1 
2 //
3 // This file is auto-generated. Please don't modify it!
4 //
5 package org.opencv.ml;
6 
7 import org.opencv.core.Mat;
8 import org.opencv.core.TermCriteria;
9 
10 // C++: class EM
11 //javadoc: EM
12 public class EM extends StatModel {
13 
EM(long addr)14     protected EM(long addr) { super(addr); }
15 
16 
17     public static final int
18             COV_MAT_SPHERICAL = 0,
19             COV_MAT_DIAGONAL = 1,
20             COV_MAT_GENERIC = 2,
21             COV_MAT_DEFAULT = COV_MAT_DIAGONAL,
22             DEFAULT_NCLUSTERS = 5,
23             DEFAULT_MAX_ITERS = 100,
24             START_E_STEP = 1,
25             START_M_STEP = 2,
26             START_AUTO_STEP = 0;
27 
28 
29     //
30     // C++:  int getClustersNumber()
31     //
32 
33     //javadoc: EM::getClustersNumber()
getClustersNumber()34     public  int getClustersNumber()
35     {
36 
37         int retVal = getClustersNumber_0(nativeObj);
38 
39         return retVal;
40     }
41 
42 
43     //
44     // C++:  void setClustersNumber(int val)
45     //
46 
47     //javadoc: EM::setClustersNumber(val)
setClustersNumber(int val)48     public  void setClustersNumber(int val)
49     {
50 
51         setClustersNumber_0(nativeObj, val);
52 
53         return;
54     }
55 
56 
57     //
58     // C++:  int getCovarianceMatrixType()
59     //
60 
61     //javadoc: EM::getCovarianceMatrixType()
getCovarianceMatrixType()62     public  int getCovarianceMatrixType()
63     {
64 
65         int retVal = getCovarianceMatrixType_0(nativeObj);
66 
67         return retVal;
68     }
69 
70 
71     //
72     // C++:  void setCovarianceMatrixType(int val)
73     //
74 
75     //javadoc: EM::setCovarianceMatrixType(val)
setCovarianceMatrixType(int val)76     public  void setCovarianceMatrixType(int val)
77     {
78 
79         setCovarianceMatrixType_0(nativeObj, val);
80 
81         return;
82     }
83 
84 
85     //
86     // C++:  TermCriteria getTermCriteria()
87     //
88 
89     //javadoc: EM::getTermCriteria()
getTermCriteria()90     public  TermCriteria getTermCriteria()
91     {
92 
93         TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj));
94 
95         return retVal;
96     }
97 
98 
99     //
100     // C++:  void setTermCriteria(TermCriteria val)
101     //
102 
103     //javadoc: EM::setTermCriteria(val)
setTermCriteria(TermCriteria val)104     public  void setTermCriteria(TermCriteria val)
105     {
106 
107         setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon);
108 
109         return;
110     }
111 
112 
113     //
114     // C++:  Mat getWeights()
115     //
116 
117     //javadoc: EM::getWeights()
getWeights()118     public  Mat getWeights()
119     {
120 
121         Mat retVal = new Mat(getWeights_0(nativeObj));
122 
123         return retVal;
124     }
125 
126 
127     //
128     // C++:  Mat getMeans()
129     //
130 
131     //javadoc: EM::getMeans()
getMeans()132     public  Mat getMeans()
133     {
134 
135         Mat retVal = new Mat(getMeans_0(nativeObj));
136 
137         return retVal;
138     }
139 
140 
141     //
142     // C++:  Vec2d predict2(Mat sample, Mat& probs)
143     //
144 
145     //javadoc: EM::predict2(sample, probs)
predict2(Mat sample, Mat probs)146     public  double[] predict2(Mat sample, Mat probs)
147     {
148 
149         double[] retVal = predict2_0(nativeObj, sample.nativeObj, probs.nativeObj);
150 
151         return retVal;
152     }
153 
154 
155     //
156     // C++:  bool trainEM(Mat samples, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
157     //
158 
159     //javadoc: EM::trainEM(samples, logLikelihoods, labels, probs)
trainEM(Mat samples, Mat logLikelihoods, Mat labels, Mat probs)160     public  boolean trainEM(Mat samples, Mat logLikelihoods, Mat labels, Mat probs)
161     {
162 
163         boolean retVal = trainEM_0(nativeObj, samples.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj);
164 
165         return retVal;
166     }
167 
168     //javadoc: EM::trainEM(samples)
trainEM(Mat samples)169     public  boolean trainEM(Mat samples)
170     {
171 
172         boolean retVal = trainEM_1(nativeObj, samples.nativeObj);
173 
174         return retVal;
175     }
176 
177 
178     //
179     // C++:  bool trainE(Mat samples, Mat means0, Mat covs0 = Mat(), Mat weights0 = Mat(), Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
180     //
181 
182     //javadoc: EM::trainE(samples, means0, covs0, weights0, logLikelihoods, labels, probs)
trainE(Mat samples, Mat means0, Mat covs0, Mat weights0, Mat logLikelihoods, Mat labels, Mat probs)183     public  boolean trainE(Mat samples, Mat means0, Mat covs0, Mat weights0, Mat logLikelihoods, Mat labels, Mat probs)
184     {
185 
186         boolean retVal = trainE_0(nativeObj, samples.nativeObj, means0.nativeObj, covs0.nativeObj, weights0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj);
187 
188         return retVal;
189     }
190 
191     //javadoc: EM::trainE(samples, means0)
trainE(Mat samples, Mat means0)192     public  boolean trainE(Mat samples, Mat means0)
