1 // Copyright 2014 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef PDFIUM_THIRD_PARTY_SAFE_MATH_IMPL_H_ 6 #define PDFIUM_THIRD_PARTY_SAFE_MATH_IMPL_H_ 7 8 #include <stdint.h> 9 10 #include <cmath> 11 #include <cstdlib> 12 #include <limits> 13 #include <type_traits> 14 15 #include "safe_conversions.h" 16 #include "third_party/base/macros.h" 17 18 namespace pdfium { 19 namespace base { 20 namespace internal { 21 22 // Everything from here up to the floating point operations is portable C++, 23 // but it may not be fast. This code could be split based on 24 // platform/architecture and replaced with potentially faster implementations. 25 26 // Integer promotion templates used by the portable checked integer arithmetic. 27 template <size_t Size, bool IsSigned> 28 struct IntegerForSizeAndSign; 29 template <> 30 struct IntegerForSizeAndSign<1, true> { 31 typedef int8_t type; 32 }; 33 template <> 34 struct IntegerForSizeAndSign<1, false> { 35 typedef uint8_t type; 36 }; 37 template <> 38 struct IntegerForSizeAndSign<2, true> { 39 typedef int16_t type; 40 }; 41 template <> 42 struct IntegerForSizeAndSign<2, false> { 43 typedef uint16_t type; 44 }; 45 template <> 46 struct IntegerForSizeAndSign<4, true> { 47 typedef int32_t type; 48 }; 49 template <> 50 struct IntegerForSizeAndSign<4, false> { 51 typedef uint32_t type; 52 }; 53 template <> 54 struct IntegerForSizeAndSign<8, true> { 55 typedef int64_t type; 56 }; 57 template <> 58 struct IntegerForSizeAndSign<8, false> { 59 typedef uint64_t type; 60 }; 61 62 // WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to 63 // support 128-bit math, then the ArithmeticPromotion template below will need 64 // to be updated (or more likely replaced with a decltype expression). 65 66 template <typename Integer> 67 struct UnsignedIntegerForSize { 68 typedef typename std::enable_if< 69 std::numeric_limits<Integer>::is_integer, 70 typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type; 71 }; 72 73 template <typename Integer> 74 struct SignedIntegerForSize { 75 typedef typename std::enable_if< 76 std::numeric_limits<Integer>::is_integer, 77 typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type; 78 }; 79 80 template <typename Integer> 81 struct TwiceWiderInteger { 82 typedef typename std::enable_if< 83 std::numeric_limits<Integer>::is_integer, 84 typename IntegerForSizeAndSign< 85 sizeof(Integer) * 2, 86 std::numeric_limits<Integer>::is_signed>::type>::type type; 87 }; 88 89 template <typename Integer> 90 struct PositionOfSignBit { 91 static const typename std::enable_if<std::numeric_limits<Integer>::is_integer, 92 size_t>::type value = 93 8 * sizeof(Integer) - 1; 94 }; 95 96 // Helper templates for integer manipulations. 97 98 template <typename T> 99 bool HasSignBit(T x) { 100 // Cast to unsigned since right shift on signed is undefined. 101 return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >> 102 PositionOfSignBit<T>::value); 103 } 104 105 // This wrapper undoes the standard integer promotions. 106 template <typename T> 107 T BinaryComplement(T x) { 108 return ~x; 109 } 110 111 // Here are the actual portable checked integer math implementations. 112 // TODO(jschuh): Break this code out from the enable_if pattern and find a clean 113 // way to coalesce things into the CheckedNumericState specializations below. 114 115 template <typename T> 116 typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type 117 CheckedAdd(T x, T y, RangeConstraint* validity) { 118 // Since the value of x+y is undefined if we have a signed type, we compute 119 // it using the unsigned type of the same size. 120 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; 121 UnsignedDst ux = static_cast<UnsignedDst>(x); 122 UnsignedDst uy = static_cast<UnsignedDst>(y); 123 UnsignedDst uresult = ux + uy; 124 // Addition is valid if the sign of (x + y) is equal to either that of x or 125 // that of y. 126 if (std::numeric_limits<T>::is_signed) { 127 if (HasSignBit(BinaryComplement((uresult ^ ux) & (uresult ^ uy)))) 128 *validity = RANGE_VALID; 129 else // Direction of wrap is inverse of result sign. 130 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; 131 132 } else { // Unsigned is either valid or overflow. 