1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                        Intel License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 //   * Redistribution's of source code must retain the above copyright notice,
20 //     this list of conditions and the following disclaimer.
21 //
22 //   * Redistribution's in binary form must reproduce the above copyright notice,
23 //     this list of conditions and the following disclaimer in the documentation
24 //     and/or other materials provided with the distribution.
25 //
26 //   * The name of Intel Corporation may not be used to endorse or promote products
27 //     derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 #include "precomp.hpp"
42 #include "opencl_kernels_imgproc.hpp"
43 
44 namespace cv
45 {
46 
47 // The function calculates center of gravity and the central second order moments
completeMomentState(Moments * moments)48 static void completeMomentState( Moments* moments )
49 {
50     double cx = 0, cy = 0;
51     double mu20, mu11, mu02;
52     double inv_m00 = 0.0;
53     assert( moments != 0 );
54 
55     if( fabs(moments->m00) > DBL_EPSILON )
56     {
57         inv_m00 = 1. / moments->m00;
58         cx = moments->m10 * inv_m00;
59         cy = moments->m01 * inv_m00;
60     }
61 
62     // mu20 = m20 - m10*cx
63     mu20 = moments->m20 - moments->m10 * cx;
64     // mu11 = m11 - m10*cy
65     mu11 = moments->m11 - moments->m10 * cy;
66     // mu02 = m02 - m01*cy
67     mu02 = moments->m02 - moments->m01 * cy;
68 
69     moments->mu20 = mu20;
70     moments->mu11 = mu11;
71     moments->mu02 = mu02;
72 
73     // mu30 = m30 - cx*(3*mu20 + cx*m10)
74     moments->mu30 = moments->m30 - cx * (3 * mu20 + cx * moments->m10);
75     mu11 += mu11;
76     // mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20
77     moments->mu21 = moments->m21 - cx * (mu11 + cx * moments->m01) - cy * mu20;
78     // mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02
79     moments->mu12 = moments->m12 - cy * (mu11 + cy * moments->m10) - cx * mu02;
80     // mu03 = m03 - cy*(3*mu02 + cy*m01)
81     moments->mu03 = moments->m03 - cy * (3 * mu02 + cy * moments->m01);
82 
83 
84     double inv_sqrt_m00 = std::sqrt(std::abs(inv_m00));
85     double s2 = inv_m00*inv_m00, s3 = s2*inv_sqrt_m00;
86 
87     moments->nu20 = moments->mu20*s2; moments->nu11 = moments->mu11*s2; moments->nu02 = moments->mu02*s2;
88     moments->nu30 = moments->mu30*s3; moments->nu21 = moments->mu21*s3; moments->nu12 = moments->mu12*s3; moments->nu03 = moments->mu03*s3;
89 
90 }
91 
92 
contourMoments(const Mat & contour)93 static Moments contourMoments( const Mat& contour )
94 {
95     Moments m;
96     int lpt = contour.checkVector(2);
97     int is_float = contour.depth() == CV_32F;
98     const Point* ptsi = contour.ptr<Point>();
99     const Point2f* ptsf = contour.ptr<Point2f>();
100 
101     CV_Assert( contour.depth() == CV_32S || contour.depth() == CV_32F );
102 
103     if( lpt == 0 )
104         return m;
105 
106     double a00 = 0, a10 = 0, a01 = 0, a20 = 0, a11 = 0, a02 = 0, a30 = 0, a21 = 0, a12 = 0, a03 = 0;
107     double xi, yi, xi2, yi2, xi_1, yi_1, xi_12, yi_12, dxy, xii_1, yii_1;
108 
109     if( !is_float )
110     {
111         xi_1 = ptsi[lpt-1].x;
112         yi_1 = ptsi[lpt-1].y;
113     }
114     else
115     {
116         xi_1 = ptsf[lpt-1].x;
117         yi_1 = ptsf[lpt-1].y;
118     }
119 
120     xi_12 = xi_1 * xi_1;
121     yi_12 = yi_1 * yi_1;
122 
123     for( int i = 0; i < lpt; i++ )
124     {
125         if( !is_float )
126         {
127             xi = ptsi[i].x;
128             yi = ptsi[i].y;
129         }
130         else
131         {
132             xi = ptsf[i].x;
133             yi = ptsf[i].y;
134         }
135 
136         xi2 = xi * xi;
137         yi2 = yi * yi;
138         dxy = xi_1 * yi - xi * yi_1;
139         xii_1 = xi_1 + xi;
140         yii_1 = yi_1 + yi;
141 
142         a00 += dxy;
143         a10 += dxy * xii_1;
144         a01 += dxy * yii_1;
145         a20 += dxy * (xi_1 * xii_1 + xi2);