193     {
194 
195         boolean retVal = trainE_1(nativeObj, samples.nativeObj, means0.nativeObj);
196 
197         return retVal;
198     }
199 
200 
201     //
202     // C++:  bool trainM(Mat samples, Mat probs0, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
203     //
204 
205     //javadoc: EM::trainM(samples, probs0, logLikelihoods, labels, probs)
trainM(Mat samples, Mat probs0, Mat logLikelihoods, Mat labels, Mat probs)206     public  boolean trainM(Mat samples, Mat probs0, Mat logLikelihoods, Mat labels, Mat probs)
207     {
208 
209         boolean retVal = trainM_0(nativeObj, samples.nativeObj, probs0.nativeObj, logLikelihoods.nativeObj, labels.nativeObj, probs.nativeObj);
210 
211         return retVal;
212     }
213 
214     //javadoc: EM::trainM(samples, probs0)
trainM(Mat samples, Mat probs0)215     public  boolean trainM(Mat samples, Mat probs0)
216     {
217 
218         boolean retVal = trainM_1(nativeObj, samples.nativeObj, probs0.nativeObj);
219 
220         return retVal;
221     }
222 
223 
224     //
225     // C++: static Ptr_EM create()
226     //
227 
228     //javadoc: EM::create()
create()229     public static EM create()
230     {
231 
232         EM retVal = new EM(create_0());
233 
234         return retVal;
235     }
236 
237 
238     @Override
finalize()239     protected void finalize() throws Throwable {
240         delete(nativeObj);
241     }
242 
243 
244 
245     // C++:  int getClustersNumber()
getClustersNumber_0(long nativeObj)246     private static native int getClustersNumber_0(long nativeObj);
247 
248     // C++:  void setClustersNumber(int val)
setClustersNumber_0(long nativeObj, int val)249     private static native void setClustersNumber_0(long nativeObj, int val);
250 
251     // C++:  int getCovarianceMatrixType()
getCovarianceMatrixType_0(long nativeObj)252     private static native int getCovarianceMatrixType_0(long nativeObj);
253 
254     // C++:  void setCovarianceMatrixType(int val)
setCovarianceMatrixType_0(long nativeObj, int val)255     private static native void setCovarianceMatrixType_0(long nativeObj, int val);
256 
257     // C++:  TermCriteria getTermCriteria()
getTermCriteria_0(long nativeObj)258     private static native double[] getTermCriteria_0(long nativeObj);
259 
260     // C++:  void setTermCriteria(TermCriteria val)
setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon)261     private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon);
262 
263     // C++:  Mat getWeights()
getWeights_0(long nativeObj)264     private static native long getWeights_0(long nativeObj);
265 
266     // C++:  Mat getMeans()
getMeans_0(long nativeObj)267     private static native long getMeans_0(long nativeObj);
268 
269     // C++:  Vec2d predict2(Mat sample, Mat& probs)
predict2_0(long nativeObj, long sample_nativeObj, long probs_nativeObj)270     private static native double[] predict2_0(long nativeObj, long sample_nativeObj, long probs_nativeObj);
271 
272     // C++:  bool trainEM(Mat samples, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
trainEM_0(long nativeObj, long samples_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj)273     private static native boolean trainEM_0(long nativeObj, long samples_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj);
trainEM_1(long nativeObj, long samples_nativeObj)274     private static native boolean trainEM_1(long nativeObj, long samples_nativeObj);
275 
276     // C++:  bool trainE(Mat samples, Mat means0, Mat covs0 = Mat(), Mat weights0 = Mat(), Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
trainE_0(long nativeObj, long samples_nativeObj, long means0_nativeObj, long covs0_nativeObj, long weights0_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj)277     private static native boolean trainE_0(long nativeObj, long samples_nativeObj, long means0_nativeObj, long covs0_nativeObj, long weights0_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj);
trainE_1(long nativeObj, long samples_nativeObj, long means0_nativeObj)278     private static native boolean trainE_1(long nativeObj, long samples_nativeObj, long means0_nativeObj);
279 
280     // C++:  bool trainM(Mat samples, Mat probs0, Mat& logLikelihoods = Mat(), Mat& labels = Mat(), Mat& probs = Mat())
trainM_0(long nativeObj, long samples_nativeObj, long probs0_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj)281     private static native boolean trainM_0(long nativeObj, long samples_nativeObj, long probs0_nativeObj, long logLikelihoods_nativeObj, long labels_nativeObj, long probs_nativeObj);
trainM_1(long nativeObj, long samples_nativeObj, long probs0_nativeObj)282     private static native boolean trainM_1(long nativeObj, long samples_nativeObj, long probs0_nativeObj);
283 
284     // C++: static Ptr_EM create()
create_0()285     private static native long create_0();
286 
287     // native support for java finalize()
delete(long nativeObj)288     private static native void delete(long nativeObj);
289 
290 }
291