1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "test_precomp.hpp"
44 
45 #include <string>
46 #include <iostream>
47 
48 using namespace std;
49 using namespace cv;
50 
51 class CV_GrabcutTest : public cvtest::BaseTest
52 {
53 public:
54     CV_GrabcutTest();
55     ~CV_GrabcutTest();
56 protected:
57     bool verify(const Mat& mask, const Mat& exp);
58     void run(int);
59 };
60 
CV_GrabcutTest()61 CV_GrabcutTest::CV_GrabcutTest() {}
~CV_GrabcutTest()62 CV_GrabcutTest::~CV_GrabcutTest() {}
63 
verify(const Mat & mask,const Mat & exp)64 bool CV_GrabcutTest::verify(const Mat& mask, const Mat& exp)
65 {
66     const float maxDiffRatio = 0.005f;
67     int expArea = countNonZero( exp );
68     int nonIntersectArea = countNonZero( mask != exp );
69 
70     float curRatio = (float)nonIntersectArea / (float)expArea;
71     ts->printf( cvtest::TS::LOG, "nonIntersectArea/expArea = %f\n", curRatio );
72     return curRatio < maxDiffRatio;
73 }
74 
run(int)75 void CV_GrabcutTest::run( int /* start_from */)
76 {
77     cvtest::DefaultRngAuto defRng;
78 
79     Mat img = imread(string(ts->get_data_path()) + "shared/airplane.png");
80     Mat mask_prob = imread(string(ts->get_data_path()) + "grabcut/mask_prob.png", 0);
81     Mat exp_mask1 = imread(string(ts->get_data_path()) + "grabcut/exp_mask1.png", 0);
82     Mat exp_mask2 = imread(string(ts->get_data_path()) + "grabcut/exp_mask2.png", 0);
83 
84     if (img.empty() || (!mask_prob.empty() && img.size() != mask_prob.size()) ||
85                        (!exp_mask1.empty() && img.size() != exp_mask1.size()) ||
86                        (!exp_mask2.empty() && img.size() != exp_mask2.size()) )
87     {
88          ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
89          return;
90     }
91 
92     Rect rect(Point(24, 126), Point(483, 294));
93     Mat exp_bgdModel, exp_fgdModel;
94 
95     Mat mask;
96     mask = Scalar(0);
97     Mat bgdModel, fgdModel;
98     grabCut( img, mask, rect, bgdModel, fgdModel, 0, GC_INIT_WITH_RECT );
99     grabCut( img, mask, rect, bgdModel, fgdModel, 2, GC_EVAL );
100 
101     // Multiply images by 255 for more visuality of test data.
102     if( mask_prob.empty() )
103     {
104         mask.copyTo( mask_prob );
105         imwrite(string(ts->get_data_path()) + "grabcut/mask_prob.png", mask_prob);
106     }
107     if( exp_mask1.empty() )
108     {
109         exp_mask1 = (mask & 1) * 255;
110         imwrite(string(ts->get_data_path()) + "grabcut/exp_mask1.png", exp_mask1);
111     }
112 
113     if (!verify((mask & 1) * 255, exp_mask1))
114     {
115         ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
116         return;
117     }
118 
119     mask = mask_prob;
120     bgdModel.release();
121     fgdModel.release();
122     rect = Rect();
123     grabCut( img, mask, rect, bgdModel, fgdModel, 0, GC_INIT_WITH_MASK );
124     grabCut( img, mask, rect, bgdModel, fgdModel, 1, GC_EVAL );
125 
126     if( exp_mask2.empty() )
127     {
128         exp_mask2 = (mask & 1) * 255;
129         imwrite(string(ts->get_data_path()) + "grabcut/exp_mask2.png", exp_mask2);
130     }
131 
132     if (!verify((mask & 1) * 255, exp_mask2))
133     {
134         ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
135         return;
136     }
137     ts->set_failed_test_info(cvtest::TS::OK);
138 }
139 
TEST(Imgproc_GrabCut,regression)140 TEST(Imgproc_GrabCut, regression) { CV_GrabcutTest test; test.safe_run(); }
141 
TEST(Imgproc_GrabCut,repeatability)142 TEST(Imgproc_GrabCut, repeatability)
143 {
144     cvtest::TS& ts = *cvtest::TS::ptr();
145 
146     Mat image_1 = imread(string(ts.get_data_path()) + "grabcut/image1652.ppm", IMREAD_COLOR);
147     Mat mask_1 = imread(string(ts.get_data_path()) + "grabcut/mask1652.ppm", IMREAD_GRAYSCALE);
148     Rect roi_1(0, 0, 150, 150);
149 
150     Mat image_2 = image_1.clone();
151     Mat mask_2 = mask_1.clone();
152     Rect roi_2 = roi_1;
153 
154     Mat image_3 = image_1.clone();
155     Mat mask_3 = mask_1.clone();
156     Rect roi_3 = roi_1;
157 
158     Mat bgdModel_1, fgdModel_1;
159     Mat bgdModel_2, fgdModel_2;
160     Mat bgdModel_3, fgdModel_3;
161 
162     theRNG().state = 12378213;
163     grabCut(image_1, mask_1, roi_1, bgdModel_1, fgdModel_1, 1, GC_INIT_WITH_MASK);
164     theRNG().state = 12378213;
165     grabCut(image_2, mask_2, roi_2, bgdModel_2, fgdModel_2, 1, GC_INIT_WITH_MASK);
166     theRNG().state = 12378213;
167     grabCut(image_3, mask_3, roi_3, bgdModel_3, fgdModel_3, 1, GC_INIT_WITH_MASK);
168 
169     EXPECT_EQ(0, countNonZero(mask_1 != mask_2));
170     EXPECT_EQ(0, countNonZero(mask_1 != mask_3));
171     EXPECT_EQ(0, countNonZero(mask_2 != mask_3));
172 }
173