1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000, Intel Corporation, all rights reserved.
14 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "precomp.hpp"
44 
45 /****************************************************************************************\
46 *                                       Watershed                                        *
47 \****************************************************************************************/
48 
49 namespace cv
50 {
51 // A node represents a pixel to label
52 struct WSNode
53 {
54     int next;
55     int mask_ofs;
56     int img_ofs;
57 };
58 
59 // Queue for WSNodes
60 struct WSQueue
61 {
WSQueuecv::WSQueue62     WSQueue() { first = last = 0; }
63     int first, last;
64 };
65 
66 
67 static int
allocWSNodes(std::vector<WSNode> & storage)68 allocWSNodes( std::vector<WSNode>& storage )
69 {
70     int sz = (int)storage.size();
71     int newsz = MAX(128, sz*3/2);
72 
73     storage.resize(newsz);
74     if( sz == 0 )
75     {
76         storage[0].next = 0;
77         sz = 1;
78     }
79     for( int i = sz; i < newsz-1; i++ )
80         storage[i].next = i+1;
81     storage[newsz-1].next = 0;
82     return sz;
83 }
84 
85 }
86 
87 
watershed(InputArray _src,InputOutputArray _markers)88 void cv::watershed( InputArray _src, InputOutputArray _markers )
89 {
90     // Labels for pixels
91     const int IN_QUEUE = -2; // Pixel visited
92     const int WSHED = -1; // Pixel belongs to watershed
93 
94     // possible bit values = 2^8
95     const int NQ = 256;
96 
97     Mat src = _src.getMat(), dst = _markers.getMat();
98     Size size = src.size();
99 
100     // Vector of every created node
101     std::vector<WSNode> storage;
102     int free_node = 0, node;
103     // Priority queue of queues of nodes
104     // from high priority (0) to low priority (255)
105     WSQueue q[NQ];
106     // Non-empty queue with highest priority
107     int active_queue;
108     int i, j;
109     // Color differences
110     int db, dg, dr;
111     int subs_tab[513];
112 
113     // MAX(a,b) = b + MAX(a-b,0)
114     #define ws_max(a,b) ((b) + subs_tab[(a)-(b)+NQ])
115     // MIN(a,b) = a - MAX(a-b,0)
116     #define ws_min(a,b) ((a) - subs_tab[(a)-(b)+NQ])
117 
118     // Create a new node with offsets mofs and iofs in queue idx
119     #define ws_push(idx,mofs,iofs)          \
120     {                                       \
121         if( !free_node )                    \
122             free_node = allocWSNodes( storage );\
123         node = free_node;                   \
124         free_node = storage[free_node].next;\
125         storage[node].next = 0;             \
126         storage[node].mask_ofs = mofs;      \
127         storage[node].img_ofs = iofs;       \
128         if( q[idx].last )                   \
129             storage[q[idx].last].next=node; \
130         else                                \
131             q[idx].first = node;            \
132         q[idx].last = node;                 \
133     }
134 
135     // Get next node from queue idx
136     #define ws_pop(idx,mofs,iofs)           \
137     {                                       \
138         node = q[idx].first;                \
139         q[idx].first = storage[node].next;  \
140         if( !storage[node].next )           \
141             q[idx].last = 0;                \
142         storage[node].next = free_node;     \
143         free_node = node;                   \
144         mofs = storage[node].mask_ofs;      \
145         iofs = storage[node].img_ofs;       \
146     }
147 
148     // Get highest absolute channel difference in diff
149     #define c_diff(ptr1,ptr2,diff)           \
150     {                                        \
151         db = std::abs((ptr1)[0] - (ptr2)[0]);\
152         dg = std::abs((ptr1)[1] - (ptr2)[1]);\
153         dr = std::abs((ptr1)[2] - (ptr2)[2]);\
154         diff = ws_max(db,dg);                \
155         diff = ws_max(diff,dr);              \
156         assert( 0 <= diff && diff <= 255 );  \
157     }
158 
