1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "test_precomp.hpp"
44
45 #ifdef HAVE_CUDA
46
47 using namespace cvtest;
48
49 //////////////////////////////////////////////////////////////////////////////
50 // GEMM
51
52 #ifdef HAVE_CUBLAS
53
54 CV_FLAGS(GemmFlags, 0, cv::GEMM_1_T, cv::GEMM_2_T, cv::GEMM_3_T);
55 #define ALL_GEMM_FLAGS testing::Values(GemmFlags(0), GemmFlags(cv::GEMM_1_T), GemmFlags(cv::GEMM_2_T), GemmFlags(cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T | cv::GEMM_3_T))
56
PARAM_TEST_CASE(GEMM,cv::cuda::DeviceInfo,cv::Size,MatType,GemmFlags,UseRoi)57 PARAM_TEST_CASE(GEMM, cv::cuda::DeviceInfo, cv::Size, MatType, GemmFlags, UseRoi)
58 {
59 cv::cuda::DeviceInfo devInfo;
60 cv::Size size;
61 int type;
62 int flags;
63 bool useRoi;
64
65 virtual void SetUp()
66 {
67 devInfo = GET_PARAM(0);
68 size = GET_PARAM(1);
69 type = GET_PARAM(2);
70 flags = GET_PARAM(3);
71 useRoi = GET_PARAM(4);
72
73 cv::cuda::setDevice(devInfo.deviceID());
74 }
75 };
76
CUDA_TEST_P(GEMM,Accuracy)77 CUDA_TEST_P(GEMM, Accuracy)
78 {
79 cv::Mat src1 = randomMat(size, type, -10.0, 10.0);
80 cv::Mat src2 = randomMat(size, type, -10.0, 10.0);
81 cv::Mat src3 = randomMat(size, type, -10.0, 10.0);
82 double alpha = randomDouble(-10.0, 10.0);
83 double beta = randomDouble(-10.0, 10.0);
84
85 if (CV_MAT_DEPTH(type) == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
86 {
87 try
88 {
89 cv::cuda::GpuMat dst;
90 cv::cuda::gemm(loadMat(src1), loadMat(src2), alpha, loadMat(src3), beta, dst, flags);
91 }
92 catch (const cv::Exception& e)
93 {
94 ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
95 }
96 }
97 else if (type == CV_64FC2 && flags != 0)
98 {
99 try
100 {
101 cv::cuda::GpuMat dst;
102 cv::cuda::gemm(loadMat(src1), loadMat(src2), alpha, loadMat(src3), beta, dst, flags);
103 }
104 catch (const cv::Exception& e)
105 {
106 ASSERT_EQ(cv::Error::StsNotImplemented, e.code);
107 }
108 }
109 else
110 {
111 cv::cuda::GpuMat dst = createMat(size, type, useRoi);
112 cv::cuda::gemm(loadMat(src1, useRoi), loadMat(src2, useRoi), alpha, loadMat(src3, useRoi), beta, dst, flags);
113
114 cv::Mat dst_gold;
115 cv::gemm(src1, src2, alpha, src3, beta, dst_gold, flags);
116
117 EXPECT_MAT_NEAR(dst_gold, dst, CV_MAT_DEPTH(type) == CV_32F ? 1e-1 : 1e-10);
118 }
119 }
120
121 INSTANTIATE_TEST_CASE_P(CUDA_Arithm, GEMM, testing::Combine(
122 ALL_DEVICES,
123 DIFFERENT_SIZES,
124 testing::Values(MatType(CV_32FC1), MatType(CV_32FC2), MatType(CV_64FC1), MatType(CV_64FC2)),
125 ALL_GEMM_FLAGS,
126 WHOLE_SUBMAT));
127
128 ////////////////////////////////////////////////////////////////////////////
129 // MulSpectrums
130
131 CV_FLAGS(DftFlags, 0, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX_OUTPUT, cv::DFT_REAL_OUTPUT)
132
PARAM_TEST_CASE(MulSpectrums,cv::cuda::DeviceInfo,cv::Size,DftFlags)133 PARAM_TEST_CASE(MulSpectrums, cv::cuda::DeviceInfo, cv::Size, DftFlags)
134 {
135 cv::cuda::DeviceInfo devInfo;
136 cv::Size size;
137 int flag;
138
139 cv::Mat a, b;
140
141 virtual void SetUp()
142 {
143 devInfo = GET_PARAM(0);
144 size = GET_PARAM(1);
145 flag = GET_PARAM(2);
146
147 cv::cuda::setDevice(devInfo.deviceID());
148
149 a = randomMat(size, CV_32FC2);
150 b = randomMat(size, CV_32FC2);
151 }
152 };
153
CUDA_TEST_P(MulSpectrums,Simple)154 CUDA_TEST_P(MulSpectrums, Simple)
155 {
156 cv::cuda::GpuMat c;
157 cv::cuda::mulSpectrums(loadMat(a), loadMat(b), c, flag, false);
158
159 cv::Mat c_gold;
160 cv::mulSpectrums(a, b, c_gold, flag, false);
161
162 EXPECT_MAT_NEAR(c_gold, c, 1e-2);
163 }
164
CUDA_TEST_P(MulSpectrums,Scaled)165 CUDA_TEST_P(MulSpectrums, Scaled)
166 {
167 float scale = 1.f / size.area();
168
169 cv::cuda::GpuMat c;
170 cv::cuda::mulAndScaleSpectrums(loadMat(a), loadMat(b), c, flag, scale, false);
171
172 cv::Mat c_gold;
173 cv::mulSpectrums(a, b, c_gold, flag, false);
174 c_gold.convertTo(c_gold, c_gold.type(), scale);
