1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "precomp.hpp"
44 #include "opencl_kernels_stitching.hpp"
45
46 namespace cv {
47 namespace detail {
48
49 static const float WEIGHT_EPS = 1e-5f;
50
createDefault(int type,bool try_gpu)51 Ptr<Blender> Blender::createDefault(int type, bool try_gpu)
52 {
53 if (type == NO)
54 return makePtr<Blender>();
55 if (type == FEATHER)
56 return makePtr<FeatherBlender>();
57 if (type == MULTI_BAND)
58 return makePtr<MultiBandBlender>(try_gpu);
59 CV_Error(Error::StsBadArg, "unsupported blending method");
60 return Ptr<Blender>();
61 }
62
63
prepare(const std::vector<Point> & corners,const std::vector<Size> & sizes)64 void Blender::prepare(const std::vector<Point> &corners, const std::vector<Size> &sizes)
65 {
66 prepare(resultRoi(corners, sizes));
67 }
68
69
prepare(Rect dst_roi)70 void Blender::prepare(Rect dst_roi)
71 {
72 dst_.create(dst_roi.size(), CV_16SC3);
73 dst_.setTo(Scalar::all(0));
74 dst_mask_.create(dst_roi.size(), CV_8U);
75 dst_mask_.setTo(Scalar::all(0));
76 dst_roi_ = dst_roi;
77 }
78
79
feed(InputArray _img,InputArray _mask,Point tl)80 void Blender::feed(InputArray _img, InputArray _mask, Point tl)
81 {
82 Mat img = _img.getMat();
83 Mat mask = _mask.getMat();
84 Mat dst = dst_.getMat(ACCESS_RW);
85 Mat dst_mask = dst_mask_.getMat(ACCESS_RW);
86
87 CV_Assert(img.type() == CV_16SC3);
88 CV_Assert(mask.type() == CV_8U);
89 int dx = tl.x - dst_roi_.x;
90 int dy = tl.y - dst_roi_.y;
91
92 for (int y = 0; y < img.rows; ++y)
93 {
94 const Point3_<short> *src_row = img.ptr<Point3_<short> >(y);
95 Point3_<short> *dst_row = dst.ptr<Point3_<short> >(dy + y);
96 const uchar *mask_row = mask.ptr<uchar>(y);
97 uchar *dst_mask_row = dst_mask.ptr<uchar>(dy + y);
98
99 for (int x = 0; x < img.cols; ++x)
100 {
101 if (mask_row[x])
102 dst_row[dx + x] = src_row[x];
103 dst_mask_row[dx + x] |= mask_row[x];
104 }
105 }
106 }
107
108
blend(InputOutputArray dst,InputOutputArray dst_mask)109 void Blender::blend(InputOutputArray dst, InputOutputArray dst_mask)
110 {
111 UMat mask;
112 compare(dst_mask_, 0, mask, CMP_EQ);
113 dst_.setTo(Scalar::all(0), mask);
114 dst.assign(dst_);
115 dst_mask.assign(dst_mask_);
116 dst_.release();
117 dst_mask_.release();
118 }
119
120
prepare(Rect dst_roi)121 void FeatherBlender::prepare(Rect dst_roi)
122 {
123 Blender::prepare(dst_roi);
124 dst_weight_map_.create(dst_roi.size(), CV_32F);
125 dst_weight_map_.setTo(0);
126 }
127
128
feed(InputArray _img,InputArray mask,Point tl)129 void FeatherBlender::feed(InputArray _img, InputArray mask, Point tl)
130 {
131 Mat img = _img.getMat();
132 Mat dst = dst_.getMat(ACCESS_RW);
133
134 CV_Assert(img.type() == CV_16SC3);
135 CV_Assert(mask.type() == CV_8U);
136
137 createWeightMap(mask, sharpness_, weight_map_);
138 Mat weight_map = weight_map_.getMat(ACCESS_READ);
139 Mat dst_weight_map = dst_weight_map_.getMat(ACCESS_RW);
140
141 int dx = tl.x - dst_roi_.x;
142 int dy = tl.y - dst_roi_.y;
143