159     CV_Assert( src.type() == CV_8UC3 && dst.type() == CV_32SC1 );
160     CV_Assert( src.size() == dst.size() );
161 
162     // Current pixel in input image
163     const uchar* img = src.ptr();
164     // Step size to next row in input image
165     int istep = int(src.step/sizeof(img[0]));
166 
167     // Current pixel in mask image
168     int* mask = dst.ptr<int>();
169     // Step size to next row in mask image
170     int mstep = int(dst.step / sizeof(mask[0]));
171 
172     for( i = 0; i < 256; i++ )
173         subs_tab[i] = 0;
174     for( i = 256; i <= 512; i++ )
175         subs_tab[i] = i - 256;
176 
177     // draw a pixel-wide border of dummy "watershed" (i.e. boundary) pixels
178     for( j = 0; j < size.width; j++ )
179         mask[j] = mask[j + mstep*(size.height-1)] = WSHED;
180 
181     // initial phase: put all the neighbor pixels of each marker to the ordered queue -
182     // determine the initial boundaries of the basins
183     for( i = 1; i < size.height-1; i++ )
184     {
185         img += istep; mask += mstep;
186         mask[0] = mask[size.width-1] = WSHED; // boundary pixels
187 
188         for( j = 1; j < size.width-1; j++ )
189         {
190             int* m = mask + j;
191             if( m[0] < 0 ) m[0] = 0;
192             if( m[0] == 0 && (m[-1] > 0 || m[1] > 0 || m[-mstep] > 0 || m[mstep] > 0) )
193             {
194                 // Find smallest difference to adjacent markers
195                 const uchar* ptr = img + j*3;
196                 int idx = 256, t;
197                 if( m[-1] > 0 )
198                     c_diff( ptr, ptr - 3, idx );
199                 if( m[1] > 0 )
200                 {
201                     c_diff( ptr, ptr + 3, t );
202                     idx = ws_min( idx, t );
203                 }
204                 if( m[-mstep] > 0 )
205                 {
206                     c_diff( ptr, ptr - istep, t );
207                     idx = ws_min( idx, t );
208                 }
209                 if( m[mstep] > 0 )
210                 {
211                     c_diff( ptr, ptr + istep, t );
212                     idx = ws_min( idx, t );
213                 }
214 
215                 // Add to according queue
216                 assert( 0 <= idx && idx <= 255 );
217                 ws_push( idx, i*mstep + j, i*istep + j*3 );
218                 m[0] = IN_QUEUE;
219             }
220         }
221     }
222 
223     // find the first non-empty queue
224     for( i = 0; i < NQ; i++ )
225         if( q[i].first )
226             break;
227 
228     // if there is no markers, exit immediately
229     if( i == NQ )
230         return;
231 
232     active_queue = i;
233     img = src.ptr();
234     mask = dst.ptr<int>();
235 
236     // recursively fill the basins
237     for(;;)
238     {
239         int mofs, iofs;
240         int lab = 0, t;
241         int* m;
242         const uchar* ptr;
243 
244         // Get non-empty queue with highest priority
245         // Exit condition: empty priority queue
246         if( q[active_queue].first == 0 )
247         {
248             for( i = active_queue+1; i < NQ; i++ )
249                 if( q[i].first )
250                     break;
251             if( i == NQ )
252                 break;
253             active_queue = i;
254         }
255 
256         // Get next node
257         ws_pop( active_queue, mofs, iofs );
258 
259         // Calculate pointer to current pixel in input and marker image
260         m = mask + mofs;
261         ptr = img + iofs;
262 
263         // Check surrounding pixels for labels
264         // to determine label for current pixel
265         t = m[-1]; // Left
266         if( t > 0 ) lab = t;
267         t = m[1]; // Right
268         if( t > 0 )
269         {
270             if( lab == 0 ) lab = t;
271             else if( t != lab ) lab = WSHED;
272         }
273         t = m[-mstep]; // Top
274         if( t > 0 )
275         {
276             if( lab == 0 ) lab = t;
277             else if( t != lab ) lab = WSHED;
278         }
