1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "test_precomp.hpp"
44 #include "opencv2/ts/ocl_test.hpp"
45
46 #if BUILD_WITH_VIDEO_INPUT_SUPPORT
47
48 class AllignedFrameSource : public cv::superres::FrameSource
49 {
50 public:
51 AllignedFrameSource(const cv::Ptr<cv::superres::FrameSource>& base, int scale);
52
53 void nextFrame(cv::OutputArray frame);
54 void reset();
55
56 private:
57 cv::Ptr<cv::superres::FrameSource> base_;
58
59 cv::Mat origFrame_;
60 int scale_;
61 };
62
AllignedFrameSource(const cv::Ptr<cv::superres::FrameSource> & base,int scale)63 AllignedFrameSource::AllignedFrameSource(const cv::Ptr<cv::superres::FrameSource>& base, int scale) :
64 base_(base), scale_(scale)
65 {
66 CV_Assert( base_ );
67 }
68
nextFrame(cv::OutputArray frame)69 void AllignedFrameSource::nextFrame(cv::OutputArray frame)
70 {
71 base_->nextFrame(origFrame_);
72
73 if (origFrame_.rows % scale_ == 0 && origFrame_.cols % scale_ == 0)
74 cv::superres::arrCopy(origFrame_, frame);
75 else
76 {
77 cv::Rect ROI(0, 0, (origFrame_.cols / scale_) * scale_, (origFrame_.rows / scale_) * scale_);
78 cv::superres::arrCopy(origFrame_(ROI), frame);
79 }
80 }
81
reset()82 void AllignedFrameSource::reset()
83 {
84 base_->reset();
85 }
86
87 class DegradeFrameSource : public cv::superres::FrameSource
88 {
89 public:
90 DegradeFrameSource(const cv::Ptr<cv::superres::FrameSource>& base, int scale);
91
92 void nextFrame(cv::OutputArray frame);
93 void reset();
94
95 private:
96 cv::Ptr<cv::superres::FrameSource> base_;
97
98 cv::Mat origFrame_;
99 cv::Mat blurred_;
100 cv::Mat deg_;
101 double iscale_;
102 };
103
DegradeFrameSource(const cv::Ptr<cv::superres::FrameSource> & base,int scale)104 DegradeFrameSource::DegradeFrameSource(const cv::Ptr<cv::superres::FrameSource>& base, int scale) :
105 base_(base), iscale_(1.0 / scale)
106 {
107 CV_Assert( base_ );
108 }
109
addGaussNoise(cv::OutputArray _image,double sigma)110 static void addGaussNoise(cv::OutputArray _image, double sigma)
111 {
112 int type = _image.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
113 cv::Mat noise(_image.size(), CV_32FC(cn));
114 cvtest::TS::ptr()->get_rng().fill(noise, cv::RNG::NORMAL, 0.0, sigma);
115
116 cv::addWeighted(_image, 1.0, noise, 1.0, 0.0, _image, depth);
117 }
118
addSpikeNoise(cv::OutputArray _image,int frequency)119 static void addSpikeNoise(cv::OutputArray _image, int frequency)
120 {
121 cv::Mat_<uchar> mask(_image.size(), 0);
122
123 for (int y = 0; y < mask.rows; ++y)
124 for (int x = 0; x < mask.cols; ++x)
125 if (cvtest::TS::ptr()->get_rng().uniform(0, frequency) < 1)
126 mask(y, x) = 255;
127
128 _image.setTo(cv::Scalar::all(255), mask);
129 }
130
nextFrame(cv::OutputArray frame)131 void DegradeFrameSource::nextFrame(cv::OutputArray frame)
132 {
133 base_->nextFrame(origFrame_);
134
135 cv::GaussianBlur(origFrame_, blurred_, cv::Size(5, 5), 0);
136 cv::resize(blurred_, deg_, cv::Size(), iscale_, iscale_, cv::INTER_NEAREST);
137
138 addGaussNoise(deg_, 10.0);
139 addSpikeNoise(deg_, 500);
140
141 cv::superres::arrCopy(deg_, frame);
142 }
143
reset()144 void DegradeFrameSource::reset()
145 {
146 base_->reset();
147 }
148
MSSIM(cv::InputArray _i1,cv::InputArray _i2)149 double MSSIM(cv::InputArray _i1, cv::InputArray _i2)
150 {
151 const double C1 = 6.5025;
152 const double C2 = 58.5225;
153
154 const int depth = CV_32F;
155
156 cv::Mat I1, I2;
157 _i1.getMat().convertTo(I1, depth);
158 _i2.getMat().convertTo(I2, depth);
159
160 cv::Mat I2_2 = I2.mul(I2); // I2^2
161 cv::Mat I1_2 = I1.mul(I1); // I1^2
162 cv::Mat I1_I2 = I1.mul(I2); // I1 * I2
163
164 cv::Mat mu1, mu2;
165 cv::GaussianBlur(I1, mu1, cv::Size(11, 11), 1.5);
166 cv::GaussianBlur(I2, mu2, cv::Size(11, 11), 1.5);
167
