "opencv2/cudaarithm.hpp"
52 #include "opencv2/cudev.hpp"
53 #include "opencv2/core/private.cuda.hpp"
54 
55 using namespace cv;
56 using namespace cv::cuda;
57 using namespace cv::cudev;
58 
59 ////////////////////////////////////////////////////////////////////////
60 /// merge
61 
62 namespace
63 {
64     template <int cn, typename T> struct MergeFunc;
65 
66     template <typename T> struct MergeFunc<2, T>
67     {
call__anon9c08af3b0111::MergeFunc68         static void call(const GpuMat* src, GpuMat& dst, Stream& stream)
69         {
70             gridMerge(zipPtr(globPtr<T>(src[0]), globPtr<T>(src[1])),
71                     globPtr<typename MakeVec<T, 2>::type>(dst),
72                     stream);
73         }
74     };
75 
76     template <typename T> struct MergeFunc<3, T>
77     {
call__anon9c08af3b0111::MergeFunc78         static void call(const GpuMat* src, GpuMat& dst, Stream& stream)
79         {
80             gridMerge(zipPtr(globPtr<T>(src[0]), globPtr<T>(src[1]), globPtr<T>(src[2])),
81                     globPtr<typename MakeVec<T, 3>::type>(dst),
82                     stream);
83         }
84     };
85 
86     template <typename T> struct MergeFunc<4, T>
87     {
call__anon9c08af3b0111::MergeFunc88         static void call(const GpuMat* src, GpuMat& dst, Stream& stream)
89         {
90             gridMerge(zipPtr(globPtr<T>(src[0]), globPtr<T>(src[1]), globPtr<T>(src[2]), globPtr<T>(src[3])),
91                     globPtr<typename MakeVec<T, 4>::type>(dst),
92                     stream);
93         }
94     };
95 
mergeImpl(const GpuMat * src,size_t n,cv::OutputArray _dst,Stream & stream)96     void mergeImpl(const GpuMat* src, size_t n, cv::OutputArray _dst, Stream& stream)
97     {
98         CV_Assert( src != 0 );
99         CV_Assert( n > 0 && n <= 4 );
100 
101         const int depth = src[0].depth();
102         const cv::Size size = src[0].size();
103 
104         for (size_t i = 0; i < n; ++i)
105         {
106             CV_Assert( src[i].size() == size );
107             CV_Assert( src[i].depth() == depth );
108             CV_Assert( src[i].channels() == 1 );
109         }
110 
111         if (n == 1)
112         {
113             src[0].copyTo(_dst, stream);
114         }
115         else
116         {
117             typedef void (*func_t)(const GpuMat* src, GpuMat& dst, Stream& stream);
118             static const func_t funcs[3][5] =
119             {
120                 {MergeFunc<2, uchar>::call, MergeFunc<2, ushort>::call, MergeFunc<2, int>::call, 0, MergeFunc<2, double>::call},
121                 {MergeFunc<3, uchar>::call, MergeFunc<3, ushort>::call, MergeFunc<3, int>::call, 0, MergeFunc<3, double>::call},
122                 {MergeFunc<4, uchar>::call, MergeFunc<4, ushort>::call, MergeFunc<4, int>::call, 0, MergeFunc<4, double>::call}
123             };
124 
125             const int channels = static_cast<int>(n);
126 
127             GpuMat dst = getOutputMat(_dst, size, CV_MAKE_TYPE(depth, channels), stream);
128 
129             const func_t func = funcs[channels - 2][CV_ELEM_SIZE(depth) / 2];
130 
131             if (func == 0)
132                 CV_Error(cv::Error::StsUnsupportedFormat, "Unsupported channel count or data type");
133 
134             func(src, dst, stream);
135 
136             syncOutput(dst, _dst, stream);
137         }
138     }
139 }
140 
merge(const GpuMat * src,size_t n,OutputArray dst,Stream & stream)141 void cv::cuda::merge(const GpuMat* src, size_t n, OutputArray dst, Stream& stream)
142 {
143     mergeImpl(src, n, dst, stream);
144 }
145 
146 
merge(const std::vector<GpuMat> & src,OutputArray dst,Stream & stream)147 void cv::cuda::merge(const std::vector<GpuMat>& src, OutputArray dst, Stream& stream)