146         a11 += dxy * (xi_1 * (yii_1 + yi_1) + xi * (yii_1 + yi));
147         a02 += dxy * (yi_1 * yii_1 + yi2);
148         a30 += dxy * xii_1 * (xi_12 + xi2);
149         a03 += dxy * yii_1 * (yi_12 + yi2);
150         a21 += dxy * (xi_12 * (3 * yi_1 + yi) + 2 * xi * xi_1 * yii_1 +
151                    xi2 * (yi_1 + 3 * yi));
152         a12 += dxy * (yi_12 * (3 * xi_1 + xi) + 2 * yi * yi_1 * xii_1 +
153                    yi2 * (xi_1 + 3 * xi));
154         xi_1 = xi;
155         yi_1 = yi;
156         xi_12 = xi2;
157         yi_12 = yi2;
158     }
159 
160     if( fabs(a00) > FLT_EPSILON )
161     {
162         double db1_2, db1_6, db1_12, db1_24, db1_20, db1_60;
163 
164         if( a00 > 0 )
165         {
166             db1_2 = 0.5;
167             db1_6 = 0.16666666666666666666666666666667;
168             db1_12 = 0.083333333333333333333333333333333;
169             db1_24 = 0.041666666666666666666666666666667;
170             db1_20 = 0.05;
171             db1_60 = 0.016666666666666666666666666666667;
172         }
173         else
174         {
175             db1_2 = -0.5;
176             db1_6 = -0.16666666666666666666666666666667;
177             db1_12 = -0.083333333333333333333333333333333;
178             db1_24 = -0.041666666666666666666666666666667;
179             db1_20 = -0.05;
180             db1_60 = -0.016666666666666666666666666666667;
181         }
182 
183         // spatial moments
184         m.m00 = a00 * db1_2;
185         m.m10 = a10 * db1_6;
186         m.m01 = a01 * db1_6;
187         m.m20 = a20 * db1_12;
188         m.m11 = a11 * db1_24;
189         m.m02 = a02 * db1_12;
190         m.m30 = a30 * db1_20;
191         m.m21 = a21 * db1_60;
192         m.m12 = a12 * db1_60;
193         m.m03 = a03 * db1_20;
194 
195         completeMomentState( &m );
196     }
197     return m;
198 }
199 
200 
201 /****************************************************************************************\
202 *                                Spatial Raster Moments                                  *
203 \****************************************************************************************/
204 
205 template<typename T, typename WT, typename MT>
206 struct MomentsInTile_SIMD
207 {
operator ()cv::MomentsInTile_SIMD208     int operator() (const T *, int, WT &, WT &, WT &, MT &)
209     {
210         return 0;
211     }
212 };
213 
214 #if CV_SSE2
215 
216 template <>
217 struct MomentsInTile_SIMD<uchar, int, int>
218 {
MomentsInTile_SIMDcv::MomentsInTile_SIMD219     MomentsInTile_SIMD()
220     {
221         useSIMD = checkHardwareSupport(CV_CPU_SSE2);
222     }
223 
operator ()cv::MomentsInTile_SIMD224     int operator() (const uchar * ptr, int len, int & x0, int & x1, int & x2, int & x3)
225     {
226         int x = 0;
227 
228         if( useSIMD )
229         {
230             __m128i qx_init = _mm_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7);
231             __m128i dx = _mm_set1_epi16(8);
232             __m128i z = _mm_setzero_si128(), qx0 = z, qx1 = z, qx2 = z, qx3 = z, qx = qx_init;
233 
234             for( ; x <= len - 8; x += 8 )
235             {
236                 __m128i p = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr + x)), z);
237                 __m128i sx = _mm_mullo_epi16(qx, qx);
238 
239                 qx0 = _mm_add_epi32(qx0, _mm_sad_epu8(p, z));
240                 qx1 = _mm_add_epi32(qx1, _mm_madd_epi16(p, qx));
241                 qx2 = _mm_add_epi32(qx2, _mm_madd_epi16(p, sx));
242                 qx3 = _mm_add_epi32(qx3, _mm_madd_epi16( _mm_mullo_epi16(p, qx), sx));
243 
244                 qx = _mm_add_epi16(qx, dx);
245             }
246 
247             _mm_store_si128((__m128i*)buf, qx0);
248             x0 = buf[0] + buf[1] + buf[2] + buf[3];
249             _mm_store_si128((__m128i*)buf, qx1);
250             x1 = buf[0] + buf[1] + buf[2] + buf[3];
251             _mm_store_si128((__m128i*)buf, qx2);
252             x2 = buf[0] + buf[1] + buf[2] + buf[3];
253             _mm_store_si128((__m128i*)buf, qx3);