144 for (int y = 0; y < img.rows; ++y)
145 {
146 const Point3_<short>* src_row = img.ptr<Point3_<short> >(y);
147 Point3_<short>* dst_row = dst.ptr<Point3_<short> >(dy + y);
148 const float* weight_row = weight_map.ptr<float>(y);
149 float* dst_weight_row = dst_weight_map.ptr<float>(dy + y);
150
151 for (int x = 0; x < img.cols; ++x)
152 {
153 dst_row[dx + x].x += static_cast<short>(src_row[x].x * weight_row[x]);
154 dst_row[dx + x].y += static_cast<short>(src_row[x].y * weight_row[x]);
155 dst_row[dx + x].z += static_cast<short>(src_row[x].z * weight_row[x]);
156 dst_weight_row[dx + x] += weight_row[x];
157 }
158 }
159 }
160
161
blend(InputOutputArray dst,InputOutputArray dst_mask)162 void FeatherBlender::blend(InputOutputArray dst, InputOutputArray dst_mask)
163 {
164 normalizeUsingWeightMap(dst_weight_map_, dst_);
165 compare(dst_weight_map_, WEIGHT_EPS, dst_mask_, CMP_GT);
166 Blender::blend(dst, dst_mask);
167 }
168
169
createWeightMaps(const std::vector<UMat> & masks,const std::vector<Point> & corners,std::vector<UMat> & weight_maps)170 Rect FeatherBlender::createWeightMaps(const std::vector<UMat> &masks, const std::vector<Point> &corners,
171 std::vector<UMat> &weight_maps)
172 {
173 weight_maps.resize(masks.size());
174 for (size_t i = 0; i < masks.size(); ++i)
175 createWeightMap(masks[i], sharpness_, weight_maps[i]);
176
177 Rect dst_roi = resultRoi(corners, masks);
178 Mat weights_sum(dst_roi.size(), CV_32F);
179 weights_sum.setTo(0);
180
181 for (size_t i = 0; i < weight_maps.size(); ++i)
182 {
183 Rect roi(corners[i].x - dst_roi.x, corners[i].y - dst_roi.y,
184 weight_maps[i].cols, weight_maps[i].rows);
185 add(weights_sum(roi), weight_maps[i], weights_sum(roi));
186 }
187
188 for (size_t i = 0; i < weight_maps.size(); ++i)
189 {
190 Rect roi(corners[i].x - dst_roi.x, corners[i].y - dst_roi.y,
191 weight_maps[i].cols, weight_maps[i].rows);
192 Mat tmp = weights_sum(roi);
193 tmp.setTo(1, tmp < std::numeric_limits<float>::epsilon());
194 divide(weight_maps[i], tmp, weight_maps[i]);
195 }
196
197 return dst_roi;
198 }
199
200
MultiBandBlender(int try_gpu,int num_bands,int weight_type)201 MultiBandBlender::MultiBandBlender(int try_gpu, int num_bands, int weight_type)
202 {
203 setNumBands(num_bands);
204
205 #if defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING)
206 can_use_gpu_ = try_gpu && cuda::getCudaEnabledDeviceCount();
207 #else
208 (void) try_gpu;
209 can_use_gpu_ = false;
210 #endif
211
212 CV_Assert(weight_type == CV_32F || weight_type == CV_16S);
213 weight_type_ = weight_type;
214 }
215
216
prepare(Rect dst_roi)217 void MultiBandBlender::prepare(Rect dst_roi)
218 {
219 dst_roi_final_ = dst_roi;
220
221 // Crop unnecessary bands
222 double max_len = static_cast<double>(std::max(dst_roi.width, dst_roi.height));
223 num_bands_ = std::min(actual_num_bands_, static_cast<int>(ceil(std::log(max_len) / std::log(2.0))));
224
225 // Add border to the final image, to ensure sizes are divided by (1 << num_bands_)