133 *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW; 134 } 135 return static_cast<T>(uresult); 136 } 137 138 template <typename T> 139 typename std::enable_if<std::numeric_limits<T>::is_integer, T>::type 140 CheckedSub(T x, T y, RangeConstraint* validity) { 141 // Since the value of x+y is undefined if we have a signed type, we compute 142 // it using the unsigned type of the same size. 143 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst; 144 UnsignedDst ux = static_cast<UnsignedDst>(x); 145 UnsignedDst uy = static_cast<UnsignedDst>(y); 146 UnsignedDst uresult = ux - uy; 147 // Subtraction is valid if either x and y have same sign, or (x-y) and x have 148 // the same sign. 149 if (std::numeric_limits<T>::is_signed) { 150 if (HasSignBit(BinaryComplement((uresult ^ ux) & (ux ^ uy)))) 151 *validity = RANGE_VALID; 152 else // Direction of wrap is inverse of result sign. 153 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW; 154 155 } else { // Unsigned is either valid or underflow. 156 *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW; 157 } 158 return static_cast<T>(uresult); 159 } 160 161 // Integer multiplication is a bit complicated. In the fast case we just 162 // we just promote to a twice wider type, and range check the result. In the 163 // slow case we need to manually check that the result won't be truncated by 164 // checking with division against the appropriate bound. 165 template <typename T> 166 typename std::enable_if<std::numeric_limits<T>::is_integer && 167 sizeof(T) * 2 <= sizeof(uintmax_t), 168 T>::type 169 CheckedMul(T x, T y, RangeConstraint* validity) { 170 typedef typename TwiceWiderInteger<T>::type IntermediateType; 171 IntermediateType tmp = 172 static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y); 173 *validity = DstRangeRelationToSrcRange<T>(tmp); 174 return static_cast<T>(tmp); 175 } 176 177 template <typename T> 178 typename std::enable_if<std::numeric_limits<T>::is_integer && 179 std::numeric_limits<T>::is_signed && 180 (sizeof(T) * 2 > sizeof(uintmax_t)), 181 T>::type 182 CheckedMul(T x, T y, RangeConstraint* validity) { 183 // If either side is zero then the result will be zero. 184 if (!x || !y) { 185 return RANGE_VALID; 186 187 } else if (x > 0) { 188 if (y > 0) 189 *validity = 190 x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW; 191 else 192 *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID 193 : RANGE_UNDERFLOW; 194 195 } else { 196 if (y > 0) 197 *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID 198 : RANGE_UNDERFLOW; 199 else 200 *validity = 201 y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW; 202 } 203 204 return x * y; 205 } 206 207 template <typename T> 208 typename std::enable_if<std::numeric_limits<T>::is_integer && 209 !std::numeric_limits<T>::is_signed && 210 (sizeof(T) * 2 > sizeof(uintmax_t)), 211 T>::type 212 CheckedMul(T x, T y, RangeConstraint* validity) { 213 *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y) 214 ? RANGE_VALID 215 : RANGE_OVERFLOW; 216 return x * y; 217 } 218 219 // Division just requires a check for an invalid negation on signed min/-1. 220 template <typename T> 221 T CheckedDiv(T x, 222 T y, 223 RangeConstraint* validity, 224 typename std::enable_if<std::numeric_limits<T>::is_integer, 225 int>::type = 0) { 226 if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() && 227 y == static_cast<T>(-1)) { 228 *validity = RANGE_OVERFLOW; 229 return std::numeric_limits<T>::min(); 230 } 231 232 *validity = RANGE_VALID; 233 return x / y; 234 } 235 236 template <typename T> 237 typename std::enable_if<std::numeric_limits<T>::is_integer && 238 std::numeric_limits<T>::is_signed, 239 T>::type 240 CheckedMod(T x, T y, RangeConstraint* validity) { 241 *validity = y > 0 ? RANGE_VALID : RANGE_INVALID; 242 return x % y; 243 } 244 245 template <typename T> 246 typename std::enable_if<std::numeric_limits<T>::is_integer && 247 !std::numeric_limits<T>::is_signed, 248 T>::type 249 