254             x3 = buf[0] + buf[1] + buf[2] + buf[3];
255         }
256 
257         return x;
258     }
259 
260     int CV_DECL_ALIGNED(16) buf[4];
261     bool useSIMD;
262 };
263 
264 #elif CV_NEON
265 
266 template <>
267 struct MomentsInTile_SIMD<uchar, int, int>
268 {
MomentsInTile_SIMDcv::MomentsInTile_SIMD269     MomentsInTile_SIMD()
270     {
271         ushort CV_DECL_ALIGNED(8) init[4] = { 0, 1, 2, 3 };
272         qx_init = vld1_u16(init);
273         v_step = vdup_n_u16(4);
274     }
275 
operator ()cv::MomentsInTile_SIMD276     int operator() (const uchar * ptr, int len, int & x0, int & x1, int & x2, int & x3)
277     {
278         int x = 0;
279 
280         uint32x4_t v_z = vdupq_n_u32(0), v_x0 = v_z, v_x1 = v_z,
281             v_x2 = v_z, v_x3 = v_z;
282         uint16x4_t qx = qx_init;
283 
284         for( ; x <= len - 8; x += 8 )
285         {
286             uint16x8_t v_src = vmovl_u8(vld1_u8(ptr + x));
287 
288             // first part
289             uint32x4_t v_qx = vmovl_u16(qx);
290             uint16x4_t v_p = vget_low_u16(v_src);
291             uint32x4_t v_px = vmull_u16(qx, v_p);
292 
293             v_x0 = vaddw_u16(v_x0, v_p);
294             v_x1 = vaddq_u32(v_x1, v_px);
295             v_px = vmulq_u32(v_px, v_qx);
296             v_x2 = vaddq_u32(v_x2, v_px);
297             v_x3 = vaddq_u32(v_x3, vmulq_u32(v_px, v_qx));
298             qx = vadd_u16(qx, v_step);
299 
300             // second part
301             v_qx = vmovl_u16(qx);
302             v_p = vget_high_u16(v_src);
303             v_px = vmull_u16(qx, v_p);
304 
305             v_x0 = vaddw_u16(v_x0, v_p);
306             v_x1 = vaddq_u32(v_x1, v_px);
307             v_px = vmulq_u32(v_px, v_qx);
308             v_x2 = vaddq_u32(v_x2, v_px);
309             v_x3 = vaddq_u32(v_x3, vmulq_u32(v_px, v_qx));
310 
311             qx = vadd_u16(qx, v_step);
312         }
313 
314         vst1q_u32(buf, v_x0);
315         x0 = buf[0] + buf[1] + buf[2] + buf[3];
316         vst1q_u32(buf, v_x1);
317         x1 = buf[0] + buf[1] + buf[2] + buf[3];
318         vst1q_u32(buf, v_x2);
319         x2 = buf[0] + buf[1] + buf[2] + buf[3];
320         vst1q_u32(buf, v_x3);
321         x3 = buf[0] + buf[1] + buf[2] + buf[3];
322 
323         return x;
324     }
325 
326     uint CV_DECL_ALIGNED(16) buf[4];
327     uint16x4_t qx_init, v_step;
328 };
329 
330 #endif
331 
332 #if CV_SSE4_1
333 
334 template <>
335 struct MomentsInTile_SIMD<ushort, int, int64>
336 {
MomentsInTile_SIMDcv::MomentsInTile_SIMD337     MomentsInTile_SIMD()
338     {
339         useSIMD = checkHardwareSupport(CV_CPU_SSE4_1);
340     }
341 
operator ()cv::MomentsInTile_SIMD342     int operator() (const ushort * ptr, int len, int & x0, int & x1, int & x2, int64 & x3)
343     {
344         int x = 0;
345 
346         if (useSIMD)
347         {
348             __m128i vx_init0 = _mm_setr_epi32(0, 1, 2, 3), vx_init1 = _mm_setr_epi32(4, 5, 6, 7),
349                 v_delta = _mm_set1_epi32(8), v_zero = _mm_setzero_si128(), v_x0 = v_zero,
350                 v_x1 = v_zero, v_x2 = v_zero, v_x3 = v_zero, v_ix0 = vx_init0, v_ix1 = vx_init1;
351 
352             for( ; x <= len - 8; x += 8 )
353             {
354                 __m128i v_src = _mm_loadu_si128((const __m128i *)(ptr + x));
355                 __m128i v_src0 = _mm_unpacklo_epi16(v_src, v_zero), v_src1 = _mm_unpackhi_epi16(v_src, v_zero);
356 
357                 v_x0 = _mm_add_epi32(v_x0, _mm_add_epi32(v_src0, v_src1));
358                 __m128i v_x1_0 = _mm_mullo_epi32(v_src0, v_ix0), v_x1_1 = _mm_mullo_epi32(v_src1, v_ix1);
359                 v_x1 = _mm_add_epi32(v_x1, _mm_add_epi32(v_x1_0, v_x1_1));
360 
361                 __m128i v_2ix0 = _mm_mullo_epi32(v_ix0, v_ix0), v_2ix1 = _mm_mullo_epi32(v_ix1, v_ix1);
362                 v_x2 = _mm_add_epi32(v_x2, _mm_add_epi32(_mm_mullo_epi32(v_2ix0, v_src0), _mm_mullo_epi32(v_2ix1, v_src1)));
363 
364                 __m128i t = _mm_add_epi32(_mm_mullo_epi32(v_2ix0, v_x1_0), _mm_mullo_epi32(v_2ix1, v_x1_1));
