1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 #include "precomp.hpp"
43
44 #if !defined HAVE_CUDA || defined(CUDA_DISABLER)
45
meanShiftSegmentation(InputArray,OutputArray,int,int,int,TermCriteria,Stream &)46 void cv::cuda::meanShiftSegmentation(InputArray, OutputArray, int, int, int, TermCriteria, Stream&) { throw_no_cuda(); }
47
48 #else
49
50 // Auxiliray stuff
51 namespace
52 {
53
54 //
55 // Declarations
56 //
57
58 class DjSets
59 {
60 public:
61 DjSets(int n);
62 int find(int elem);
63 int merge(int set1, int set2);
64
65 std::vector<int> parent;
66 std::vector<int> rank;
67 std::vector<int> size;
68 private:
69 DjSets(const DjSets&);
70 void operator =(const DjSets&);
71 };
72
73
74 template <typename T>
75 struct GraphEdge
76 {
GraphEdge__anon3fe692990111::GraphEdge77 GraphEdge() {}
GraphEdge__anon3fe692990111::GraphEdge78 GraphEdge(int to_, int next_, const T& val_) : to(to_), next(next_), val(val_) {}
79 int to;
80 int next;
81 T val;
82 };
83
84
85 template <typename T>
86 class Graph
87 {
88 public:
89 typedef GraphEdge<T> Edge;
90
91 Graph(int numv, int nume_max);
92
93 void addEdge(int from, int to, const T& val=T());
94
95 std::vector<int> start;
96 std::vector<Edge> edges;
97
98 int numv;
99 int nume_max;
100 int nume;
101 private:
102 Graph(const Graph&);
103 void operator =(const Graph&);
104 };
105
106
107 struct SegmLinkVal
108 {
SegmLinkVal__anon3fe692990111::SegmLinkVal109 SegmLinkVal() {}
SegmLinkVal__anon3fe692990111::SegmLinkVal110 SegmLinkVal(int dr_, int dsp_) : dr(dr_), dsp(dsp_) {}
operator <__anon3fe692990111::SegmLinkVal111 bool operator <(const SegmLinkVal& other) const
112 {
113 return dr + dsp < other.dr + other.dsp;
114 }
115 int dr;
116 int dsp;
117 };
118
119
120 struct SegmLink
121 {
SegmLink__anon3fe692990111::SegmLink122 SegmLink() {}
SegmLink__anon3fe692990111::SegmLink123 SegmLink(int from_, int to_, const SegmLinkVal& val_)
124 : from(from_), to(to_), val(val_) {}
operator <__anon3fe692990111::SegmLink125 bool operator <(const SegmLink& other) const
126 {
127 return val < other.val;
128 }
129 int from;
130 int to;
131 SegmLinkVal val;
132 };
133
134 //
135 // Implementation
136 //
137
DjSets(int n)138 DjSets::DjSets(int n) : parent(n), rank(n, 0), size(n, 1)
139 {
140 for (int i = 0; i < n; ++i)
141 parent[i] = i;
142 }
143
144
find(int elem)145 inline int DjSets::find(int elem)
146 {
147 int set = elem;
148 while (set != parent[set])
149 set = parent[set];
150 while (elem != parent[elem])
151 {
152 int next = parent[elem];
153 parent[elem] = set;
154 elem = next;
155 }
156 return set;
157 }
158
159
merge(int set1,int set2)160 inline int DjSets::merge(int set1, int set2)
161 {
162 if (rank[set1] < rank[set2])
163 {
164 parent[set1] = set2;
165 size[set2] += size[set1];
166 return set2;
167 }
168 if (rank[set2] < rank[set1])
169 {
170 parent[set2] = set1;
171 size[set1] += size[set2];
172 return set1;
173 }
174 parent[set1] = set2;
175 rank[set2]++;
176 size[set2] += size[set1];
177 return set2;
178 }
179
180
181 template <typename T>
Graph(int numv_,int nume_max_)182 Graph<T>::Graph(int numv_, int nume_max_) : start(numv_, -1), edges(nume_max_)