279         t = m[mstep]; // Bottom
280         if( t > 0 )
281         {
282             if( lab == 0 ) lab = t;
283             else if( t != lab ) lab = WSHED;
284         }
285 
286         // Set label to current pixel in marker image
287         assert( lab != 0 );
288         m[0] = lab;
289 
290         if( lab == WSHED )
291             continue;
292 
293         // Add adjacent, unlabeled pixels to corresponding queue
294         if( m[-1] == 0 )
295         {
296             c_diff( ptr, ptr - 3, t );
297             ws_push( t, mofs - 1, iofs - 3 );
298             active_queue = ws_min( active_queue, t );
299             m[-1] = IN_QUEUE;
300         }
301         if( m[1] == 0 )
302         {
303             c_diff( ptr, ptr + 3, t );
304             ws_push( t, mofs + 1, iofs + 3 );
305             active_queue = ws_min( active_queue, t );
306             m[1] = IN_QUEUE;
307         }
308         if( m[-mstep] == 0 )
309         {
310             c_diff( ptr, ptr - istep, t );
311             ws_push( t, mofs - mstep, iofs - istep );
312             active_queue = ws_min( active_queue, t );
313             m[-mstep] = IN_QUEUE;
314         }
315         if( m[mstep] == 0 )
316         {
317             c_diff( ptr, ptr + istep, t );
318             ws_push( t, mofs + mstep, iofs + istep );
319             active_queue = ws_min( active_queue, t );
320             m[mstep] = IN_QUEUE;
321         }
322     }
323 }
324 
325 
326 /****************************************************************************************\
327 *                                         Meanshift                                      *
328 \****************************************************************************************/
329 
330 
pyrMeanShiftFiltering(InputArray _src,OutputArray _dst,double sp0,double sr,int max_level,TermCriteria termcrit)331 void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst,
332                                 double sp0, double sr, int max_level,
333                                 TermCriteria termcrit )
334 {
335     Mat src0 = _src.getMat();
336 
337     if( src0.empty() )
338         return;
339 
340     _dst.create( src0.size(), src0.type() );
341     Mat dst0 = _dst.getMat();
342 
343     const int cn = 3;
344     const int MAX_LEVELS = 8;
345 
346     if( (unsigned)max_level > (unsigned)MAX_LEVELS )
347         CV_Error( CV_StsOutOfRange, "The number of pyramid levels is too large or negative" );
348 
349     std::vector<cv::Mat> src_pyramid(max_level+1);
350     std::vector<cv::Mat> dst_pyramid(max_level+1);
351     cv::Mat mask0;
352     int i, j, level;
353     //uchar* submask = 0;
354 
355     #define cdiff(ofs0) (tab[c0-dptr[ofs0]+255] + \
356         tab[c1-dptr[(ofs0)+1]+255] + tab[c2-dptr[(ofs0)+2]+255] >= isr22)
357 
358     double sr2 = sr * sr;
359     int isr2 = cvRound(sr2), isr22 = MAX(isr2,16);
360     int tab[768];
361 
362 
363     if( src0.type() != CV_8UC3 )
364         CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel images are supported" );
365 
366     if( src0.type() != dst0.type() )
367         CV_Error( CV_StsUnmatchedFormats, "The input and output images must have the same type" );
368 
369     if( src0.size() != dst0.size() )
370         CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" );
371 
372     if( !(termcrit.type & CV_TERMCRIT_ITER) )
373         termcrit.maxCount = 5;
374     termcrit.maxCount = MAX(termcrit.maxCount,1);
375     termcrit.maxCount = MIN(termcrit.maxCount,100);
376     if( !(termcrit.type & CV_TERMCRIT_EPS) )
377         termcrit.epsilon = 1.f;
378     termcrit.epsilon = MAX(termcrit.epsilon, 0.f);
379 
380     for( i = 0; i < 768; i++ )
381         tab[i] = (i - 255)*(i - 255);
382 
383     // 1. construct pyramid
384     src_pyramid[0] = src0;
385     dst_pyramid[0] = dst0;
386     for( level = 1; level <= max_level; level++ )
387     {
388         src_pyramid[level].create( (src_pyramid[level-1].rows+1)/2,
389                         (src_pyramid[level-1].cols+1)/2, src_pyramid[level-1].type() );