365                 v_x3 = _mm_add_epi64(v_x3, _mm_add_epi64(_mm_unpacklo_epi32(t, v_zero), _mm_unpackhi_epi32(t, v_zero)));
366 
367                 v_ix0 = _mm_add_epi32(v_ix0, v_delta);
368                 v_ix1 = _mm_add_epi32(v_ix1, v_delta);
369             }
370 
371             _mm_store_si128((__m128i*)buf, v_x0);
372             x0 = buf[0] + buf[1] + buf[2] + buf[3];
373             _mm_store_si128((__m128i*)buf, v_x1);
374             x1 = buf[0] + buf[1] + buf[2] + buf[3];
375             _mm_store_si128((__m128i*)buf, v_x2);
376             x2 = buf[0] + buf[1] + buf[2] + buf[3];
377 
378             _mm_store_si128((__m128i*)buf64, v_x3);
379             x3 = buf64[0] + buf64[1];
380         }
381 
382         return x;
383     }
384 
385     int CV_DECL_ALIGNED(16) buf[4];
386     int64 CV_DECL_ALIGNED(16) buf64[2];
387     bool useSIMD;
388 };
389 
390 #endif
391 
392 template<typename T, typename WT, typename MT>
393 #if defined __GNUC__ && __GNUC__ == 4 && __GNUC_MINOR__ >= 5 && __GNUC_MINOR__ < 9
394 // Workaround for http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60196
395 __attribute__((optimize("no-tree-vectorize")))
396 #endif
momentsInTile(const Mat & img,double * moments)397 static void momentsInTile( const Mat& img, double* moments )
398 {
399     Size size = img.size();
400     int x, y;
401     MT mom[10] = {0,0,0,0,0,0,0,0,0,0};
402     MomentsInTile_SIMD<T, WT, MT> vop;
403 
404     for( y = 0; y < size.height; y++ )
405     {
406         const T* ptr = img.ptr<T>(y);
407         WT x0 = 0, x1 = 0, x2 = 0;
408         MT x3 = 0;
409         x = vop(ptr, size.width, x0, x1, x2, x3);
410 
411         for( ; x < size.width; x++ )
412         {
413             WT p = ptr[x];
414             WT xp = x * p, xxp;
415 
416             x0 += p;
417             x1 += xp;
418             xxp = xp * x;
419             x2 += xxp;
420             x3 += xxp * x;
421         }
422 
423         WT py = y * x0, sy = y*y;
424 
425         mom[9] += ((MT)py) * sy;  // m03
426         mom[8] += ((MT)x1) * sy;  // m12
427         mom[7] += ((MT)x2) * y;  // m21
428         mom[6] += x3;             // m30
429         mom[5] += x0 * sy;        // m02
430         mom[4] += x1 * y;         // m11
431         mom[3] += x2;             // m20
432         mom[2] += py;             // m01
433         mom[1] += x1;             // m10
434         mom[0] += x0;             // m00
435     }
436 
437     for( x = 0; x < 10; x++ )
438         moments[x] = (double)mom[x];
439 }
440 
441 typedef void (*MomentsInTileFunc)(const Mat& img, double* moments);
442 
Moments()443 Moments::Moments()
444 {
445     m00 = m10 = m01 = m20 = m11 = m02 = m30 = m21 = m12 = m03 =
446     mu20 = mu11 = mu02 = mu30 = mu21 = mu12 = mu03 =
447     nu20 = nu11 = nu02 = nu30 = nu21 = nu12 = nu03 = 0.;
448 }
449 
Moments(double _m00,double _m10,double _m01,double _m20,double _m11,double _m02,double _m30,double _m21,double _m12,double _m03)450 Moments::Moments( double _m00, double _m10, double _m01, double _m20, double _m11,
451                   double _m02, double _m30, double _m21, double _m12, double _m03 )
452 {
453     m00 = _m00; m10 = _m10; m01 = _m01;
454     m20 = _m20; m11 = _m11; m02 = _m02;
455     m30 = _m30; m21 = _m21; m12 = _m12; m03 = _m03;
456 
457     double cx = 0, cy = 0, inv_m00 = 0;
458     if( std::abs(m00) > DBL_EPSILON )
459     {
460         inv_m00 = 1./m00;
461         cx = m10*inv_m00; cy = m01*inv_m00;
462     }
463 
464     mu20 = m20 - m10*cx;
465     mu11 = m11 - m10*cy;
466     mu02 = m02 - m01*cy;
467 
468     mu30 = m30 - cx*(3*mu20 + cx*m10);
469     mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20;
470     mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02;
471     mu03 = m03 - cy*(3*mu02 + cy*m01);
472 
473     double inv_sqrt_m00 = std::sqrt(std::abs(inv_m00));
474     double s2 = inv_m00*inv_m00, s3 = s2*inv_sqrt_m00;
475 
476     nu20 = mu20*s2; nu11 = mu11*s2; nu02 = mu02*s2;
477     nu30 = mu30*s3; nu21 = mu21*s3; nu12 = mu12*s3; nu03 = mu03*s3;
478 }
479 
480 #ifdef HAVE_OPENCL
481 
