1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "precomp.hpp"
44
45 using namespace cv;
46 using namespace cv::cuda;
47
48 #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
49
createCannyEdgeDetector(double,double,int,bool)50 Ptr<CannyEdgeDetector> cv::cuda::createCannyEdgeDetector(double, double, int, bool) { throw_no_cuda(); return Ptr<CannyEdgeDetector>(); }
51
52 #else /* !defined (HAVE_CUDA) */
53
54 namespace canny
55 {
56 void calcMagnitude(PtrStepSzb srcWhole, int xoff, int yoff, PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad, cudaStream_t stream);
57 void calcMagnitude(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad, cudaStream_t stream);
58
59 void calcMap(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, PtrStepSzi map, float low_thresh, float high_thresh, cudaStream_t stream);
60
61 void edgesHysteresisLocal(PtrStepSzi map, short2* st1, cudaStream_t stream);
62
63 void edgesHysteresisGlobal(PtrStepSzi map, short2* st1, short2* st2, cudaStream_t stream);
64
65 void getEdges(PtrStepSzi map, PtrStepSzb dst, cudaStream_t stream);
66 }
67
68 namespace
69 {
70 class CannyImpl : public CannyEdgeDetector
71 {
72 public:
CannyImpl(double low_thresh,double high_thresh,int apperture_size,bool L2gradient)73 CannyImpl(double low_thresh, double high_thresh, int apperture_size, bool L2gradient) :
74 low_thresh_(low_thresh), high_thresh_(high_thresh), apperture_size_(apperture_size), L2gradient_(L2gradient)
75 {
76 old_apperture_size_ = -1;
77 }
78
79 void detect(InputArray image, OutputArray edges, Stream& stream);
80 void detect(InputArray dx, InputArray dy, OutputArray edges, Stream& stream);
81
setLowThreshold(double low_thresh)82 void setLowThreshold(double low_thresh) { low_thresh_ = low_thresh; }
getLowThreshold() const83 double getLowThreshold() const { return low_thresh_; }
84
setHighThreshold(double high_thresh)85 void setHighThreshold(double high_thresh) { high_thresh_ = high_thresh; }
getHighThreshold() const86 double getHighThreshold() const { return high_thresh_; }
87
setAppertureSize(int apperture_size)88 void setAppertureSize(int apperture_size) { apperture_size_ = apperture_size; }
getAppertureSize() const89 int getAppertureSize() const { return apperture_size_; }
90
setL2Gradient(bool L2gradient)91 void setL2Gradient(bool L2gradient) { L2gradient_ = L2gradient; }
getL2Gradient() const92 bool getL2Gradient() const { return L2gradient_; }
93
write(FileStorage & fs) const94 void write(FileStorage& fs) const
95 {
96 fs << "name" << "Canny_CUDA"
97 << "low_thresh" << low_thresh_
98 << "high_thresh" << high_thresh_
99 << "apperture_size" << apperture_size_
100 << "L2gradient" << L2gradient_;
101 }
102
read(const FileNode & fn)103 void read(const FileNode& fn)
104 {
105 CV_Assert( String(fn["name"]) == "Canny_CUDA" );
106 low_thresh_ = (double)fn["low_thresh"];
107 high_thresh_ = (double)fn["high_thresh"];
108 apperture_size_ = (int)fn["apperture_size"];
109 L2gradient_ = (int)fn["L2gradient"] != 0;
110 }
111
112 private:
113 void createBuf(Size image_size);
114 void CannyCaller(GpuMat& edges, Stream& stream);
115
116 double low_thresh_;
117 double high_thresh_;
118 int apperture_size_;
119 bool L2gradient_;
120
121 GpuMat dx_, dy_;
122 GpuMat mag_;
123 GpuMat map_;
124 GpuMat st1_, st2_;
125 #ifdef HAVE_OPENCV_CUDAFILTERS
126 Ptr<Filter> filterDX_, filterDY_;
127 #endif
128 int old_apperture_size_;
129 };
130
detect(InputArray _image,OutputArray _edges,Stream & stream)131 void CannyImpl::detect(InputArray _image, OutputArray _edges, Stream& stream)
132 {
133 GpuMat image = _image.getGpuMat();
134