226 dst_roi.width += ((1 << num_bands_) - dst_roi.width % (1 << num_bands_)) % (1 << num_bands_);
227 dst_roi.height += ((1 << num_bands_) - dst_roi.height % (1 << num_bands_)) % (1 << num_bands_);
228
229 Blender::prepare(dst_roi);
230
231 dst_pyr_laplace_.resize(num_bands_ + 1);
232 dst_pyr_laplace_[0] = dst_;
233
234 dst_band_weights_.resize(num_bands_ + 1);
235 dst_band_weights_[0].create(dst_roi.size(), weight_type_);
236 dst_band_weights_[0].setTo(0);
237
238 for (int i = 1; i <= num_bands_; ++i)
239 {
240 dst_pyr_laplace_[i].create((dst_pyr_laplace_[i - 1].rows + 1) / 2,
241 (dst_pyr_laplace_[i - 1].cols + 1) / 2, CV_16SC3);
242 dst_band_weights_[i].create((dst_band_weights_[i - 1].rows + 1) / 2,
243 (dst_band_weights_[i - 1].cols + 1) / 2, weight_type_);
244 dst_pyr_laplace_[i].setTo(Scalar::all(0));
245 dst_band_weights_[i].setTo(0);
246 }
247 }
248
249 #ifdef HAVE_OPENCL
ocl_MultiBandBlender_feed(InputArray _src,InputArray _weight,InputOutputArray _dst,InputOutputArray _dst_weight)250 static bool ocl_MultiBandBlender_feed(InputArray _src, InputArray _weight,
251 InputOutputArray _dst, InputOutputArray _dst_weight)
252 {
253 String buildOptions = "-D DEFINE_feed";
254 ocl::buildOptionsAddMatrixDescription(buildOptions, "src", _src);
255 ocl::buildOptionsAddMatrixDescription(buildOptions, "weight", _weight);
256 ocl::buildOptionsAddMatrixDescription(buildOptions, "dst", _dst);
257 ocl::buildOptionsAddMatrixDescription(buildOptions, "dstWeight", _dst_weight);
258 ocl::Kernel k("feed", ocl::stitching::multibandblend_oclsrc, buildOptions);
259 if (k.empty())
260 return false;
261
262 UMat src = _src.getUMat();
263
264 k.args(ocl::KernelArg::ReadOnly(src),
265 ocl::KernelArg::ReadOnly(_weight.getUMat()),
266 ocl::KernelArg::ReadWrite(_dst.getUMat()),
267 ocl::KernelArg::ReadWrite(_dst_weight.getUMat())
268 );
269
270 size_t globalsize[2] = {src.cols, src.rows };
271 return k.run(2, globalsize, NULL, false);
272 }
273 #endif
274
feed(InputArray _img,InputArray mask,Point tl)275 void MultiBandBlender::feed(InputArray _img, InputArray mask, Point tl)
276 {
277 #if ENABLE_LOG
278 int64 t = getTickCount();
279 #endif
280
281 UMat img = _img.getUMat();
282 CV_Assert(img.type() == CV_16SC3 || img.type() == CV_8UC3);
283 CV_Assert(mask.type() == CV_8U);
284
285 // Keep source image in memory with small border
286 int gap = 3 * (1 << num_bands_);
287 Point tl_new(std::max(dst_roi_.x, tl.x - gap),
288 std::max(dst_roi_.y, tl.y - gap));
289 Point br_new(std::min(dst_roi_.br().x, tl.x + img.cols + gap),
290 std::min(dst_roi_.br().y, tl.y + img.rows + gap));
291
292 // Ensure coordinates of top-left, bottom-right corners are divided by (1 << num_bands_).
293 // After that scale between layers is exactly 2.
294 //
295 // We do it to avoid interpolation problems when keeping sub-images only. There is no such problem when
296 // image is bordered to have size equal to the final image size, but this is too memory hungry approach.