175
176 EXPECT_MAT_NEAR(c_gold, c, 1e-2);
177 }
178
179 INSTANTIATE_TEST_CASE_P(CUDA_Arithm, MulSpectrums, testing::Combine(
180 ALL_DEVICES,
181 DIFFERENT_SIZES,
182 testing::Values(DftFlags(0), DftFlags(cv::DFT_ROWS))));
183
184 ////////////////////////////////////////////////////////////////////////////
185 // Dft
186
187 struct Dft : testing::TestWithParam<cv::cuda::DeviceInfo>
188 {
189 cv::cuda::DeviceInfo devInfo;
190
SetUpDft191 virtual void SetUp()
192 {
193 devInfo = GetParam();
194
195 cv::cuda::setDevice(devInfo.deviceID());
196 }
197 };
198
199 namespace
200 {
testC2C(const std::string & hint,int cols,int rows,int flags,bool inplace)201 void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace)
202 {
203 SCOPED_TRACE(hint);
204
205 cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC2, 0.0, 10.0);
206
207 cv::Mat b_gold;
208 cv::dft(a, b_gold, flags);
209
210 cv::cuda::GpuMat d_b;
211 cv::cuda::GpuMat d_b_data;
212 if (inplace)
213 {
214 d_b_data.create(1, a.size().area(), CV_32FC2);
215 d_b = cv::cuda::GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
216 }
217 cv::cuda::dft(loadMat(a), d_b, cv::Size(cols, rows), flags);
218
219 EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
220 ASSERT_EQ(CV_32F, d_b.depth());
221 ASSERT_EQ(2, d_b.channels());
222 EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), rows * cols * 1e-4);
223 }
224 }
225
CUDA_TEST_P(Dft,C2C)226 CUDA_TEST_P(Dft, C2C)
227 {
228 int cols = randomInt(2, 100);
229 int rows = randomInt(2, 100);
230
231 for (int i = 0; i < 2; ++i)
232 {
233 bool inplace = i != 0;
234
235 testC2C("no flags", cols, rows, 0, inplace);
236 testC2C("no flags 0 1", cols, rows + 1, 0, inplace);
237 testC2C("no flags 1 0", cols, rows + 1, 0, inplace);
238 testC2C("no flags 1 1", cols + 1, rows, 0, inplace);
239 testC2C("DFT_INVERSE", cols, rows, cv::DFT_INVERSE, inplace);
240 testC2C("DFT_ROWS", cols, rows, cv::DFT_ROWS, inplace);
241 testC2C("single col", 1, rows, 0, inplace);
242 testC2C("single row", cols, 1, 0, inplace);
243 testC2C("single col inversed", 1, rows, cv::DFT_INVERSE, inplace);
244 testC2C("single row inversed", cols, 1, cv::DFT_INVERSE, inplace);
245 testC2C("single row DFT_ROWS", cols, 1, cv::DFT_ROWS, inplace);
246 testC2C("size 1 2", 1, 2, 0, inplace);
247 testC2C("size 2 1", 2, 1, 0, inplace);
248 }
249 }
250
251 namespace
252 {
testR2CThenC2R(const std::string & hint,int cols,int rows,bool inplace)253 void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace)
254 {
255 SCOPED_TRACE(hint);
256
257 cv::Mat a = randomMat(cv::Size(cols, rows), CV_32FC1, 0.0, 10.0);
258
259 cv::cuda::GpuMat d_b, d_c;
260 cv::cuda::GpuMat d_b_data, d_c_data;
261 if (inplace)
262 {
263 if (a.cols == 1)
264 {
265 d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2);
266 d_b = cv::cuda::GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize());
267 }
268 else
269 {
270 d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2);
271 d_b = cv::cuda::GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize());
272 }
273 d_c_data.create(1, a.size().area(), CV_32F);
274 d_c = cv::cuda::GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize());
275 }
276
277 cv::cuda::dft(loadMat(a), d_b, cv::Size(cols, rows), 0);
278 cv::cuda::dft(d_b, d_c, cv::Size(cols, rows), cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
279
280 EXPECT_TRUE(!inplace || d_b.ptr() == d_b_data.ptr());
281 EXPECT_TRUE(!inplace || d_c.ptr() == d_c_data.ptr());
282 ASSERT_EQ(CV_32F, d_c.depth());
283 ASSERT_EQ(1, d_c.channels());
284
285 cv::Mat c(d_c);
286 EXPECT_MAT_NEAR(a, c, rows * cols * 1e-5);
287 }
288 }
289
CUDA_TEST_P(Dft,R2CThenC2R)290 CUDA_TEST_P(Dft, R2CThenC2R)
291 {
292 int cols = randomInt(2, 100);
293 int rows = randomInt(2, 100);
294
295 testR2CThenC2R("sanity", cols, rows, false);
296 testR2CThenC2R("sanity 0 1", cols, rows + 1, false);
