1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 // * Redistribution's of source code must retain the above copyright notice,
20 // this list of conditions and the following disclaimer.
21 //
22 // * Redistribution's in binary form must reproduce the above copyright notice,
23 // this list of conditions and the following disclaimer in the documentation
24 // and/or other materials provided with the distribution.
25 //
26 // * The name of the copyright holders may not be used to endorse or promote products
27 // derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41
42 #include "test_precomp.hpp"
43
44 using namespace cv;
45 using namespace std;
46
loadImage(string path,Mat & img)47 void loadImage(string path, Mat &img)
48 {
49 img = imread(path, -1);
50 ASSERT_FALSE(img.empty()) << "Could not load input image " << path;
51 }
52
checkEqual(Mat img0,Mat img1,double threshold,const string & name)53 void checkEqual(Mat img0, Mat img1, double threshold, const string& name)
54 {
55 double max = 1.0;
56 minMaxLoc(abs(img0 - img1), NULL, &max);
57 ASSERT_FALSE(max > threshold) << "max=" << max << " threshold=" << threshold << " method=" << name;
58 }
59
60 static vector<float> DEFAULT_VECTOR;
loadExposureSeq(String path,vector<Mat> & images,vector<float> & times=DEFAULT_VECTOR)61 void loadExposureSeq(String path, vector<Mat>& images, vector<float>& times = DEFAULT_VECTOR)
62 {
63 ifstream list_file((path + "list.txt").c_str());
64 ASSERT_TRUE(list_file.is_open());
65 string name;
66 float val;
67 while(list_file >> name >> val) {
68 Mat img = imread(path + name);
69 ASSERT_FALSE(img.empty()) << "Could not load input image " << path + name;
70 images.push_back(img);
71 times.push_back(1 / val);
72 }
73 list_file.close();
74 }
75
loadResponseCSV(String path,Mat & response)76 void loadResponseCSV(String path, Mat& response)
77 {
78 response = Mat(256, 1, CV_32FC3);
79 ifstream resp_file(path.c_str());
80 for(int i = 0; i < 256; i++) {
81 for(int c = 0; c < 3; c++) {
82 resp_file >> response.at<Vec3f>(i)[c];
83 resp_file.ignore(1);
84 }
85 }
86 resp_file.close();
87 }
88
TEST(Photo_Tonemap,regression)89 TEST(Photo_Tonemap, regression)
90 {
91 string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/tonemap/";
92
93 Mat img, expected, result;
94 loadImage(test_path + "image.hdr", img);
95 float gamma = 2.2f;
96
97 Ptr<Tonemap> linear = createTonemap(gamma);
98 linear->process(img, result);
99 loadImage(test_path + "linear.png", expected);
100 result.convertTo(result, CV_8UC3, 255);
101 checkEqual(result, expected, 3, "Simple");
102
103 Ptr<TonemapDrago> drago = createTonemapDrago(gamma);
104 drago->process(img, result);
105 loadImage(test_path + "drago.png", expected);
106 result.convertTo(result, CV_8UC3, 255);
107 checkEqual(result, expected, 3, "Drago");
108
109 Ptr<TonemapDurand> durand = createTonemapDurand(gamma);
110 durand->process(img, result);
111 loadImage(test_path + "durand.png", expected);
112 result.convertTo(result, CV_8UC3, 255);
113 checkEqual(result, expected, 3, "Durand");
114
115 Ptr<TonemapReinhard> reinhard = createTonemapReinhard(gamma);
116 reinhard->process(img, result);
117 loadImage(test_path + "reinhard.png", expected);
118 result.convertTo(result, CV_8UC3, 255);
119 checkEqual(result, expected, 3, "Reinhard");
120
121 Ptr<TonemapMantiuk> mantiuk = createTonemapMantiuk(gamma);
122 mantiuk->process(img, result);
123 loadImage(test_path + "mantiuk.png", expected);
124 result.convertTo(result, CV_8UC3, 255);
125 checkEqual(result, expected, 3, "Mantiuk");
126 }
127
TEST(Photo_AlignMTB,regression)128 TEST(Photo_AlignMTB, regression)
129 {
130 const int TESTS_COUNT = 100;
131 string folder = string(cvtest::TS::ptr()->get_data_path()) + "shared/";
132
133 string file_name = folder + "lena.png";
134 Mat img;
135 loadImage(file_name, img);
136 cvtColor(img, img, COLOR_RGB2GRAY);