183 {
184 this->numv = numv_;
185 this->nume_max = nume_max_;
186 nume = 0;
187 }
188
189
190 template <typename T>
addEdge(int from,int to,const T & val)191 inline void Graph<T>::addEdge(int from, int to, const T& val)
192 {
193 edges[nume] = Edge(to, start[from], val);
194 start[from] = nume;
195 nume++;
196 }
197
198
pix(int y,int x,int ncols)199 inline int pix(int y, int x, int ncols)
200 {
201 return y * ncols + x;
202 }
203
204
sqr(int x)205 inline int sqr(int x)
206 {
207 return x * x;
208 }
209
210
dist2(const cv::Vec4b & lhs,const cv::Vec4b & rhs)211 inline int dist2(const cv::Vec4b& lhs, const cv::Vec4b& rhs)
212 {
213 return sqr(lhs[0] - rhs[0]) + sqr(lhs[1] - rhs[1]) + sqr(lhs[2] - rhs[2]);
214 }
215
216
dist2(const cv::Vec2s & lhs,const cv::Vec2s & rhs)217 inline int dist2(const cv::Vec2s& lhs, const cv::Vec2s& rhs)
218 {
219 return sqr(lhs[0] - rhs[0]) + sqr(lhs[1] - rhs[1]);
220 }
221
222 } // anonymous namespace
223
224
meanShiftSegmentation(InputArray _src,OutputArray _dst,int sp,int sr,int minsize,TermCriteria criteria,Stream & stream)225 void cv::cuda::meanShiftSegmentation(InputArray _src, OutputArray _dst, int sp, int sr, int minsize, TermCriteria criteria, Stream& stream)
226 {
227 GpuMat src = _src.getGpuMat();
228
229 CV_Assert( src.type() == CV_8UC4 );
230
231 const int nrows = src.rows;
232 const int ncols = src.cols;
233 const int hr = sr;
234 const int hsp = sp;
235
236 // Perform mean shift procedure and obtain region and spatial maps
237 GpuMat d_rmap, d_spmap;
238 cuda::meanShiftProc(src, d_rmap, d_spmap, sp, sr, criteria, stream);
239
240 stream.waitForCompletion();
241
242 Mat rmap(d_rmap);
243 Mat spmap(d_spmap);
244
245 Graph<SegmLinkVal> g(nrows * ncols, 4 * (nrows - 1) * (ncols - 1)
246 + (nrows - 1) + (ncols - 1));
247
248 // Make region adjacent graph from image
249 Vec4b r1;
250 Vec4b r2[4];
251 Vec2s sp1;
252 Vec2s sp2[4];
253 int dr[4];
254 int dsp[4];
255 for (int y = 0; y < nrows - 1; ++y)
256 {
257 Vec4b* ry = rmap.ptr<Vec4b>(y);
258 Vec4b* ryp = rmap.ptr<Vec4b>(y + 1);
259 Vec2s* spy = spmap.ptr<Vec2s>(y);
260 Vec2s* spyp = spmap.ptr<Vec2s>(y + 1);
261 for (int x = 0; x < ncols - 1; ++x)
262 {
263 r1 = ry[x];
264 sp1 = spy[x];
265
266 r2[0] = ry[x + 1];
267 r2[1] = ryp[x];
268 r2[2] = ryp[x + 1];
269 r2[3] = ryp[x];
270
271 sp2[0] = spy[x + 1];
272 sp2[1] = spyp[x];
273 sp2[2] = spyp[x + 1];
274 sp2[3] = spyp[x];
275
276 dr[0] = dist2(r1, r2[0]);
277 dr[1] = dist2(r1, r2[1]);
278 dr[2] = dist2(r1, r2[2]);
279 dsp[0] = dist2(sp1, sp2[0]);
280 dsp[1] = dist2(sp1, sp2[1]);
281 dsp[2] = dist2(sp1, sp2[2]);
282
283 r1 = ry[x + 1];
284 sp1 = spy[x + 1];
285
286 dr[3] = dist2(r1, r2[3]);
287 dsp[3] = dist2(sp1, sp2[3]);
288
289 g.addEdge(pix(y, x, ncols), pix(y, x + 1, ncols), SegmLinkVal(dr[0], dsp[0]));
290 g.addEdge(pix(y, x, ncols), pix(y + 1, x, ncols), SegmLinkVal(dr[1], dsp[1]));
291 g.addEdge(pix(y, x, ncols), pix(y + 1, x + 1, ncols), SegmLinkVal(dr[2], dsp[2]));
292 g.addEdge(pix(y, x + 1, ncols), pix(y + 1, x, ncols), SegmLinkVal(dr[3], dsp[3]));
293 }
294 }
295 for (int y = 0; y < nrows - 1; ++y)
296 {