ocl_moments(InputArray _src,Moments & m,bool binary)482 static bool ocl_moments( InputArray _src, Moments& m, bool binary)
483 {
484     const int TILE_SIZE = 32;
485     const int K = 10;
486 
487     ocl::Kernel k = ocl::Kernel("moments", ocl::imgproc::moments_oclsrc,
488         format("-D TILE_SIZE=%d%s",
489         TILE_SIZE,
490         binary ? " -D OP_MOMENTS_BINARY" : ""));
491 
492     if( k.empty() )
493         return false;
494 
495     UMat src = _src.getUMat();
496     Size sz = src.size();
497     int xtiles = (sz.width + TILE_SIZE-1)/TILE_SIZE;
498     int ytiles = (sz.height + TILE_SIZE-1)/TILE_SIZE;
499     int ntiles = xtiles*ytiles;
500     UMat umbuf(1, ntiles*K, CV_32S);
501 
502     size_t globalsize[] = {xtiles, sz.height}, localsize[] = {1, TILE_SIZE};
503     bool ok = k.args(ocl::KernelArg::ReadOnly(src),
504                      ocl::KernelArg::PtrWriteOnly(umbuf),
505                      xtiles).run(2, globalsize, localsize, true);
506     if(!ok)
507         return false;
508     Mat mbuf = umbuf.getMat(ACCESS_READ);
509     for( int i = 0; i < ntiles; i++ )
510     {
511         double x = (i % xtiles)*TILE_SIZE, y = (i / xtiles)*TILE_SIZE;
512         const int* mom = mbuf.ptr<int>() + i*K;
513         double xm = x * mom[0], ym = y * mom[0];
514 
515         // accumulate moments computed in each tile
516 
517         // + m00 ( = m00' )
518         m.m00 += mom[0];
519 
520         // + m10 ( = m10' + x*m00' )
521         m.m10 += mom[1] + xm;
522 
523         // + m01 ( = m01' + y*m00' )
524         m.m01 += mom[2] + ym;
525 
526         // + m20 ( = m20' + 2*x*m10' + x*x*m00' )
527         m.m20 += mom[3] + x * (mom[1] * 2 + xm);
528 
529         // + m11 ( = m11' + x*m01' + y*m10' + x*y*m00' )
530         m.m11 += mom[4] + x * (mom[2] + ym) + y * mom[1];
531 
532         // + m02 ( = m02' + 2*y*m01' + y*y*m00' )
533         m.m02 += mom[5] + y * (mom[2] * 2 + ym);
534 
535         // + m30 ( = m30' + 3*x*m20' + 3*x*x*m10' + x*x*x*m00' )
536         m.m30 += mom[6] + x * (3. * mom[3] + x * (3. * mom[1] + xm));
537 
538         // + m21 ( = m21' + x*(2*m11' + 2*y*m10' + x*m01' + x*y*m00') + y*m20')
539         m.m21 += mom[7] + x * (2 * (mom[4] + y * mom[1]) + x * (mom[2] + ym)) + y * mom[3];
540 
541         // + m12 ( = m12' + y*(2*m11' + 2*x*m01' + y*m10' + x*y*m00') + x*m02')
542         m.m12 += mom[8] + y * (2 * (mom[4] + x * mom[2]) + y * (mom[1] + xm)) + x * mom[5];
543 
544         // + m03 ( = m03' + 3*y*m02' + 3*y*y*m01' + y*y*y*m00' )
545         m.m03 += mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym));
546     }
547 
548     return true;
549 }
550 
551 #endif
552 
553 }
554 
555 
moments(InputArray _src,bool binary)556 cv::Moments cv::moments( InputArray _src, bool binary )
557 {
558     const int TILE_SIZE = 32;
559     MomentsInTileFunc func = 0;
560     uchar nzbuf[TILE_SIZE*TILE_SIZE];
561     Moments m;
562     int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
563     Size size = _src.size();
564 
565     if( size.width <= 0 || size.height <= 0 )
566         return m;
567 
568 #ifdef HAVE_OPENCL
569     if( !(ocl::useOpenCL() && type == CV_8UC1  &&
570         _src.isUMat() && ocl_moments(_src, m, binary)) )
571 #endif
572     {
573         Mat mat = _src.getMat();
574         if( mat.checkVector(2) >= 0 && (depth == CV_32F || depth == CV_32S))
575             return contourMoments(mat);
576 
577         if( cn > 1 )
578             CV_Error( CV_StsBadArg, "Invalid image type (must be single-channel)" );
579 
580 #if IPP_VERSION_X100 >= 801 && 0
581         CV_IPP_CHECK()
582         {
583             if (!binary)
584             {
585                 IppiSize roi = { mat.cols, mat.rows };
586                 IppiMomentState_64f * moment = NULL;
587                 // ippiMomentInitAlloc_64f, ippiMomentFree_64f are deprecated in 8.1, but there are not another way
588                 // to initialize IppiMomentState_64f. When GetStateSize and Init functions will appear we have to
589                 // change our code.
