1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "test_precomp.hpp"
44
45 #ifdef HAVE_CUDA
46
47 using namespace cvtest;
48
49 namespace
50 {
createTransfomMatrix(cv::Size srcSize,double angle)51 cv::Mat createTransfomMatrix(cv::Size srcSize, double angle)
52 {
53 cv::Mat M(3, 3, CV_64FC1);
54
55 M.at<double>(0, 0) = std::cos(angle); M.at<double>(0, 1) = -std::sin(angle); M.at<double>(0, 2) = srcSize.width / 2;
56 M.at<double>(1, 0) = std::sin(angle); M.at<double>(1, 1) = std::cos(angle); M.at<double>(1, 2) = 0.0;
57 M.at<double>(2, 0) = 0.0 ; M.at<double>(2, 1) = 0.0 ; M.at<double>(2, 2) = 1.0;
58
59 return M;
60 }
61 }
62
63 ///////////////////////////////////////////////////////////////////
64 // Test buildWarpPerspectiveMaps
65
PARAM_TEST_CASE(BuildWarpPerspectiveMaps,cv::cuda::DeviceInfo,cv::Size,Inverse)66 PARAM_TEST_CASE(BuildWarpPerspectiveMaps, cv::cuda::DeviceInfo, cv::Size, Inverse)
67 {
68 cv::cuda::DeviceInfo devInfo;
69 cv::Size size;
70 bool inverse;
71
72 virtual void SetUp()
73 {
74 devInfo = GET_PARAM(0);
75 size = GET_PARAM(1);
76 inverse = GET_PARAM(2);
77
78 cv::cuda::setDevice(devInfo.deviceID());
79 }
80 };
81
CUDA_TEST_P(BuildWarpPerspectiveMaps,Accuracy)82 CUDA_TEST_P(BuildWarpPerspectiveMaps, Accuracy)
83 {
84 cv::Mat M = createTransfomMatrix(size, CV_PI / 4);
85
86 cv::cuda::GpuMat xmap, ymap;
87 cv::cuda::buildWarpPerspectiveMaps(M, inverse, size, xmap, ymap);
88
89 cv::Mat src = randomMat(randomSize(200, 400), CV_8UC1);
90 int interpolation = cv::INTER_NEAREST;
91 int borderMode = cv::BORDER_CONSTANT;
92 int flags = interpolation;
93 if (inverse)
94 flags |= cv::WARP_INVERSE_MAP;
95
96 cv::Mat dst;
97 cv::remap(src, dst, cv::Mat(xmap), cv::Mat(ymap), interpolation, borderMode);
98
99 cv::Mat dst_gold;
100 cv::warpPerspective(src, dst_gold, M, size, flags, borderMode);
101
102 EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
103 }
104
105 INSTANTIATE_TEST_CASE_P(CUDA_Warping, BuildWarpPerspectiveMaps, testing::Combine(
106 ALL_DEVICES,
107 DIFFERENT_SIZES,
108 DIRECT_INVERSE));
109
110 ///////////////////////////////////////////////////////////////////
111 // Gold implementation
112
113 namespace
114 {
warpPerspectiveImpl(const cv::Mat & src,const cv::Mat & M,cv::Size dsize,cv::Mat & dst,int borderType,cv::Scalar borderVal)115 template <typename T, template <typename> class Interpolator> void warpPerspectiveImpl(const cv::Mat& src, const cv::Mat& M, cv::Size dsize, cv::Mat& dst, int borderType, cv::Scalar borderVal)
116 {
117 const int cn = src.channels();
118
119 dst.create(dsize, src.type());
120
121 for (int y = 0; y < dsize.height; ++y)
122 {
123 for (int x = 0; x < dsize.width; ++x)
124 {
125 float coeff = static_cast<float>(M.at<double>(2, 0) * x + M.at<double>(2, 1) * y + M.at<double>(2, 2));
126
127 float xcoo = static_cast<float>((M.at<double>(0, 0) * x + M.at<double>(0, 1) * y + M.at<double>(0, 2)) / coeff);
128 float ycoo = static_cast<float>((M.at<double>(1, 0) * x + M.at<double>(1, 1) * y + M.at<double>(1, 2)) / coeff);
129
130 for (int c = 0; c < cn; ++c)
131 dst.at<T>(y, x * cn + c) = Interpolator<T>::getValue(src, ycoo, xcoo, c, borderType, borderVal);
132 }
133 }
134 }
135
warpPerspectiveGold(const cv::Mat & src,const cv::Mat & M,bool inverse,cv::Size dsize,cv::Mat & dst,int interpolation,int borderType,cv::Scalar borderVal)136 void warpPerspectiveGold(const cv::Mat& src, const cv::Mat& M, bool inverse, cv::Size dsize, cv::Mat& dst, int interpolation, int borderType, cv::Scalar borderVal)
137 {
138 typedef void (*func_t)(const cv::Mat& src, const cv::Mat& M, cv::Size dsize, cv::Mat& dst, int borderType, cv::Scalar borderVal);
139
140 static const func_t nearest_funcs[] =
141 {
142 warpPerspectiveImpl<unsigned char, NearestInterpolator>,
143 warpPerspectiveImpl<signed char, NearestInterpolator>,
144 warpPerspectiveImpl<unsigned short, NearestInterpolator>,
145 warpPerspectiveImpl<short, NearestInterpolator>,
146 warpPerspectiveImpl<int, NearestInterpolator>,
147 warpPerspectiveImpl<float, NearestInterpolator>
148 };
149
150 static const func_t linear_funcs[] =
151 {
152 warpPerspectiveImpl<unsigned char, LinearInterpolator>,
153 warpPerspectiveImpl<signed char, LinearInterpolator>,