168 cv::Mat mu1_2 = mu1.mul(mu1);
169 cv::Mat mu2_2 = mu2.mul(mu2);
170 cv::Mat mu1_mu2 = mu1.mul(mu2);
171
172 cv::Mat sigma1_2, sigma2_2, sigma12;
173
174 cv::GaussianBlur(I1_2, sigma1_2, cv::Size(11, 11), 1.5);
175 sigma1_2 -= mu1_2;
176
177 cv::GaussianBlur(I2_2, sigma2_2, cv::Size(11, 11), 1.5);
178 sigma2_2 -= mu2_2;
179
180 cv::GaussianBlur(I1_I2, sigma12, cv::Size(11, 11), 1.5);
181 sigma12 -= mu1_mu2;
182
183 cv::Mat t1, t2;
184 cv::Mat numerator;
185 cv::Mat denominator;
186
187 // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
188 t1 = 2 * mu1_mu2 + C1;
189 t2 = 2 * sigma12 + C2;
190 numerator = t1.mul(t2);
191
192 // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
193 t1 = mu1_2 + mu2_2 + C1;
194 t2 = sigma1_2 + sigma2_2 + C2;
195 denominator = t1.mul(t2);
196
197 // ssim_map = numerator./denominator;
198 cv::Mat ssim_map;
199 cv::divide(numerator, denominator, ssim_map);
200
201 // mssim = average of ssim map
202 cv::Scalar mssim = cv::mean(ssim_map);
203
204 if (_i1.channels() == 1)
205 return mssim[0];
206
207 return (mssim[0] + mssim[1] + mssim[3]) / 3;
208 }
209
210 class SuperResolution : public testing::Test
211 {
212 public:
213 template <typename T>
214 void RunTest(cv::Ptr<cv::superres::SuperResolution> superRes);
215 };
216
217 template <typename T>
RunTest(cv::Ptr<cv::superres::SuperResolution> superRes)218 void SuperResolution::RunTest(cv::Ptr<cv::superres::SuperResolution> superRes)
219 {
220 const std::string inputVideoName = cvtest::TS::ptr()->get_data_path() + "car.avi";
221 const int scale = 2;
222 const int iterations = 100;
223 const int temporalAreaRadius = 2;
224
225 ASSERT_FALSE( superRes.empty() );
226
227 const int btvKernelSize = superRes->getKernelSize();
228
229 superRes->setScale(scale);
230 superRes->setIterations(iterations);
231 superRes->setTemporalAreaRadius(temporalAreaRadius);
232
233 cv::Ptr<cv::superres::FrameSource> goldSource(new AllignedFrameSource(cv::superres::createFrameSource_Video(inputVideoName), scale));
234 cv::Ptr<cv::superres::FrameSource> lowResSource(new DegradeFrameSource(
235 cv::makePtr<AllignedFrameSource>(cv::superres::createFrameSource_Video(inputVideoName), scale), scale));
236
237 // skip first frame
238 cv::Mat frame;
239
240 lowResSource->nextFrame(frame);
241 goldSource->nextFrame(frame);
242
243 cv::Rect inner(btvKernelSize, btvKernelSize, frame.cols - 2 * btvKernelSize, frame.rows - 2 * btvKernelSize);
244
245 superRes->setInput(lowResSource);
246
247 double srAvgMSSIM = 0.0;
248 const int count = 10;
249
250 cv::Mat goldFrame;
251 T superResFrame;
252 for (int i = 0; i < count; ++i)
253 {
254 goldSource->nextFrame(goldFrame);
255 ASSERT_FALSE( goldFrame.empty() );
256
257 superRes->nextFrame(superResFrame);
258 ASSERT_FALSE( superResFrame.empty() );
259
260 const double srMSSIM = MSSIM(goldFrame(inner), superResFrame);
261
262 srAvgMSSIM += srMSSIM;
263 }
264
265 srAvgMSSIM /= count;
266
267 EXPECT_GE( srAvgMSSIM, 0.5 );
268 }
269
TEST_F(SuperResolution,BTVL1)270 TEST_F(SuperResolution, BTVL1)
271 {
272 RunTest<cv::Mat>(cv::superres::createSuperResolution_BTVL1());
273 }
274
275 #if defined(HAVE_CUDA) && defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING) && defined(HAVE_OPENCV_CUDAFILTERS)
276
TEST_F(SuperResolution,BTVL1_CUDA)277 TEST_F(SuperResolution, BTVL1_CUDA)
278 {
279 RunTest<cv::Mat>(cv::superres::createSuperResolution_BTVL1_CUDA());
280 }
281
282 #endif
283
284 #ifdef HAVE_OPENCL
285
286 namespace cvtest {
287 namespace ocl {
288
OCL_TEST_F(SuperResolution,BTVL1)289 OCL_TEST_F(SuperResolution, BTVL1)
290 {
291 RunTest<cv::UMat>(cv::superres::createSuperResolution_BTVL1());
292 }
293
294 } } // namespace cvtest::ocl
295
296 #endif
297
298 #endif // BUILD_WITH_VIDEO_INPUT_SUPPORT
299