1 /*-
2 * Copyright 2009 Colin Percival
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * This file was originally written by Colin Percival as part of the Tarsnap
27 * online backup system.
28 */
29 #include "scrypt_platform.h"
30
31 #include <machine/cpu-features.h>
32 #include <arm_neon.h>
33
34 #include <errno.h>
35 #include <stdint.h>
36 #include <limits.h>
37 #include <stdlib.h>
38 #include <string.h>
39
40 #ifdef USE_OPENSSL_PBKDF2
41 #include <openssl/evp.h>
42 #else
43 #include "sha256.h"
44 #endif
45 #include "sysendian.h"
46
47 #include "crypto_scrypt.h"
48
49 #include "crypto_scrypt-neon-salsa208.h"
50
51 static void blkcpy(void *, void *, size_t);
52 static void blkxor(void *, void *, size_t);
53 void crypto_core_salsa208_armneon2(void *);
54 static void blockmix_salsa8(uint8x16_t *, uint8x16_t *, uint8x16_t *, size_t);
55 static uint64_t integerify(void *, size_t);
56 static void smix(uint8_t *, size_t, uint64_t, void *, void *);
57
58 static void
blkcpy(void * dest,void * src,size_t len)59 blkcpy(void * dest, void * src, size_t len)
60 {
61 uint8x16_t * D = dest;
62 uint8x16_t * S = src;
63 size_t L = len / 16;
64 size_t i;
65
66 for (i = 0; i < L; i++)
67 D[i] = S[i];
68 }
69
70 static void
blkxor(void * dest,void * src,size_t len)71 blkxor(void * dest, void * src, size_t len)
72 {
73 uint8x16_t * D = dest;
74 uint8x16_t * S = src;
75 size_t L = len / 16;
76 size_t i;
77
78 for (i = 0; i < L; i++)
79 D[i] = veorq_u8(D[i], S[i]);
80 }
81
82 /**
83 * blockmix_salsa8(B, Y, r):
84 * Compute B = BlockMix_{salsa20/8, r}(B). The input B must be 128r bytes in
85 * length; the temporary space Y must also be the same size.
86 */
87 static void
blockmix_salsa8(uint8x16_t * Bin,uint8x16_t * Bout,uint8x16_t * X,size_t r)88 blockmix_salsa8(uint8x16_t * Bin, uint8x16_t * Bout, uint8x16_t * X, size_t r)
89 {
90 size_t i;
91
92 /* 1: X <-- B_{2r - 1} */
93 blkcpy(X, &Bin[8 * r - 4], 64);
94
95 /* 2: for i = 0 to 2r - 1 do */
96 for (i = 0; i < r; i++) {
97 /* 3: X <-- H(X \xor B_i) */
98 blkxor(X, &Bin[i * 8], 64);
99 salsa20_8_intrinsic((void *) X);
100
101 /* 4: Y_i <-- X */
102 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
103 blkcpy(&Bout[i * 4], X, 64);
104
105 /* 3: X <-- H(X \xor B_i) */
106 blkxor(X, &Bin[i * 8 + 4], 64);
107 salsa20_8_intrinsic((void *) X);
108
109 /* 4: Y_i <-- X */
110 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
111 blkcpy(&Bout[(r + i) * 4], X, 64);
112 }
113 }
114
115 /**
116 * integerify(B, r):
117 * Return the result of parsing B_{2r-1} as a little-endian integer.
118 */
119 static uint64_t
integerify(void * B,size_t r)120 integerify(void * B, size_t r)
121 {
122 uint8_t * X = (void*)((uintptr_t)(B) + (2 * r - 1) * 64);
123
124 return (le64dec(X));
125 }
126
127 /**
128 * smix(B, r, N, V, XY):
129 * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; the
130 * temporary storage V must be 128rN bytes in length; the temporary storage
131 * XY must be 256r bytes in length. The value N must be a power of 2.