390         dst_pyramid[level].create( src_pyramid[level].rows,
391                         src_pyramid[level].cols, src_pyramid[level].type() );
392         cv::pyrDown( src_pyramid[level-1], src_pyramid[level], src_pyramid[level].size() );
393         //CV_CALL( cvResize( src_pyramid[level-1], src_pyramid[level], CV_INTER_AREA ));
394     }
395 
396     mask0.create(src0.rows, src0.cols, CV_8UC1);
397     //CV_CALL( submask = (uchar*)cvAlloc( (sp+2)*(sp+2) ));
398 
399     // 2. apply meanshift, starting from the pyramid top (i.e. the smallest layer)
400     for( level = max_level; level >= 0; level-- )
401     {
402         cv::Mat src = src_pyramid[level];
403         cv::Size size = src.size();
404         const uchar* sptr = src.ptr();
405         int sstep = (int)src.step;
406         uchar* mask = 0;
407         int mstep = 0;
408         uchar* dptr;
409         int dstep;
410         float sp = (float)(sp0 / (1 << level));
411         sp = MAX( sp, 1 );
412 
413         if( level < max_level )
414         {
415             cv::Size size1 = dst_pyramid[level+1].size();
416             cv::Mat m( size.height, size.width, CV_8UC1, mask0.ptr() );
417             dstep = (int)dst_pyramid[level+1].step;
418             dptr = dst_pyramid[level+1].ptr() + dstep + cn;
419             mstep = (int)m.step;
420             mask = m.ptr() + mstep;
421             //cvResize( dst_pyramid[level+1], dst_pyramid[level], CV_INTER_CUBIC );
422             cv::pyrUp( dst_pyramid[level+1], dst_pyramid[level], dst_pyramid[level].size() );
423             m.setTo(cv::Scalar::all(0));
424 
425             for( i = 1; i < size1.height-1; i++, dptr += dstep - (size1.width-2)*3, mask += mstep*2 )
426             {
427                 for( j = 1; j < size1.width-1; j++, dptr += cn )
428                 {
429                     int c0 = dptr[0], c1 = dptr[1], c2 = dptr[2];
430                     mask[j*2 - 1] = cdiff(-3) || cdiff(3) || cdiff(-dstep-3) || cdiff(-dstep) ||
431                         cdiff(-dstep+3) || cdiff(dstep-3) || cdiff(dstep) || cdiff(dstep+3);
432                 }
433             }
434 
435             cv::dilate( m, m, cv::Mat() );
436             mask = m.ptr();
437         }
438 
439         dptr = dst_pyramid[level].ptr();
440         dstep = (int)dst_pyramid[level].step;
441 
442         for( i = 0; i < size.height; i++, sptr += sstep - size.width*3,
443                                           dptr += dstep - size.width*3,
444                                           mask += mstep )
445         {
446             for( j = 0; j < size.width; j++, sptr += 3, dptr += 3 )
447             {
448                 int x0 = j, y0 = i, x1, y1, iter;
449                 int c0, c1, c2;
450 
451                 if( mask && !mask[j] )
452                     continue;
453 
454                 c0 = sptr[0], c1 = sptr[1], c2 = sptr[2];
455 
456                 // iterate meanshift procedure
457                 for( iter = 0; iter < termcrit.maxCount; iter++ )
458                 {
459                     const uchar* ptr;
460                     int x, y, count = 0;
461                     int minx, miny, maxx, maxy;
462                     int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0;
463                     double icount;
464                     int stop_flag;
465 
466                     //mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp)
467                     minx = cvRound(x0 - sp); minx = MAX(minx, 0);
468                     miny = cvRound(y0 - sp); miny = MAX(miny, 0);
469                     maxx = cvRound(x0 + sp); maxx = MIN(maxx, size.width-1);
470                     maxy = cvRound(y0 + sp); maxy = MIN(maxy, size.height-1);
471                     ptr = sptr + (miny - i)*sstep + (minx - j)*3;
472 
473                     for( y = miny; y <= maxy; y++, ptr += sstep - (maxx-minx+1)*3 )
474                     {
475                         int row_count = 0;
476                         x = minx;
477                         #if CV_ENABLE_UNROLLED