590                 CV_SUPPRESS_DEPRECATED_START
591                 if (ippiMomentInitAlloc_64f(&moment, ippAlgHintAccurate) >= 0)
592                 {
593                     typedef IppStatus (CV_STDCALL * ippiMoments)(const void * pSrc, int srcStep, IppiSize roiSize, IppiMomentState_64f* pCtx);
594                     ippiMoments ippFunc =
595                         type == CV_8UC1 ? (ippiMoments)ippiMoments64f_8u_C1R :
596                         type == CV_16UC1 ? (ippiMoments)ippiMoments64f_16u_C1R :
597                         type == CV_32FC1? (ippiMoments)ippiMoments64f_32f_C1R : 0;
598 
599                     if (ippFunc)
600                     {
601                         if (ippFunc(mat.data, (int)mat.step, roi, moment) >= 0)
602                         {
603                             IppiPoint point = { 0, 0 };
604                             ippiGetSpatialMoment_64f(moment, 0, 0, 0, point, &m.m00);
605                             ippiGetSpatialMoment_64f(moment, 1, 0, 0, point, &m.m10);
606                             ippiGetSpatialMoment_64f(moment, 0, 1, 0, point, &m.m01);
607 
608                             ippiGetSpatialMoment_64f(moment, 2, 0, 0, point, &m.m20);
609                             ippiGetSpatialMoment_64f(moment, 1, 1, 0, point, &m.m11);
610                             ippiGetSpatialMoment_64f(moment, 0, 2, 0, point, &m.m02);
611 
612                             ippiGetSpatialMoment_64f(moment, 3, 0, 0, point, &m.m30);
613                             ippiGetSpatialMoment_64f(moment, 2, 1, 0, point, &m.m21);
614                             ippiGetSpatialMoment_64f(moment, 1, 2, 0, point, &m.m12);
615                             ippiGetSpatialMoment_64f(moment, 0, 3, 0, point, &m.m03);
616                             ippiGetCentralMoment_64f(moment, 2, 0, 0, &m.mu20);
617                             ippiGetCentralMoment_64f(moment, 1, 1, 0, &m.mu11);
618                             ippiGetCentralMoment_64f(moment, 0, 2, 0, &m.mu02);
619                             ippiGetCentralMoment_64f(moment, 3, 0, 0, &m.mu30);
620                             ippiGetCentralMoment_64f(moment, 2, 1, 0, &m.mu21);
621                             ippiGetCentralMoment_64f(moment, 1, 2, 0, &m.mu12);
622                             ippiGetCentralMoment_64f(moment, 0, 3, 0, &m.mu03);
623                             ippiGetNormalizedCentralMoment_64f(moment, 2, 0, 0, &m.nu20);
624                             ippiGetNormalizedCentralMoment_64f(moment, 1, 1, 0, &m.nu11);
625                             ippiGetNormalizedCentralMoment_64f(moment, 0, 2, 0, &m.nu02);
626                             ippiGetNormalizedCentralMoment_64f(moment, 3, 0, 0, &m.nu30);
627                             ippiGetNormalizedCentralMoment_64f(moment, 2, 1, 0, &m.nu21);
628                             ippiGetNormalizedCentralMoment_64f(moment, 1, 2, 0, &m.nu12);
629                             ippiGetNormalizedCentralMoment_64f(moment, 0, 3, 0, &m.nu03);
630 
631                             ippiMomentFree_64f(moment);
632                             CV_IMPL_ADD(CV_IMPL_IPP);
633                             return m;
634                         }
635                         setIppErrorStatus();
636                     }
637                     ippiMomentFree_64f(moment);
638                 }
639                 else
640                     setIppErrorStatus();
641                 CV_SUPPRESS_DEPRECATED_END
642             }
643         }
644 #endif
645 
646         if( binary || depth == CV_8U )
647             func = momentsInTile<uchar, int, int>;