297 tl_new.x = dst_roi_.x + (((tl_new.x - dst_roi_.x) >> num_bands_) << num_bands_);
298 tl_new.y = dst_roi_.y + (((tl_new.y - dst_roi_.y) >> num_bands_) << num_bands_);
299 int width = br_new.x - tl_new.x;
300 int height = br_new.y - tl_new.y;
301 width += ((1 << num_bands_) - width % (1 << num_bands_)) % (1 << num_bands_);
302 height += ((1 << num_bands_) - height % (1 << num_bands_)) % (1 << num_bands_);
303 br_new.x = tl_new.x + width;
304 br_new.y = tl_new.y + height;
305 int dy = std::max(br_new.y - dst_roi_.br().y, 0);
306 int dx = std::max(br_new.x - dst_roi_.br().x, 0);
307 tl_new.x -= dx; br_new.x -= dx;
308 tl_new.y -= dy; br_new.y -= dy;
309
310 int top = tl.y - tl_new.y;
311 int left = tl.x - tl_new.x;
312 int bottom = br_new.y - tl.y - img.rows;
313 int right = br_new.x - tl.x - img.cols;
314
315 // Create the source image Laplacian pyramid
316 UMat img_with_border;
317 copyMakeBorder(_img, img_with_border, top, bottom, left, right,
318 BORDER_REFLECT);
319 LOGLN(" Add border to the source image, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
320 #if ENABLE_LOG
321 t = getTickCount();
322 #endif
323
324 std::vector<UMat> src_pyr_laplace;
325 if (can_use_gpu_ && img_with_border.depth() == CV_16S)
326 createLaplacePyrGpu(img_with_border, num_bands_, src_pyr_laplace);
327 else
328 createLaplacePyr(img_with_border, num_bands_, src_pyr_laplace);
329
330 LOGLN(" Create the source image Laplacian pyramid, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
331 #if ENABLE_LOG
332 t = getTickCount();
333 #endif
334
335 // Create the weight map Gaussian pyramid
336 UMat weight_map;
337 std::vector<UMat> weight_pyr_gauss(num_bands_ + 1);
338
339 if(weight_type_ == CV_32F)
340 {
341 mask.getUMat().convertTo(weight_map, CV_32F, 1./255.);
342 }
343 else // weight_type_ == CV_16S
344 {
345 mask.getUMat().convertTo(weight_map, CV_16S);
346 UMat add_mask;
347 compare(mask, 0, add_mask, CMP_NE);
348 add(weight_map, Scalar::all(1), weight_map, add_mask);
349 }
350
351 copyMakeBorder(weight_map, weight_pyr_gauss[0], top, bottom, left, right, BORDER_CONSTANT);
352
353 for (int i = 0; i < num_bands_; ++i)
354 pyrDown(weight_pyr_gauss[i], weight_pyr_gauss[i + 1]);
355
356 LOGLN(" Create the weight map Gaussian pyramid, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
357 #if ENABLE_LOG
358 t = getTickCount();
359 #endif
360
361 int y_tl = tl_new.y - dst_roi_.y;
362 int y_br = br_new.y - dst_roi_.y;
363 int x_tl = tl_new.x - dst_roi_.x;
364 int x_br = br_new.x - dst_roi_.x;
365
366 // Add weighted layer of the source image to the final Laplacian pyramid layer
367 for (int i = 0; i <= num_bands_; ++i)
368 {
369 Rect rc(x_tl, y_tl, x_br - x_tl, y_br - y_tl);
370 #ifdef HAVE_OPENCL
371 if ( !cv::ocl::useOpenCL() ||
372 !ocl_MultiBandBlender_feed(src_pyr_laplace[i], weight_pyr_gauss[i],
373 dst_pyr_laplace_[i](rc), dst_band_weights_[i](rc)) )
374 #endif
375 {