478                         for( ; x + 3 <= maxx; x += 4, ptr += 12 )
479                         {
480                             int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
481                             if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
482                             {
483                                 s0 += t0; s1 += t1; s2 += t2;
484                                 sx += x; row_count++;
485                             }
486                             t0 = ptr[3], t1 = ptr[4], t2 = ptr[5];
487                             if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
488                             {
489                                 s0 += t0; s1 += t1; s2 += t2;
490                                 sx += x+1; row_count++;
491                             }
492                             t0 = ptr[6], t1 = ptr[7], t2 = ptr[8];
493                             if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
494                             {
495                                 s0 += t0; s1 += t1; s2 += t2;
496                                 sx += x+2; row_count++;
497                             }
498                             t0 = ptr[9], t1 = ptr[10], t2 = ptr[11];
499                             if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
500                             {
501                                 s0 += t0; s1 += t1; s2 += t2;
502                                 sx += x+3; row_count++;
503                             }
504                         }
505                         #endif
506                         for( ; x <= maxx; x++, ptr += 3 )
507                         {
508                             int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
509                             if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 )
510                             {
511                                 s0 += t0; s1 += t1; s2 += t2;
512                                 sx += x; row_count++;
513                             }
514                         }
515                         count += row_count;
516                         sy += y*row_count;
517                     }
518 
519                     if( count == 0 )
520                         break;
521 
522                     icount = 1./count;
523                     x1 = cvRound(sx*icount);
524                     y1 = cvRound(sy*icount);
525                     s0 = cvRound(s0*icount);
526                     s1 = cvRound(s1*icount);
527                     s2 = cvRound(s2*icount);
528 
529                     stop_flag = (x0 == x1 && y0 == y1) || std::abs(x1-x0) + std::abs(y1-y0) +
530                         tab[s0 - c0 + 255] + tab[s1 - c1 + 255] +
531                         tab[s2 - c2 + 255] <= termcrit.epsilon;
532 
533                     x0 = x1; y0 = y1;
534                     c0 = s0; c1 = s1; c2 = s2;
535 
536                     if( stop_flag )
537                         break;
538                 }
539 
540                 dptr[0] = (uchar)c0;
541                 dptr[1] = (uchar)c1;
542                 dptr[2] = (uchar)c2;
543             }
544         }
545     }
546 }
547 
548 
549 ///////////////////////////////////////////////////////////////////////////////////////////////
550 
cvWatershed(const CvArr * _src,CvArr * _markers)551 CV_IMPL void cvWatershed( const CvArr* _src, CvArr* _markers )
552 {
553     cv::Mat src = cv::cvarrToMat(_src), markers = cv::cvarrToMat(_markers);
554     cv::watershed(src, markers);
555 }
556 
557 
558 CV_IMPL void
cvPyrMeanShiftFiltering(const CvArr * srcarr,CvArr * dstarr,double sp0,double sr,int max_level,CvTermCriteria termcrit)559 cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr,
560                         double sp0, double sr, int max_level,
561                         CvTermCriteria termcrit )
562 {
563     cv::Mat src = cv::cvarrToMat(srcarr);
564     const cv::Mat dst = cv::cvarrToMat(dstarr);
565 
566     cv::pyrMeanShiftFiltering(src, dst, sp0, sr, max_level, termcrit);
567 }
568