297 r1 = rmap.at<Vec4b>(y, ncols - 1);
298 r2[0] = rmap.at<Vec4b>(y + 1, ncols - 1);
299 sp1 = spmap.at<Vec2s>(y, ncols - 1);
300 sp2[0] = spmap.at<Vec2s>(y + 1, ncols - 1);
301 dr[0] = dist2(r1, r2[0]);
302 dsp[0] = dist2(sp1, sp2[0]);
303 g.addEdge(pix(y, ncols - 1, ncols), pix(y + 1, ncols - 1, ncols), SegmLinkVal(dr[0], dsp[0]));
304 }
305 for (int x = 0; x < ncols - 1; ++x)
306 {
307 r1 = rmap.at<Vec4b>(nrows - 1, x);
308 r2[0] = rmap.at<Vec4b>(nrows - 1, x + 1);
309 sp1 = spmap.at<Vec2s>(nrows - 1, x);
310 sp2[0] = spmap.at<Vec2s>(nrows - 1, x + 1);
311 dr[0] = dist2(r1, r2[0]);
312 dsp[0] = dist2(sp1, sp2[0]);
313 g.addEdge(pix(nrows - 1, x, ncols), pix(nrows - 1, x + 1, ncols), SegmLinkVal(dr[0], dsp[0]));
314 }
315
316 DjSets comps(g.numv);
317
318 // Find adjacent components
319 for (int v = 0; v < g.numv; ++v)
320 {
321 for (int e_it = g.start[v]; e_it != -1; e_it = g.edges[e_it].next)
322 {
323 int c1 = comps.find(v);
324 int c2 = comps.find(g.edges[e_it].to);
325 if (c1 != c2 && g.edges[e_it].val.dr < hr && g.edges[e_it].val.dsp < hsp)
326 comps.merge(c1, c2);
327 }
328 }
329
330 std::vector<SegmLink> edges;
331 edges.reserve(g.numv);
332
333 // Prepare edges connecting differnet components
334 for (int v = 0; v < g.numv; ++v)
335 {
336 int c1 = comps.find(v);
337 for (int e_it = g.start[v]; e_it != -1; e_it = g.edges[e_it].next)
338 {
339 int c2 = comps.find(g.edges[e_it].to);
340 if (c1 != c2)
341 edges.push_back(SegmLink(c1, c2, g.edges[e_it].val));
342 }
343 }
344
345 // Sort all graph's edges connecting differnet components (in asceding order)
346 std::sort(edges.begin(), edges.end());
347
348 // Exclude small components (starting from the nearest couple)
349 for (size_t i = 0; i < edges.size(); ++i)
350 {
351 int c1 = comps.find(edges[i].from);
352 int c2 = comps.find(edges[i].to);
353 if (c1 != c2 && (comps.size[c1] < minsize || comps.size[c2] < minsize))
354 comps.merge(c1, c2);
355 }
356
357 // Compute sum of the pixel's colors which are in the same segment
358 Mat h_src(src);
359 std::vector<Vec4i> sumcols(nrows * ncols, Vec4i(0, 0, 0, 0));
360 for (int y = 0; y < nrows; ++y)
361 {
362 Vec4b* h_srcy = h_src.ptr<Vec4b>(y);
363 for (int x = 0; x < ncols; ++x)
364 {
365 int parent = comps.find(pix(y, x, ncols));
366 Vec4b col = h_srcy[x];
367 Vec4i& sumcol = sumcols[parent];
368 sumcol[0] += col[0];
369 sumcol[1] += col[1];
370 sumcol[2] += col[2];
371 }
372 }
373
374 // Create final image, color of each segment is the average color of its pixels
375 _dst.create(src.size(), src.type());
376 Mat dst = _dst.getMat();
377
378 for (int y = 0; y < nrows; ++y)
379 {
380 Vec4b* dsty = dst.ptr<Vec4b>(y);
381 for (int x = 0; x < ncols; ++x)
382 {
383 int parent = comps.find(pix(y, x, ncols));
384 const Vec4i& sumcol = sumcols[parent];
385 Vec4b& dstcol = dsty[x];
386 dstcol[0] = static_cast<uchar>(sumcol[0] / comps.size[parent]);
387 dstcol[1] = static_cast<uchar>(sumcol[1] / comps.size[parent]);
388 dstcol[2] = static_cast<uchar>(sumcol[2] / comps.size[parent]);
389 dstcol[3] = 255;
390 }
391 }
392 }
393
394 #endif // #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
395