376 Mat _src_pyr_laplace = src_pyr_laplace[i].getMat(ACCESS_READ);
377 Mat _dst_pyr_laplace = dst_pyr_laplace_[i](rc).getMat(ACCESS_RW);
378 Mat _weight_pyr_gauss = weight_pyr_gauss[i].getMat(ACCESS_READ);
379 Mat _dst_band_weights = dst_band_weights_[i](rc).getMat(ACCESS_RW);
380 if(weight_type_ == CV_32F)
381 {
382 for (int y = 0; y < rc.height; ++y)
383 {
384 const Point3_<short>* src_row = _src_pyr_laplace.ptr<Point3_<short> >(y);
385 Point3_<short>* dst_row = _dst_pyr_laplace.ptr<Point3_<short> >(y);
386 const float* weight_row = _weight_pyr_gauss.ptr<float>(y);
387 float* dst_weight_row = _dst_band_weights.ptr<float>(y);
388
389 for (int x = 0; x < rc.width; ++x)
390 {
391 dst_row[x].x += static_cast<short>(src_row[x].x * weight_row[x]);
392 dst_row[x].y += static_cast<short>(src_row[x].y * weight_row[x]);
393 dst_row[x].z += static_cast<short>(src_row[x].z * weight_row[x]);
394 dst_weight_row[x] += weight_row[x];
395 }
396 }
397 }
398 else // weight_type_ == CV_16S
399 {
400 for (int y = 0; y < y_br - y_tl; ++y)
401 {
402 const Point3_<short>* src_row = _src_pyr_laplace.ptr<Point3_<short> >(y);
403 Point3_<short>* dst_row = _dst_pyr_laplace.ptr<Point3_<short> >(y);
404 const short* weight_row = _weight_pyr_gauss.ptr<short>(y);
405 short* dst_weight_row = _dst_band_weights.ptr<short>(y);
406
407 for (int x = 0; x < x_br - x_tl; ++x)
408 {
409 dst_row[x].x += short((src_row[x].x * weight_row[x]) >> 8);
410 dst_row[x].y += short((src_row[x].y * weight_row[x]) >> 8);
411 dst_row[x].z += short((src_row[x].z * weight_row[x]) >> 8);
412 dst_weight_row[x] += weight_row[x];
413 }
414 }
415 }
416 }
417 #ifdef HAVE_OPENCL
418 else
419 {
420 CV_IMPL_ADD(CV_IMPL_OCL);
421 }
422 #endif
423
424 x_tl /= 2; y_tl /= 2;
425 x_br /= 2; y_br /= 2;
426 }
427
428 LOGLN(" Add weighted layer of the source image to the final Laplacian pyramid layer, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
429 }
430
431
blend(InputOutputArray dst,InputOutputArray dst_mask)432 void MultiBandBlender::blend(InputOutputArray dst, InputOutputArray dst_mask)
433 {
434 for (int i = 0; i <= num_bands_; ++i)
435 normalizeUsingWeightMap(dst_band_weights_[i], dst_pyr_laplace_[i]);
436
437 if (can_use_gpu_)
438 restoreImageFromLaplacePyrGpu(dst_pyr_laplace_);
439 else
440 restoreImageFromLaplacePyr(dst_pyr_laplace_);
441
442 Rect dst_rc(0, 0, dst_roi_final_.width, dst_roi_final_.height);
443 dst_ = dst_pyr_laplace_[0](dst_rc);
444 UMat _dst_mask;
445 compare(dst_band_weights_[0](dst_rc), WEIGHT_EPS, dst_mask_, CMP_GT);
446 dst_pyr_laplace_.clear();
447 dst_band_weights_.clear();
448
449 Blender::blend(dst, dst_mask);
450 }
451
452
453 //////////////////////////////////////////////////////////////////////////////
454 // Auxiliary functions
455
456 #ifdef HAVE_OPENCL
ocl_normalizeUsingWeightMap(InputArray _weight,InputOutputArray _mat)457 static bool ocl_normalizeUsingWeightMap(InputArray _weight, InputOutputArray _mat)
458 {