648         else if( depth == CV_16U )
649             func = momentsInTile<ushort, int, int64>;
650         else if( depth == CV_16S )
651             func = momentsInTile<short, int, int64>;
652         else if( depth == CV_32F )
653             func = momentsInTile<float, double, double>;
654         else if( depth == CV_64F )
655             func = momentsInTile<double, double, double>;
656         else
657             CV_Error( CV_StsUnsupportedFormat, "" );
658 
659         Mat src0(mat);
660 
661         for( int y = 0; y < size.height; y += TILE_SIZE )
662         {
663             Size tileSize;
664             tileSize.height = std::min(TILE_SIZE, size.height - y);
665 
666             for( int x = 0; x < size.width; x += TILE_SIZE )
667             {
668                 tileSize.width = std::min(TILE_SIZE, size.width - x);
669                 Mat src(src0, cv::Rect(x, y, tileSize.width, tileSize.height));
670 
671                 if( binary )
672                 {
673                     cv::Mat tmp(tileSize, CV_8U, nzbuf);
674                     cv::compare( src, 0, tmp, CV_CMP_NE );
675                     src = tmp;
676                 }
677 
678                 double mom[10];
679                 func( src, mom );
680 
681                 if(binary)
682                 {
683                     double s = 1./255;
684                     for( int k = 0; k < 10; k++ )
685                         mom[k] *= s;
686                 }
687 
688                 double xm = x * mom[0], ym = y * mom[0];
689 
690                 // accumulate moments computed in each tile
691 
692                 // + m00 ( = m00' )
693                 m.m00 += mom[0];
694 
695                 // + m10 ( = m10' + x*m00' )
696                 m.m10 += mom[1] + xm;
697 
698                 // + m01 ( = m01' + y*m00' )
699                 m.m01 += mom[2] + ym;
700 
701                 // + m20 ( = m20' + 2*x*m10' + x*x*m00' )
702                 m.m20 += mom[3] + x * (mom[1] * 2 + xm);
703 
704                 // + m11 ( = m11' + x*m01' + y*m10' + x*y*m00' )
705                 m.m11 += mom[4] + x * (mom[2] + ym) + y * mom[1];
706 
707                 // + m02 ( = m02' + 2*y*m01' + y*y*m00' )
708                 m.m02 += mom[5] + y * (mom[2] * 2 + ym);
709 
710                 // + m30 ( = m30' + 3*x*m20' + 3*x*x*m10' + x*x*x*m00' )
711                 m.m30 += mom[6] + x * (3. * mom[3] + x * (3. * mom[1] + xm));
712 
713                 // + m21 ( = m21' + x*(2*m11' + 2*y*m10' + x*m01' + x*y*m00') + y*m20')
714                 m.m21 += mom[7] + x * (2 * (mom[4] + y * mom[1]) + x * (mom[2] + ym)) + y * mom[3];
715 
716                 // + m12 ( = m12' + y*(2*m11' + 2*x*m01' + y*m10' + x*y*m00') + x*m02')
717                 m.m12 += mom[8] + y * (2 * (mom[4] + x * mom[2]) + y * (mom[1] + xm)) + x * mom[5];
718 
719                 // + m03 ( = m03' + 3*y*m02' + 3*y*y*m01' + y*y*y*m00' )
720                 m.m03 += mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym));
721             }
722         }
723     }
724 
725     completeMomentState( &m );
726     return m;
727 }
728 
729 
HuMoments(const Moments & m,double hu[7])730 void cv::HuMoments( const Moments& m, double hu[7] )
731 {
732     double t0 = m.nu30 + m.nu12;
733     double t1 = m.nu21 + m.nu03;
734 
735     double q0 = t0 * t0, q1 = t1 * t1;
736 
737     double n4 = 4 * m.nu11;
738     double s = m.nu20 + m.nu02;
739     double d = m.nu20 - m.nu02;
740 
741     hu[0] = s;
742     hu[1] = d * d + n4 * m.nu11;
743     hu[3] = q0 + q1;
744     hu[5] = d * (q0 - q1) + n4 * t0 * t1;
745 
746     t0 *= q0 - 3 * q1;
747     t1 *= 3 * q0 - q1;