154 warpPerspectiveImpl<unsigned short, LinearInterpolator>,
155 warpPerspectiveImpl<short, LinearInterpolator>,
156 warpPerspectiveImpl<int, LinearInterpolator>,
157 warpPerspectiveImpl<float, LinearInterpolator>
158 };
159
160 static const func_t cubic_funcs[] =
161 {
162 warpPerspectiveImpl<unsigned char, CubicInterpolator>,
163 warpPerspectiveImpl<signed char, CubicInterpolator>,
164 warpPerspectiveImpl<unsigned short, CubicInterpolator>,
165 warpPerspectiveImpl<short, CubicInterpolator>,
166 warpPerspectiveImpl<int, CubicInterpolator>,
167 warpPerspectiveImpl<float, CubicInterpolator>
168 };
169
170 static const func_t* funcs[] = {nearest_funcs, linear_funcs, cubic_funcs};
171
172 if (inverse)
173 funcs[interpolation][src.depth()](src, M, dsize, dst, borderType, borderVal);
174 else
175 {
176 cv::Mat iM;
177 cv::invert(M, iM);
178 funcs[interpolation][src.depth()](src, iM, dsize, dst, borderType, borderVal);
179 }
180 }
181 }
182
183 ///////////////////////////////////////////////////////////////////
184 // Test
185
PARAM_TEST_CASE(WarpPerspective,cv::cuda::DeviceInfo,cv::Size,MatType,Inverse,Interpolation,BorderType,UseRoi)186 PARAM_TEST_CASE(WarpPerspective, cv::cuda::DeviceInfo, cv::Size, MatType, Inverse, Interpolation, BorderType, UseRoi)
187 {
188 cv::cuda::DeviceInfo devInfo;
189 cv::Size size;
190 int type;
191 bool inverse;
192 int interpolation;
193 int borderType;
194 bool useRoi;
195
196 virtual void SetUp()
197 {
198 devInfo = GET_PARAM(0);
199 size = GET_PARAM(1);
200 type = GET_PARAM(2);
201 inverse = GET_PARAM(3);
202 interpolation = GET_PARAM(4);
203 borderType = GET_PARAM(5);
204 useRoi = GET_PARAM(6);
205
206 cv::cuda::setDevice(devInfo.deviceID());
207 }
208 };
209
CUDA_TEST_P(WarpPerspective,Accuracy)210 CUDA_TEST_P(WarpPerspective, Accuracy)
211 {
212 cv::Mat src = randomMat(size, type);
213 cv::Mat M = createTransfomMatrix(size, CV_PI / 3);
214 int flags = interpolation;
215 if (inverse)
216 flags |= cv::WARP_INVERSE_MAP;
217 cv::Scalar val = randomScalar(0.0, 255.0);
218
219 cv::cuda::GpuMat dst = createMat(size, type, useRoi);
220 cv::cuda::warpPerspective(loadMat(src, useRoi), dst, M, size, flags, borderType, val);
221
222 cv::Mat dst_gold;
223 warpPerspectiveGold(src, M, inverse, size, dst_gold, interpolation, borderType, val);
224
225 EXPECT_MAT_NEAR(dst_gold, dst, src.depth() == CV_32F ? 1e-1 : 1.0);
226 }
227
228 INSTANTIATE_TEST_CASE_P(CUDA_Warping, WarpPerspective, testing::Combine(
229 ALL_DEVICES,
230 DIFFERENT_SIZES,
231 testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
232 DIRECT_INVERSE,
233 testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
234 testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_REFLECT), BorderType(cv::BORDER_WRAP)),
235 WHOLE_SUBMAT));
236
237 ///////////////////////////////////////////////////////////////////
238 // Test NPP
239
PARAM_TEST_CASE(WarpPerspectiveNPP,cv::cuda::DeviceInfo,MatType,Inverse,Interpolation)240 PARAM_TEST_CASE(WarpPerspectiveNPP, cv::cuda::DeviceInfo, MatType, Inverse, Interpolation)
241 {
242 cv::cuda::DeviceInfo devInfo;
243 int type;
244 bool inverse;
245 int interpolation;
246
247 virtual void SetUp()
248 {
249 devInfo = GET_PARAM(0);
250 type = GET_PARAM(1);
251 inverse = GET_PARAM(2);
252 interpolation = GET_PARAM(3);
253
254 cv::cuda::setDevice(devInfo.deviceID());
255 }
256 };
257
CUDA_TEST_P(WarpPerspectiveNPP,Accuracy)258 CUDA_TEST_P(WarpPerspectiveNPP, Accuracy)
259 {
260 cv::Mat src = readImageType("stereobp/aloe-L.png", type);
261 ASSERT_FALSE(src.empty());
262
263 cv::Mat M = createTransfomMatrix(src.size(), CV_PI / 4);
264 int flags = interpolation;
265 if (inverse)
266 flags |= cv::WARP_INVERSE_MAP;
267
268 cv::cuda::GpuMat dst;
269 cv::cuda::warpPerspective(loadMat(src), dst, M, src.size(), flags);
270
271 cv::Mat dst_gold;
272 warpPerspectiveGold(src, M, inverse, src.size(), dst_gold, interpolation, cv::BORDER_CONSTANT, cv::Scalar::all(0));
273
274 EXPECT_MAT_SIMILAR(dst_gold, dst, 2e-2);
275 }
276
277 INSTANTIATE_TEST_CASE_P(CUDA_Warping, WarpPerspectiveNPP, testing::Combine(
278 ALL_DEVICES,
279 testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
280 DIRECT_INVERSE,
281 testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC))));
282
283 #endif // HAVE_CUDA
284