459 String buildOptions = "-D DEFINE_normalizeUsingWeightMap";
460 ocl::buildOptionsAddMatrixDescription(buildOptions, "mat", _mat);
461 ocl::buildOptionsAddMatrixDescription(buildOptions, "weight", _weight);
462 ocl::Kernel k("normalizeUsingWeightMap", ocl::stitching::multibandblend_oclsrc, buildOptions);
463 if (k.empty())
464 return false;
465
466 UMat mat = _mat.getUMat();
467
468 k.args(ocl::KernelArg::ReadWrite(mat),
469 ocl::KernelArg::ReadOnly(_weight.getUMat())
470 );
471
472 size_t globalsize[2] = {mat.cols, mat.rows };
473 return k.run(2, globalsize, NULL, false);
474 }
475 #endif
476
normalizeUsingWeightMap(InputArray _weight,InputOutputArray _src)477 void normalizeUsingWeightMap(InputArray _weight, InputOutputArray _src)
478 {
479 Mat src;
480 Mat weight;
481 #ifdef HAVE_TEGRA_OPTIMIZATION
482 src = _src.getMat();
483 weight = _weight.getMat();
484 if(tegra::useTegra() && tegra::normalizeUsingWeightMap(weight, src))
485 return;
486 #endif
487
488 #ifdef HAVE_OPENCL
489 if ( !cv::ocl::useOpenCL() ||
490 !ocl_normalizeUsingWeightMap(_weight, _src) )
491 #endif
492 {
493 src = _src.getMat();
494 weight = _weight.getMat();
495
496 CV_Assert(src.type() == CV_16SC3);
497
498 if (weight.type() == CV_32FC1)
499 {
500 for (int y = 0; y < src.rows; ++y)
501 {
502 Point3_<short> *row = src.ptr<Point3_<short> >(y);
503 const float *weight_row = weight.ptr<float>(y);
504
505 for (int x = 0; x < src.cols; ++x)
506 {
507 row[x].x = static_cast<short>(row[x].x / (weight_row[x] + WEIGHT_EPS));
508 row[x].y = static_cast<short>(row[x].y / (weight_row[x] + WEIGHT_EPS));
509 row[x].z = static_cast<short>(row[x].z / (weight_row[x] + WEIGHT_EPS));
510 }
511 }
512 }
513 else
514 {
515 CV_Assert(weight.type() == CV_16SC1);
516
517 for (int y = 0; y < src.rows; ++y)
518 {
519 const short *weight_row = weight.ptr<short>(y);
520 Point3_<short> *row = src.ptr<Point3_<short> >(y);
521
522 for (int x = 0; x < src.cols; ++x)
523 {
524 int w = weight_row[x] + 1;
525 row[x].x = static_cast<short>((row[x].x << 8) / w);
526 row[x].y = static_cast<short>((row[x].y << 8) / w);
527 row[x].z = static_cast<short>((row[x].z << 8) / w);
528 }
529 }
530 }
531 }
532 #ifdef HAVE_OPENCL
533 else
534 {
535 CV_IMPL_ADD(CV_IMPL_OCL);
536 }
537 #endif
538 }
539
540
createWeightMap(InputArray mask,float sharpness,InputOutputArray weight)541 void createWeightMap(InputArray mask, float sharpness, InputOutputArray weight)
542 {
543 CV_Assert(mask.type() == CV_8U);
544 distanceTransform(mask, weight, DIST_L1, 3);
545 UMat tmp;
546 multiply(weight, sharpness, tmp);
547 threshold(tmp, weight, 1.f, 1.f, THRESH_TRUNC);
548 }
549
550
createLaplacePyr(InputArray img,int num_levels,std::vector<UMat> & pyr)551 void createLaplacePyr(InputArray img, int num_levels, std::vector<UMat> &pyr)
552 {
553 #ifdef HAVE_TEGRA_OPTIMIZATION
554 cv::Mat imgMat = img.getMat();
555 if(tegra::useTegra() && tegra::createLaplacePyr(imgMat, num_levels, pyr))
556 return;
557 #endif
558