135 CV_Assert( image.type() == CV_8UC1 );
136 CV_Assert( deviceSupports(SHARED_ATOMICS) );
137
138 if (low_thresh_ > high_thresh_)
139 std::swap(low_thresh_, high_thresh_);
140
141 createBuf(image.size());
142
143 _edges.create(image.size(), CV_8UC1);
144 GpuMat edges = _edges.getGpuMat();
145
146 if (apperture_size_ == 3)
147 {
148 Size wholeSize;
149 Point ofs;
150 image.locateROI(wholeSize, ofs);
151 GpuMat srcWhole(wholeSize, image.type(), image.datastart, image.step);
152
153 canny::calcMagnitude(srcWhole, ofs.x, ofs.y, dx_, dy_, mag_, L2gradient_, StreamAccessor::getStream(stream));
154 }
155 else
156 {
157 #ifndef HAVE_OPENCV_CUDAFILTERS
158 throw_no_cuda();
159 #else
160 filterDX_->apply(image, dx_, stream);
161 filterDY_->apply(image, dy_, stream);
162
163 canny::calcMagnitude(dx_, dy_, mag_, L2gradient_, StreamAccessor::getStream(stream));
164 #endif
165 }
166
167 CannyCaller(edges, stream);
168 }
169
detect(InputArray _dx,InputArray _dy,OutputArray _edges,Stream & stream)170 void CannyImpl::detect(InputArray _dx, InputArray _dy, OutputArray _edges, Stream& stream)
171 {
172 GpuMat dx = _dx.getGpuMat();
173 GpuMat dy = _dy.getGpuMat();
174
175 CV_Assert( dx.type() == CV_32SC1 );
176 CV_Assert( dy.type() == dx.type() && dy.size() == dx.size() );
177 CV_Assert( deviceSupports(SHARED_ATOMICS) );
178
179 dx.copyTo(dx_, stream);
180 dy.copyTo(dy_, stream);
181
182 if (low_thresh_ > high_thresh_)
183 std::swap(low_thresh_, high_thresh_);
184
185 createBuf(dx.size());
186
187 _edges.create(dx.size(), CV_8UC1);
188 GpuMat edges = _edges.getGpuMat();
189
190 canny::calcMagnitude(dx_, dy_, mag_, L2gradient_, StreamAccessor::getStream(stream));
191
192 CannyCaller(edges, stream);
193 }
194
createBuf(Size image_size)195 void CannyImpl::createBuf(Size image_size)
196 {
197 CV_Assert(image_size.width < std::numeric_limits<short>::max() && image_size.height < std::numeric_limits<short>::max());
198
199 ensureSizeIsEnough(image_size, CV_32SC1, dx_);
200 ensureSizeIsEnough(image_size, CV_32SC1, dy_);
201
202 #ifdef HAVE_OPENCV_CUDAFILTERS
203 if (apperture_size_ != 3 && apperture_size_ != old_apperture_size_)
204 {
205 filterDX_ = cuda::createDerivFilter(CV_8UC1, CV_32S, 1, 0, apperture_size_, false, 1, BORDER_REPLICATE);
206 filterDY_ = cuda::createDerivFilter(CV_8UC1, CV_32S, 0, 1, apperture_size_, false, 1, BORDER_REPLICATE);
207 old_apperture_size_ = apperture_size_;
208 }
209 #endif
210
211 ensureSizeIsEnough(image_size, CV_32FC1, mag_);
212 ensureSizeIsEnough(image_size, CV_32SC1, map_);
213
214 ensureSizeIsEnough(1, image_size.area(), CV_16SC2, st1_);
215 ensureSizeIsEnough(1, image_size.area(), CV_16SC2, st2_);
216 }
217
CannyCaller(GpuMat & edges,Stream & stream)218 void CannyImpl::CannyCaller(GpuMat& edges, Stream& stream)
219 {
220 map_.setTo(Scalar::all(0));
221 canny::calcMap(dx_, dy_, mag_, map_, static_cast<float>(low_thresh_), static_cast<float>(high_thresh_), StreamAccessor::getStream(stream));
222
223 canny::edgesHysteresisLocal(map_, st1_.ptr<short2>(), StreamAccessor::getStream(stream));
224
225 canny::edgesHysteresisGlobal(map_, st1_.ptr<short2>(), st2_.ptr<short2>(), StreamAccessor::getStream(stream));
226
227 canny::getEdges(map_, edges, StreamAccessor::getStream(stream));
228 }
229 }
230
createCannyEdgeDetector(double low_thresh,double high_thresh,int apperture_size,bool L2gradient)231 Ptr<CannyEdgeDetector> cv::cuda::createCannyEdgeDetector(double low_thresh, double high_thresh, int apperture_size, bool L2gradient)
232 {
233 return makePtr<CannyImpl>(low_thresh, high_thresh, apperture_size, L2gradient);
234 }
235
236 #endif /* !defined (HAVE_CUDA) */
237