148 {
149     mergeImpl(&src[0], src.size(), dst, stream);
150 }
151 
152 ////////////////////////////////////////////////////////////////////////
153 /// split
154 
155 namespace
156 {
157     template <int cn, typename T> struct SplitFunc;
158 
159     template <typename T> struct SplitFunc<2, T>
160     {
call__anon9c08af3b0211::SplitFunc161         static void call(const GpuMat& src, GpuMat* dst, Stream& stream)
162         {
163             GlobPtrSz<T> dstarr[2] =
164             {
165                 globPtr<T>(dst[0]), globPtr<T>(dst[1])
166             };
167 
168             gridSplit(globPtr<typename MakeVec<T, 2>::type>(src), dstarr, stream);
169         }
170     };
171 
172     template <typename T> struct SplitFunc<3, T>
173     {
call__anon9c08af3b0211::SplitFunc174         static void call(const GpuMat& src, GpuMat* dst, Stream& stream)
175         {
176             GlobPtrSz<T> dstarr[3] =
177             {
178                 globPtr<T>(dst[0]), globPtr<T>(dst[1]), globPtr<T>(dst[2])
179             };
180 
181             gridSplit(globPtr<typename MakeVec<T, 3>::type>(src), dstarr, stream);
182         }
183     };
184 
185     template <typename T> struct SplitFunc<4, T>
186     {
call__anon9c08af3b0211::SplitFunc187         static void call(const GpuMat& src, GpuMat* dst, Stream& stream)
188         {
189             GlobPtrSz<T> dstarr[4] =
190             {
191                 globPtr<T>(dst[0]), globPtr<T>(dst[1]), globPtr<T>(dst[2]), globPtr<T>(dst[3])
192             };
193 
194             gridSplit(globPtr<typename MakeVec<T, 4>::type>(src), dstarr, stream);
195         }
196     };
197 
splitImpl(const GpuMat & src,GpuMat * dst,Stream & stream)198     void splitImpl(const GpuMat& src, GpuMat* dst, Stream& stream)
199     {
200         typedef void (*func_t)(const GpuMat& src, GpuMat* dst, Stream& stream);
201         static const func_t funcs[3][5] =
202         {
203             {SplitFunc<2, uchar>::call, SplitFunc<2, ushort>::call, SplitFunc<2, int>::call, 0, SplitFunc<2, double>::call},
204             {SplitFunc<3, uchar>::call, SplitFunc<3, ushort>::call, SplitFunc<3, int>::call, 0, SplitFunc<3, double>::call},
205             {SplitFunc<4, uchar>::call, SplitFunc<4, ushort>::call, SplitFunc<4, int>::call, 0, SplitFunc<4, double>::call}
206         };
207 
208         CV_Assert( dst != 0 );
209 
210         const int depth = src.depth();
211         const int channels = src.channels();
212 
213         CV_Assert( channels <= 4 );
214 
215         if (channels == 0)
216             return;
217 
218         if (channels == 1)
219         {
220             src.copyTo(dst[0], stream);
221             return;
222         }
223 
224         for (int i = 0; i < channels; ++i)
225             dst[i].create(src.size(), depth);
226 
227         const func_t func = funcs[channels - 2][CV_ELEM_SIZE(depth) / 2];
228 
229         if (func == 0)
230             CV_Error(cv::Error::StsUnsupportedFormat, "Unsupported channel count or data type");
231 
232         func(src, dst, stream);
233     }
234 }
235 
split(InputArray _src,GpuMat * dst,Stream & stream)236 void cv::cuda::split(InputArray _src, GpuMat* dst, Stream& stream)
237 {
238     GpuMat src = getInputMat(_src, stream);
239     splitImpl(src, dst, stream);
240 }
241 
split(InputArray _src,std::vector<GpuMat> & dst,Stream & stream)242 void cv::cuda::split(InputArray _src, std::vector<GpuMat>& dst, Stream& stream)
243 {
244     GpuMat src = getInputMat(_src, stream);
245     dst.resize(src.channels());
246     if (src.channels() > 0)
247         splitImpl(src, &dst[0], stream);
248 }
249 
250 #endif
251