1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "precomp.hpp"
44
45 #include "opencv2/photo/cuda.hpp"
46 #include "opencv2/core/private.cuda.hpp"
47
48 #include "opencv2/opencv_modules.hpp"
49
50 #ifdef HAVE_OPENCV_CUDAARITHM
51 # include "opencv2/cudaarithm.hpp"
52 #endif
53
54 #ifdef HAVE_OPENCV_CUDAIMGPROC
55 # include "opencv2/cudaimgproc.hpp"
56 #endif
57
58 using namespace cv;
59 using namespace cv::cuda;
60
61 #if !defined (HAVE_CUDA) || !defined(HAVE_OPENCV_CUDAARITHM) || !defined(HAVE_OPENCV_CUDAIMGPROC)
62
nonLocalMeans(InputArray,OutputArray,float,int,int,int,Stream &)63 void cv::cuda::nonLocalMeans(InputArray, OutputArray, float, int, int, int, Stream&) { throw_no_cuda(); }
fastNlMeansDenoising(InputArray,OutputArray,float,int,int,Stream &)64 void cv::cuda::fastNlMeansDenoising(InputArray, OutputArray, float, int, int, Stream&) { throw_no_cuda(); }
fastNlMeansDenoisingColored(InputArray,OutputArray,float,float,int,int,Stream &)65 void cv::cuda::fastNlMeansDenoisingColored(InputArray, OutputArray, float, float, int, int, Stream&) { throw_no_cuda(); }
66
67 #else
68
69 //////////////////////////////////////////////////////////////////////////////////
70 //// Non Local Means Denosing (brute force)
71
72 namespace cv { namespace cuda { namespace device
73 {
74 namespace imgproc
75 {
76 template<typename T>
77 void nlm_bruteforce_gpu(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream);
78 }
79 }}}
80
nonLocalMeans(InputArray _src,OutputArray _dst,float h,int search_window,int block_window,int borderMode,Stream & stream)81 void cv::cuda::nonLocalMeans(InputArray _src, OutputArray _dst, float h, int search_window, int block_window, int borderMode, Stream& stream)
82 {
83 using cv::cuda::device::imgproc::nlm_bruteforce_gpu;
84 typedef void (*func_t)(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream);
85
86 static const func_t funcs[4] = { nlm_bruteforce_gpu<uchar>, nlm_bruteforce_gpu<uchar2>, nlm_bruteforce_gpu<uchar3>, 0/*nlm_bruteforce_gpu<uchar4>,*/ };
87
88 const GpuMat src = _src.getGpuMat();
89
90 CV_Assert(src.type() == CV_8U || src.type() == CV_8UC2 || src.type() == CV_8UC3);
91
92 const func_t func = funcs[src.channels() - 1];
93 CV_Assert(func != 0);
94
95 int b = borderMode;
96 CV_Assert(b == BORDER_REFLECT101 || b == BORDER_REPLICATE || b == BORDER_CONSTANT || b == BORDER_REFLECT || b == BORDER_WRAP);
97
98 _dst.create(src.size(), src.type());
99 GpuMat dst = _dst.getGpuMat();
100
101 func(src, dst, search_window/2, block_window/2, h, borderMode, StreamAccessor::getStream(stream));
102 }
103
104 namespace cv { namespace cuda { namespace device
105 {
106 namespace imgproc
107 {
108 void nln_fast_get_buffer_size(const PtrStepSzb& src, int search_window, int block_window, int& buffer_cols, int& buffer_rows);
109
110 template<typename T>
111 void nlm_fast_gpu(const PtrStepSzb& src, PtrStepSzb dst, PtrStepi buffer,
112 int search_window, int block_window, float h, cudaStream_t stream);
113
114 void fnlm_split_channels(const PtrStepSz<uchar3>& lab, PtrStepb l, PtrStep<uchar2> ab, cudaStream_t stream);
115 void fnlm_merge_channels(const PtrStepb& l, const PtrStep<uchar2>& ab, PtrStepSz<uchar3> lab, cudaStream_t stream);
116 }
117 }}}
118
fastNlMeansDenoising(InputArray _src,OutputArray _dst,float h,int search_window,int block_window,Stream & stream)119 void cv::cuda::fastNlMeansDenoising(InputArray _src, OutputArray _dst, float h, int search_window, int block_window, Stream& stream)
120 {
121 const GpuMat src = _src.getGpuMat();
122
123 CV_Assert(src.depth() == CV_8U && src.channels() < 4);
124
125 int border_size = search_window/2 + block_window/2;
126 Size esize = src.size() + Size(border_size, border_size) * 2;
127
128 BufferPool pool(stream);
129
130 GpuMat extended_src = pool.getBuffer(esize, src.type());
131 cv::cuda::copyMakeBorder(src, extended_src, border_size, border_size, border_size, border_size, cv::BORDER_DEFAULT, Scalar(), stream);
132 GpuMat src_hdr = extended_src(Rect(Point2i(border_size, border_size), src.size()));
133
134 int bcols, brows;
135 device::imgproc::nln_fast_get_buffer_size(src_hdr, search_window, block_window, bcols, brows);
136 GpuMat buffer = pool.getBuffer(brows, bcols, CV_32S);
137
138 using namespace cv::cuda::device::imgproc;
139 typedef void (*nlm_fast_t)(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t);
140 static const nlm_fast_t funcs[] = { nlm_fast_gpu<uchar>, nlm_fast_gpu<uchar2>, nlm_fast_gpu<uchar3>, 0};
141
142 _dst.create(src.size(), src.type());
143 GpuMat dst = _dst.getGpuMat();
144
145 funcs[src.channels()-1](src_hdr, dst, buffer, search_window, block_window, h, StreamAccessor::getStream(stream));
146 }
147
fastNlMeansDenoisingColored(InputArray _src,OutputArray _dst,float h_luminance,float h_color,int search_window,int block_window,Stream & stream)148 void cv::cuda::fastNlMeansDenoisingColored(InputArray _src, OutputArray _dst, float h_luminance, float h_color, int search_window, int block_window, Stream& stream)
149 {
150 const GpuMat src = _src.getGpuMat();
151
152 CV_Assert(src.type() == CV_8UC3);
153
154 BufferPool pool(stream);
155
156 GpuMat lab = pool.getBuffer(src.size(), src.type());
157 cv::cuda::cvtColor(src, lab, cv::COLOR_BGR2Lab, 0, stream);
158
159 GpuMat l = pool.getBuffer(src.size(), CV_8U);
160 GpuMat ab = pool.getBuffer(src.size(), CV_8UC2);
161 device::imgproc::fnlm_split_channels(lab, l, ab, StreamAccessor::getStream(stream));
162
163 fastNlMeansDenoising(l, l, h_luminance, search_window, block_window, stream);
164 fastNlMeansDenoising(ab, ab, h_color, search_window, block_window, stream);
165
166 device::imgproc::fnlm_merge_channels(l, ab, lab, StreamAccessor::getStream(stream));
167 cv::cuda::cvtColor(lab, _dst, cv::COLOR_Lab2BGR, 0, stream);
168 }
169
170 #endif
171