559 pyr.resize(num_levels + 1);
560
561 if(img.depth() == CV_8U)
562 {
563 if(num_levels == 0)
564 {
565 img.getUMat().convertTo(pyr[0], CV_16S);
566 return;
567 }
568
569 UMat downNext;
570 UMat current = img.getUMat();
571 pyrDown(img, downNext);
572
573 for(int i = 1; i < num_levels; ++i)
574 {
575 UMat lvl_up;
576 UMat lvl_down;
577
578 pyrDown(downNext, lvl_down);
579 pyrUp(downNext, lvl_up, current.size());
580 subtract(current, lvl_up, pyr[i-1], noArray(), CV_16S);
581
582 current = downNext;
583 downNext = lvl_down;
584 }
585
586 {
587 UMat lvl_up;
588 pyrUp(downNext, lvl_up, current.size());
589 subtract(current, lvl_up, pyr[num_levels-1], noArray(), CV_16S);
590
591 downNext.convertTo(pyr[num_levels], CV_16S);
592 }
593 }
594 else
595 {
596 pyr[0] = img.getUMat();
597 for (int i = 0; i < num_levels; ++i)
598 pyrDown(pyr[i], pyr[i + 1]);
599 UMat tmp;
600 for (int i = 0; i < num_levels; ++i)
601 {
602 pyrUp(pyr[i + 1], tmp, pyr[i].size());
603 subtract(pyr[i], tmp, pyr[i]);
604 }
605 }
606 }
607
608
createLaplacePyrGpu(InputArray img,int num_levels,std::vector<UMat> & pyr)609 void createLaplacePyrGpu(InputArray img, int num_levels, std::vector<UMat> &pyr)
610 {
611 #if defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING)
612 pyr.resize(num_levels + 1);
613
614 std::vector<cuda::GpuMat> gpu_pyr(num_levels + 1);
615 gpu_pyr[0].upload(img);
616 for (int i = 0; i < num_levels; ++i)
617 cuda::pyrDown(gpu_pyr[i], gpu_pyr[i + 1]);
618
619 cuda::GpuMat tmp;
620 for (int i = 0; i < num_levels; ++i)
621 {
622 cuda::pyrUp(gpu_pyr[i + 1], tmp);
623 cuda::subtract(gpu_pyr[i], tmp, gpu_pyr[i]);
624 gpu_pyr[i].download(pyr[i]);
625 }
626
627 gpu_pyr[num_levels].download(pyr[num_levels]);
628 #else
629 (void)img;
630 (void)num_levels;
631 (void)pyr;
632 CV_Error(Error::StsNotImplemented, "CUDA optimization is unavailable");
633 #endif
634 }
635
636
restoreImageFromLaplacePyr(std::vector<UMat> & pyr)637 void restoreImageFromLaplacePyr(std::vector<UMat> &pyr)
638 {
639 if (pyr.empty())
640 return;
641 UMat tmp;
642 for (size_t i = pyr.size() - 1; i > 0; --i)
643 {
644 pyrUp(pyr[i], tmp, pyr[i - 1].size());
645 add(tmp, pyr[i - 1], pyr[i - 1]);
646 }
647 }
648
649
restoreImageFromLaplacePyrGpu(std::vector<UMat> & pyr)650 void restoreImageFromLaplacePyrGpu(std::vector<UMat> &pyr)
651 {
652 #if defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING)
653 if (pyr.empty())
654 return;
655
656 std::vector<cuda::GpuMat> gpu_pyr(pyr.size());
657 for (size_t i = 0; i < pyr.size(); ++i)
658 gpu_pyr[i].upload(pyr[i]);
659
660 cuda::GpuMat tmp;
661 for (size_t i = pyr.size() - 1; i > 0; --i)
662 {
663 cuda::pyrUp(gpu_pyr[i], tmp);
664 cuda::add(tmp, gpu_pyr[i - 1], gpu_pyr[i - 1]);
665 }
666
667 gpu_pyr[0].download(pyr[0]);
668 #else
669 (void)pyr;
670 CV_Error(Error::StsNotImplemented, "CUDA optimization is unavailable");
671 #endif
672 }
673
674 } // namespace detail
675 } // namespace cv
676