132 */
133 static void
smix(uint8_t * B,size_t r,uint64_t N,void * V,void * XY)134 smix(uint8_t * B, size_t r, uint64_t N, void * V, void * XY)
135 {
136 uint8x16_t * X = XY;
137 uint8x16_t * Y = (void *)((uintptr_t)(XY) + 128 * r);
138 uint8x16_t * Z = (void *)((uintptr_t)(XY) + 256 * r);
139 uint32_t * X32 = (void *)X;
140 uint64_t i, j;
141 size_t k;
142
143 /* 1: X <-- B */
144 blkcpy(X, B, 128 * r);
145
146 /* 2: for i = 0 to N - 1 do */
147 for (i = 0; i < N; i += 2) {
148 /* 3: V_i <-- X */
149 blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r);
150
151 /* 4: X <-- H(X) */
152 blockmix_salsa8(X, Y, Z, r);
153
154 /* 3: V_i <-- X */
155 blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r),
156 Y, 128 * r);
157
158 /* 4: X <-- H(X) */
159 blockmix_salsa8(Y, X, Z, r);
160 }
161
162 /* 6: for i = 0 to N - 1 do */
163 for (i = 0; i < N; i += 2) {
164 /* 7: j <-- Integerify(X) mod N */
165 j = integerify(X, r) & (N - 1);
166
167 /* 8: X <-- H(X \xor V_j) */
168 blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
169 blockmix_salsa8(X, Y, Z, r);
170
171 /* 7: j <-- Integerify(X) mod N */
172 j = integerify(Y, r) & (N - 1);
173
174 /* 8: X <-- H(X \xor V_j) */
175 blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
176 blockmix_salsa8(Y, X, Z, r);
177 }
178
179 /* 10: B' <-- X */
180 blkcpy(B, X, 128 * r);
181 }
182
183 /**
184 * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
185 * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
186 * p, buflen) and write the result into buf. The parameters r, p, and buflen
187 * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
188 * must be a power of 2.
189 *
190 * Return 0 on success; or -1 on error.
191 */
192 int
crypto_scrypt(const uint8_t * passwd,size_t passwdlen,const uint8_t * salt,size_t saltlen,uint64_t N,uint32_t r,uint32_t p,uint8_t * buf,size_t buflen)193 crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
194 const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
195 uint8_t * buf, size_t buflen)
196 {
197 void * B0, * V0, * XY0;
198 uint8_t * B;
199 uint32_t * V;
200 uint32_t * XY;
201 uint32_t i;
202
203 /* Sanity-check parameters. */
204 #if SIZE_MAX > UINT32_MAX
205 if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
206 errno = EFBIG;
207 goto err0;
208 }
209 #endif
210 if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
211 errno = EFBIG;
212 goto err0;
213 }
214 if (((N & (N - 1)) != 0) || (N == 0)) {
215 errno = EINVAL;
216 goto err0;
217 }
218 if ((r > SIZE_MAX / 128 / p) ||
219 #if SIZE_MAX / 256 <= UINT32_MAX
220 (r > SIZE_MAX / 256) ||
221 #endif
222 (N > SIZE_MAX / 128 / r)) {
223 errno = ENOMEM;
224 goto err0;
225 }
226
227 /* Allocate memory. */
228 #ifdef HAVE_POSIX_MEMALIGN
229 if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0)
230 goto err0;
231 B = (uint8_t *)(B0);
232 if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0)
233 goto err1;
234 XY = (uint32_t *)(XY0);
235 #ifndef MAP_ANON
236 if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0)
237 goto err2;
238 V = (uint32_t *)(V0);
239 #endif
240 #else
241 if ((B0 = malloc(128 * r * p + 63)) == NULL)
242 goto err0;
243 B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63));
244 if ((XY0 = malloc(256 * r + 64 + 63)) == NULL)
245 goto err1;
246 XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63));
247 #ifndef MAP_ANON
248 if ((V0 = malloc(128 * r * N + 63)) == NULL)
249 goto err2;
250 V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63));
251 #endif
252 #endif
253 #ifdef MAP_ANON
254 if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE,
255 #ifdef MAP_NOCORE
256 MAP_ANON | MAP_PRIVATE | MAP_NOCORE,
257 #else
258 MAP_ANON | MAP_PRIVATE,
259 #endif
260 -1, 0)) == MAP_FAILED)
261 goto err2;
262 V = (uint32_t *)(V0);
263 #endif
264
265 /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
266 #ifdef USE_OPENSSL_PBKDF2
267 PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, salt, saltlen, 1, EVP_sha256(), p * 128 * r, B);
268 #else
269 PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
270 #endif
271
272 /* 2: for i = 0 to p - 1 do */
273 for (i = 0; i < p; i++) {
274 /* 3: B_i <-- MF(B_i, N) */
275 smix(&B[i * 128 * r], r, N, V, XY);
276 }
277
278 /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
279 #ifdef USE_OPENSSL_PBKDF2
280 PKCS5_PBKDF2_HMAC((const char *)passwd, passwdlen, B, p * 128 * r, 1, EVP_sha256(), buflen, buf);
281 #else
282 PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
283 #endif
284
285 /* Free memory. */
286 #ifdef MAP_ANON
287 if (munmap(V0, 128 * r * N))
288 goto err2;
289 #else
290 free(V0);
291 #endif
292 free(XY0);
293 free(B0);
294
295 /* Success! */
296 return (0);
297
298 err2:
299 free(XY0);
300 err1:
301 free(B0);
302 err0:
303 /* Failure! */
304 return (-1);
305 }
306