CheckedMod(T x, T y, RangeConstraint* validity) { 250 *validity = RANGE_VALID; 251 return x % y; 252 } 253 254 template <typename T> 255 typename std::enable_if<std::numeric_limits<T>::is_integer && 256 std::numeric_limits<T>::is_signed, 257 T>::type 258 CheckedNeg(T value, RangeConstraint* validity) { 259 *validity = 260 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; 261 // The negation of signed min is min, so catch that one. 262 return -value; 263 } 264 265 template <typename T> 266 typename std::enable_if<std::numeric_limits<T>::is_integer && 267 !std::numeric_limits<T>::is_signed, 268 T>::type 269 CheckedNeg(T value, RangeConstraint* validity) { 270 // The only legal unsigned negation is zero. 271 *validity = value ? RANGE_UNDERFLOW : RANGE_VALID; 272 return static_cast<T>( 273 -static_cast<typename SignedIntegerForSize<T>::type>(value)); 274 } 275 276 template <typename T> 277 typename std::enable_if<std::numeric_limits<T>::is_integer && 278 std::numeric_limits<T>::is_signed, 279 T>::type 280 CheckedAbs(T value, RangeConstraint* validity) { 281 *validity = 282 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW; 283 return std::abs(value); 284 } 285 286 template <typename T> 287 typename std::enable_if<std::numeric_limits<T>::is_integer && 288 !std::numeric_limits<T>::is_signed, 289 T>::type 290 CheckedAbs(T value, RangeConstraint* validity) { 291 // Absolute value of a positive is just its identiy. 292 *validity = RANGE_VALID; 293 return value; 294 } 295 296 // These are the floating point stubs that the compiler needs to see. Only the 297 // negation operation is ever called. 298 #define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \ 299 template <typename T> \ 300 typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type \ 301 Checked##NAME(T, T, RangeConstraint*) { \ 302 NOTREACHED(); \ 303 return 0; \ 304 } 305 306 BASE_FLOAT_ARITHMETIC_STUBS(Add) 307 BASE_FLOAT_ARITHMETIC_STUBS(Sub) 308 BASE_FLOAT_ARITHMETIC_STUBS(Mul) 309 BASE_FLOAT_ARITHMETIC_STUBS(Div) 310 BASE_FLOAT_ARITHMETIC_STUBS(Mod) 311 312 #undef BASE_FLOAT_ARITHMETIC_STUBS 313 314 template <typename T> 315 typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg( 316 T value, 317 RangeConstraint*) { 318 return -value; 319 } 320 321 template <typename T> 322 typename std::enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs( 323 T value, 324 RangeConstraint*) { 325 return std::abs(value); 326 } 327 328 // Floats carry around their validity state with them, but integers do not. So, 329 // we wrap the underlying value in a specialization in order to hide that detail 330 // and expose an interface via accessors. 331 enum NumericRepresentation { 332 NUMERIC_INTEGER, 333 NUMERIC_FLOATING, 334 NUMERIC_UNKNOWN 335 }; 336 337 template <typename NumericType> 338 struct GetNumericRepresentation { 339 static const NumericRepresentation value = 340 std::numeric_limits<NumericType>::is_integer 341 ? NUMERIC_INTEGER 342 : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING 343 : NUMERIC_UNKNOWN); 344 }; 345 346 template <typename T, NumericRepresentation type = 347 GetNumericRepresentation<T>::value> 348 class CheckedNumericState {}; 349 350 // Integrals require quite a bit of additional housekeeping to manage state. 351 template <typename T> 352 class CheckedNumericState<T, NUMERIC_INTEGER> { 353 private: 354 T value_; 355 RangeConstraint validity_; 356 357 public: 358 template <typename Src, NumericRepresentation type> 359 friend class CheckedNumericState; 360 361 CheckedNumericState() : value_(0), validity_(RANGE_VALID) {} 362 363 template <typename Src> 364 CheckedNumericState(Src value, RangeConstraint validity) 365 : value_(value), 366 validity_(GetRangeConstraint(validity | 367 DstRangeRelationToSrcRange<T>(value))) { 368 COMPILE_ASSERT(std::numeric_limits<Src>::is_specialized, 369 argument_must_be_numeric); 370 } 371 372 // Copy constructor. 