137
138 int max_bits = 5;
139 int max_shift = 32;
140 srand(static_cast<unsigned>(time(0)));
141 int errors = 0;
142
143 Ptr<AlignMTB> align = createAlignMTB(max_bits);
144
145 for(int i = 0; i < TESTS_COUNT; i++) {
146 Point shift(rand() % max_shift, rand() % max_shift);
147 Mat res;
148 align->shiftMat(img, res, shift);
149 Point calc = align->calculateShift(img, res);
150 errors += (calc != -shift);
151 }
152 ASSERT_TRUE(errors < 5) << errors << " errors";
153 }
154
TEST(Photo_MergeMertens,regression)155 TEST(Photo_MergeMertens, regression)
156 {
157 string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
158
159 vector<Mat> images;
160 loadExposureSeq((test_path + "exposures/").c_str() , images);
161
162 Ptr<MergeMertens> merge = createMergeMertens();
163
164 Mat result, expected;
165 loadImage(test_path + "merge/mertens.png", expected);
166 merge->process(images, result);
167 result.convertTo(result, CV_8UC3, 255);
168 checkEqual(expected, result, 3, "Mertens");
169
170 Mat uniform(100, 100, CV_8UC3);
171 uniform = Scalar(0, 255, 0);
172
173 images.clear();
174 images.push_back(uniform);
175
176 merge->process(images, result);
177 result.convertTo(result, CV_8UC3, 255);
178 checkEqual(uniform, result, 1e-2f, "Mertens");
179 }
180
TEST(Photo_MergeDebevec,regression)181 TEST(Photo_MergeDebevec, regression)
182 {
183 string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
184
185 vector<Mat> images;
186 vector<float> times;
187 Mat response;
188 loadExposureSeq(test_path + "exposures/", images, times);
189 loadResponseCSV(test_path + "exposures/response.csv", response);
190
191 Ptr<MergeDebevec> merge = createMergeDebevec();
192
193 Mat result, expected;
194 loadImage(test_path + "merge/debevec.hdr", expected);
195 merge->process(images, result, times, response);
196
197 Ptr<Tonemap> map = createTonemap();
198 map->process(result, result);
199 map->process(expected, expected);
200
201 checkEqual(expected, result, 1e-2f, "Debevec");
202 }
203
TEST(Photo_MergeRobertson,regression)204 TEST(Photo_MergeRobertson, regression)
205 {
206 string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
207
208 vector<Mat> images;
209 vector<float> times;
210 loadExposureSeq(test_path + "exposures/", images, times);
211
212 Ptr<MergeRobertson> merge = createMergeRobertson();
213
214 Mat result, expected;
215 loadImage(test_path + "merge/robertson.hdr", expected);
216 merge->process(images, result, times);
217 Ptr<Tonemap> map = createTonemap();
218 map->process(result, result);
219 map->process(expected, expected);
220
221 checkEqual(expected, result, 1e-2f, "MergeRobertson");
222 }
223
TEST(Photo_CalibrateDebevec,regression)224 TEST(Photo_CalibrateDebevec, regression)
225 {
226 string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
227
228 vector<Mat> images;
229 vector<float> times;
230 Mat response, expected;
231 loadExposureSeq(test_path + "exposures/", images, times);
232 loadResponseCSV(test_path + "calibrate/debevec.csv", expected);
233 Ptr<CalibrateDebevec> calibrate = createCalibrateDebevec();
234
235 calibrate->process(images, response, times);
236 Mat diff = abs(response - expected);
237 diff = diff.mul(1.0f / response);
238 double max;
239 minMaxLoc(diff, NULL, &max);
240 ASSERT_FALSE(max > 0.1);
241 }
242
TEST(Photo_CalibrateRobertson,regression)243 TEST(Photo_CalibrateRobertson, regression)
244 {
245 string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
246
247 vector<Mat> images;
248 vector<float> times;
249 Mat response, expected;
250 loadExposureSeq(test_path + "exposures/", images, times);
251 loadResponseCSV(test_path + "calibrate/robertson.csv", expected);
252
253 Ptr<CalibrateRobertson> calibrate = createCalibrateRobertson();
254 calibrate->process(images, response, times);
255 checkEqual(expected, response, 1e-3f, "CalibrateRobertson");
256 }
257