297 testR2CThenC2R("sanity 1 0", cols + 1, rows, false);
298 testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, false);
299 testR2CThenC2R("single col", 1, rows, false);
300 testR2CThenC2R("single col 1", 1, rows + 1, false);
301 testR2CThenC2R("single row", cols, 1, false);
302 testR2CThenC2R("single row 1", cols + 1, 1, false);
303
304 testR2CThenC2R("sanity", cols, rows, true);
305 testR2CThenC2R("sanity 0 1", cols, rows + 1, true);
306 testR2CThenC2R("sanity 1 0", cols + 1, rows, true);
307 testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, true);
308 testR2CThenC2R("single row", cols, 1, true);
309 testR2CThenC2R("single row 1", cols + 1, 1, true);
310 }
311
312 INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Dft, ALL_DEVICES);
313
314 ////////////////////////////////////////////////////////
315 // Convolve
316
317 namespace
318 {
convolveDFT(const cv::Mat & A,const cv::Mat & B,cv::Mat & C,bool ccorr=false)319 void convolveDFT(const cv::Mat& A, const cv::Mat& B, cv::Mat& C, bool ccorr = false)
320 {
321 // reallocate the output array if needed
322 C.create(std::abs(A.rows - B.rows) + 1, std::abs(A.cols - B.cols) + 1, A.type());
323 cv::Size dftSize;
324
325 // compute the size of DFT transform
326 dftSize.width = cv::getOptimalDFTSize(A.cols + B.cols - 1);
327 dftSize.height = cv::getOptimalDFTSize(A.rows + B.rows - 1);
328
329 // allocate temporary buffers and initialize them with 0s
330 cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0));
331 cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0));
332
333 // copy A and B to the top-left corners of tempA and tempB, respectively
334 cv::Mat roiA(tempA, cv::Rect(0, 0, A.cols, A.rows));
335 A.copyTo(roiA);
336 cv::Mat roiB(tempB, cv::Rect(0, 0, B.cols, B.rows));
337 B.copyTo(roiB);
338
339 // now transform the padded A & B in-place;
340 // use "nonzeroRows" hint for faster processing
341 cv::dft(tempA, tempA, 0, A.rows);
342 cv::dft(tempB, tempB, 0, B.rows);
343
344 // multiply the spectrums;
345 // the function handles packed spectrum representations well
346 cv::mulSpectrums(tempA, tempB, tempA, 0, ccorr);
347
348 // transform the product back from the frequency domain.
349 // Even though all the result rows will be non-zero,
350 // you need only the first C.rows of them, and thus you
351 // pass nonzeroRows == C.rows
352 cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, C.rows);
353
354 // now copy the result back to C.
355 tempA(cv::Rect(0, 0, C.cols, C.rows)).copyTo(C);
356 }
357
358 IMPLEMENT_PARAM_CLASS(KSize, int)
359 IMPLEMENT_PARAM_CLASS(Ccorr, bool)
360 }
361
PARAM_TEST_CASE(Convolve,cv::cuda::DeviceInfo,cv::Size,KSize,Ccorr)362 PARAM_TEST_CASE(Convolve, cv::cuda::DeviceInfo, cv::Size, KSize, Ccorr)
363 {
364 cv::cuda::DeviceInfo devInfo;
365 cv::Size size;
366 int ksize;
367 bool ccorr;
368
369 virtual void SetUp()
370 {
371 devInfo = GET_PARAM(0);
372 size = GET_PARAM(1);
373 ksize = GET_PARAM(2);
374 ccorr = GET_PARAM(3);
375
376 cv::cuda::setDevice(devInfo.deviceID());
377 }
378 };
379
CUDA_TEST_P(Convolve,Accuracy)380 CUDA_TEST_P(Convolve, Accuracy)
381 {
382 cv::Mat src = randomMat(size, CV_32FC1, 0.0, 100.0);
383 cv::Mat kernel = randomMat(cv::Size(ksize, ksize), CV_32FC1, 0.0, 1.0);
384
385 cv::Ptr<cv::cuda::Convolution> conv = cv::cuda::createConvolution();
386
387 cv::cuda::GpuMat dst;
388 conv->convolve(loadMat(src), loadMat(kernel), dst, ccorr);
389
390 cv::Mat dst_gold;
391 convolveDFT(src, kernel, dst_gold, ccorr);
392
393 EXPECT_MAT_NEAR(dst, dst_gold, 1e-1);
394 }
395
396 INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Convolve, testing::Combine(
397 ALL_DEVICES,
398 DIFFERENT_SIZES,
399 testing::Values(KSize(3), KSize(7), KSize(11), KSize(17), KSize(19), KSize(23), KSize(45)),
400 testing::Values(Ccorr(false), Ccorr(true))));
401
402 #endif // HAVE_CUBLAS
403
404 #endif // HAVE_CUDA
405