748 
749     q0 = m.nu30 - 3 * m.nu12;
750     q1 = 3 * m.nu21 - m.nu03;
751 
752     hu[2] = q0 * q0 + q1 * q1;
753     hu[4] = q0 * t0 + q1 * t1;
754     hu[6] = q1 * t0 - q0 * t1;
755 }
756 
HuMoments(const Moments & m,OutputArray _hu)757 void cv::HuMoments( const Moments& m, OutputArray _hu )
758 {
759     _hu.create(7, 1, CV_64F);
760     Mat hu = _hu.getMat();
761     CV_Assert( hu.isContinuous() );
762     HuMoments(m, hu.ptr<double>());
763 }
764 
765 
cvMoments(const CvArr * arr,CvMoments * moments,int binary)766 CV_IMPL void cvMoments( const CvArr* arr, CvMoments* moments, int binary )
767 {
768     const IplImage* img = (const IplImage*)arr;
769     cv::Mat src;
770     if( CV_IS_IMAGE(arr) && img->roi && img->roi->coi > 0 )
771         cv::extractImageCOI(arr, src, img->roi->coi-1);
772     else
773         src = cv::cvarrToMat(arr);
774     cv::Moments m = cv::moments(src, binary != 0);
775     CV_Assert( moments != 0 );
776     *moments = m;
777 }
778 
779 
cvGetSpatialMoment(CvMoments * moments,int x_order,int y_order)780 CV_IMPL double cvGetSpatialMoment( CvMoments * moments, int x_order, int y_order )
781 {
782     int order = x_order + y_order;
783 
784     if( !moments )
785         CV_Error( CV_StsNullPtr, "" );
786     if( (x_order | y_order) < 0 || order > 3 )
787         CV_Error( CV_StsOutOfRange, "" );
788 
789     return (&(moments->m00))[order + (order >> 1) + (order > 2) * 2 + y_order];
790 }
791 
792 
cvGetCentralMoment(CvMoments * moments,int x_order,int y_order)793 CV_IMPL double cvGetCentralMoment( CvMoments * moments, int x_order, int y_order )
794 {
795     int order = x_order + y_order;
796 
797     if( !moments )
798         CV_Error( CV_StsNullPtr, "" );
799     if( (x_order | y_order) < 0 || order > 3 )
800         CV_Error( CV_StsOutOfRange, "" );
801 
802     return order >= 2 ? (&(moments->m00))[4 + order * 3 + y_order] :
803     order == 0 ? moments->m00 : 0;
804 }
805 
806 
cvGetNormalizedCentralMoment(CvMoments * moments,int x_order,int y_order)807 CV_IMPL double cvGetNormalizedCentralMoment( CvMoments * moments, int x_order, int y_order )
808 {
809     int order = x_order + y_order;
810 
811     double mu = cvGetCentralMoment( moments, x_order, y_order );
812     double m00s = moments->inv_sqrt_m00;
813 
814     while( --order >= 0 )
815         mu *= m00s;
816     return mu * m00s * m00s;
817 }
818 
819 
cvGetHuMoments(CvMoments * mState,CvHuMoments * HuState)820 CV_IMPL void cvGetHuMoments( CvMoments * mState, CvHuMoments * HuState )
821 {
822     if( !mState || !HuState )
823         CV_Error( CV_StsNullPtr, "" );
824 
825     double m00s = mState->inv_sqrt_m00, m00 = m00s * m00s, s2 = m00 * m00, s3 = s2 * m00s;
826 
827     double nu20 = mState->mu20 * s2,
828     nu11 = mState->mu11 * s2,
829     nu02 = mState->mu02 * s2,
830     nu30 = mState->mu30 * s3,
831     nu21 = mState->mu21 * s3, nu12 = mState->mu12 * s3, nu03 = mState->mu03 * s3;
832 
833     double t0 = nu30 + nu12;
834     double t1 = nu21 + nu03;
835 
836     double q0 = t0 * t0, q1 = t1 * t1;
837 
838     double n4 = 4 * nu11;
839     double s = nu20 + nu02;
840     double d = nu20 - nu02;
841 
842     HuState->hu1 = s;
843     HuState->hu2 = d * d + n4 * nu11;
844     HuState->hu4 = q0 + q1;
845     HuState->hu6 = d * (q0 - q1) + n4 * t0 * t1;
846 
847     t0 *= q0 - 3 * q1;
848     t1 *= 3 * q0 - q1;
849 
850     q0 = nu30 - 3 * nu12;
851     q1 = 3 * nu21 - nu03;
852 
853     HuState->hu3 = q0 * q0 + q1 * q1;
854     HuState->hu5 = q0 * t0 + q1 * t1;
855     HuState->hu7 = q1 * t0 - q0 * t1;
856 }
857 
858 
859 /* End of file. */
860