373 template <typename Src> 374 CheckedNumericState(const CheckedNumericState<Src>& rhs) 375 : value_(static_cast<T>(rhs.value())), 376 validity_(GetRangeConstraint( 377 rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {} 378 379 template <typename Src> 380 explicit CheckedNumericState( 381 Src value, 382 typename std::enable_if<std::numeric_limits<Src>::is_specialized, 383 int>::type = 0) 384 : value_(static_cast<T>(value)), 385 validity_(DstRangeRelationToSrcRange<T>(value)) {} 386 387 RangeConstraint validity() const { return validity_; } 388 T value() const { return value_; } 389 }; 390 391 // Floating points maintain their own validity, but need translation wrappers. 392 template <typename T> 393 class CheckedNumericState<T, NUMERIC_FLOATING> { 394 private: 395 T value_; 396 397 public: 398 template <typename Src, NumericRepresentation type> 399 friend class CheckedNumericState; 400 401 CheckedNumericState() : value_(0.0) {} 402 403 template <typename Src> 404 CheckedNumericState( 405 Src value, 406 RangeConstraint validity, 407 typename std::enable_if<std::numeric_limits<Src>::is_integer, int>::type = 408 0) { 409 switch (DstRangeRelationToSrcRange<T>(value)) { 410 case RANGE_VALID: 411 value_ = static_cast<T>(value); 412 break; 413 414 case RANGE_UNDERFLOW: 415 value_ = -std::numeric_limits<T>::infinity(); 416 break; 417 418 case RANGE_OVERFLOW: 419 value_ = std::numeric_limits<T>::infinity(); 420 break; 421 422 case RANGE_INVALID: 423 value_ = std::numeric_limits<T>::quiet_NaN(); 424 break; 425 426 default: 427 NOTREACHED(); 428 } 429 } 430 431 template <typename Src> 432 explicit CheckedNumericState( 433 Src value, 434 typename std::enable_if<std::numeric_limits<Src>::is_specialized, 435 int>::type = 0) 436 : value_(static_cast<T>(value)) {} 437 438 // Copy constructor. 439 template <typename Src> 440 CheckedNumericState(const CheckedNumericState<Src>& rhs) 441 : value_(static_cast<T>(rhs.value())) {} 442 443 RangeConstraint validity() const { 444 return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(), 445 value_ >= -std::numeric_limits<T>::max()); 446 } 447 T value() const { return value_; } 448 }; 449 450 // For integers less than 128-bit and floats 32-bit or larger, we can distil 451 // C/C++ arithmetic promotions down to two simple rules: 452 // 1. The type with the larger maximum exponent always takes precedence. 453 // 2. The resulting type must be promoted to at least an int. 454 // The following template specializations implement that promotion logic. 455 enum ArithmeticPromotionCategory { 456 LEFT_PROMOTION, 457 RIGHT_PROMOTION, 458 DEFAULT_PROMOTION 459 }; 460 461 template <typename Lhs, 462 typename Rhs = Lhs, 463 ArithmeticPromotionCategory Promotion = 464 (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value) 465 ? (MaxExponent<Lhs>::value > MaxExponent<int>::value 466 ? LEFT_PROMOTION 467 : DEFAULT_PROMOTION) 468 : (MaxExponent<Rhs>::value > MaxExponent<int>::value 469 ? RIGHT_PROMOTION 470 : DEFAULT_PROMOTION) > 471 struct ArithmeticPromotion; 472 473 template <typename Lhs, typename Rhs> 474 struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> { 475 typedef Lhs type; 476 }; 477 478 template <typename Lhs, typename Rhs> 479 struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> { 480 typedef Rhs type; 481 }; 482 483 template <typename Lhs, typename Rhs> 484 struct ArithmeticPromotion<Lhs, Rhs, DEFAULT_PROMOTION> { 485 typedef int type; 486 }; 487 488 // We can statically check if operations on the provided types can wrap, so we 489 // can skip the checked operations if they're not needed. So, for an integer we 490 // care if the destination type preserves the sign and is twice the width of 491 // the source. 492 template <typename T, typename Lhs, typename Rhs> 493 struct IsIntegerArithmeticSafe { 494 static const bool value = !std::numeric_limits<T>::is_iec559 && 495 StaticDstRangeRelationToSrcRange<T, Lhs>::value == 496 NUMERIC_RANGE_CONTAINED && 497 sizeof(T) >= (2 * sizeof(Lhs)) && 498 StaticDstRangeRelationToSrcRange<T, Rhs>::value != 499 NUMERIC_RANGE_CONTAINED && 500 sizeof(T) >= (2 * sizeof(Rhs)); 501 }; 502 503 } // namespace internal 504 } // namespace base 505 } // namespace pdfium 506 507 #endif // PDFIUM_THIRD_PARTY_SAFE_MATH_IMPL_H_ 508