1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* ChangeLog for this library:
30  *
31  * NDK r9?: Support for 64-bit CPUs (Intel, ARM & MIPS).
32  *
33  * NDK r8d: Add android_setCpu().
34  *
35  * NDK r8c: Add new ARM CPU features: VFPv2, VFP_D32, VFP_FP16,
36  *          VFP_FMA, NEON_FMA, IDIV_ARM, IDIV_THUMB2 and iWMMXt.
37  *
38  *          Rewrite the code to parse /proc/self/auxv instead of
39  *          the "Features" field in /proc/cpuinfo.
40  *
41  *          Dynamically allocate the buffer that hold the content
42  *          of /proc/cpuinfo to deal with newer hardware.
43  *
44  * NDK r7c: Fix CPU count computation. The old method only reported the
45  *           number of _active_ CPUs when the library was initialized,
46  *           which could be less than the real total.
47  *
48  * NDK r5: Handle buggy kernels which report a CPU Architecture number of 7
49  *         for an ARMv6 CPU (see below).
50  *
51  *         Handle kernels that only report 'neon', and not 'vfpv3'
52  *         (VFPv3 is mandated by the ARM architecture is Neon is implemented)
53  *
54  *         Handle kernels that only report 'vfpv3d16', and not 'vfpv3'
55  *
56  *         Fix x86 compilation. Report ANDROID_CPU_FAMILY_X86 in
57  *         android_getCpuFamily().
58  *
59  * NDK r4: Initial release
60  */
61 
62 #if defined(__le32__) || defined(__le64__)
63 
64 // When users enter this, we should only provide interface and
65 // libportable will give the implementations.
66 
67 #else // !__le32__ && !__le64__
68 
69 #include "cpu-features.h"
70 
71 #include <dlfcn.h>
72 #include <errno.h>
73 #include <fcntl.h>
74 #include <pthread.h>
75 #include <stdio.h>
76 #include <stdlib.h>
77 #include <sys/system_properties.h>
78 
79 static  pthread_once_t     g_once;
80 static  int                g_inited;
81 static  AndroidCpuFamily   g_cpuFamily;
82 static  uint64_t           g_cpuFeatures;
83 static  int                g_cpuCount;
84 
85 #ifdef __arm__
86 static  uint32_t           g_cpuIdArm;
87 #endif
88 
89 static const int android_cpufeatures_debug = 0;
90 
91 #define  D(...) \
92     do { \
93         if (android_cpufeatures_debug) { \
94             printf(__VA_ARGS__); fflush(stdout); \
95         } \
96     } while (0)
97 
98 #ifdef __i386__
x86_cpuid(int func,int values[4])99 static __inline__ void x86_cpuid(int func, int values[4])
100 {
101     int a, b, c, d;
102     /* We need to preserve ebx since we're compiling PIC code */
103     /* this means we can't use "=b" for the second output register */
104     __asm__ __volatile__ ( \
105       "push %%ebx\n"
106       "cpuid\n" \
107       "mov %%ebx, %1\n"
108       "pop %%ebx\n"
109       : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \
110       : "a" (func) \
111     );
112     values[0] = a;
113     values[1] = b;
114     values[2] = c;
115     values[3] = d;
116 }
117 #endif
118 
119 /* Get the size of a file by reading it until the end. This is needed
120  * because files under /proc do not always return a valid size when
121  * using fseek(0, SEEK_END) + ftell(). Nor can they be mmap()-ed.
122  */
123 static int
get_file_size(const char * pathname)124 get_file_size(const char* pathname)
125 {
126     int fd, ret, result = 0;
127     char buffer[256];
128 
129     fd = open(pathname, O_RDONLY);
130     if (fd < 0) {
131         D("Can't open %s: %s\n", pathname, strerror(errno));
132         return -1;
133     }
134 
135     for (;;) {
136         int ret = read(fd, buffer, sizeof buffer);
137         if (ret < 0) {
138             if (errno == EINTR)
139                 continue;
140             D("Error while reading %s: %s\n", pathname, strerror(errno));
141             break;
142         }
143         if (ret == 0)
144             break;
145 
146         result += ret;
147     }
148     close(fd);
149     return result;
150 }
151 
152 /* Read the content of /proc/cpuinfo into a user-provided buffer.
153  * Return the length of the data, or -1 on error. Does *not*
154  * zero-terminate the content. Will not read more
155  * than 'buffsize' bytes.
156  */
157 static int
read_file(const char * pathname,char * buffer,size_t buffsize)158 read_file(const char*  pathname, char*  buffer, size_t  buffsize)
159 {
160     int  fd, count;
161 
162     fd = open(pathname, O_RDONLY);
163     if (fd < 0) {
164         D("Could not open %s: %s\n", pathname, strerror(errno));
165         return -1;
166     }
167     count = 0;
168     while (count < (int)buffsize) {
169         int ret = read(fd, buffer + count, buffsize - count);
170         if (ret < 0) {
171             if (errno == EINTR)
172                 continue;
173             D("Error while reading from %s: %s\n", pathname, strerror(errno));
174             if (count == 0)
175                 count = -1;
176             break;
177         }
178         if (ret == 0)
179             break;
180         count += ret;
181     }
182     close(fd);
183     return count;
184 }
185 
186 /* Extract the content of a the first occurence of a given field in
187  * the content of /proc/cpuinfo and return it as a heap-allocated
188  * string that must be freed by the caller.
189  *
190  * Return NULL if not found
191  */
192 static char*
extract_cpuinfo_field(const char * buffer,int buflen,const char * field)193 extract_cpuinfo_field(const char* buffer, int buflen, const char* field)
194 {
195     int  fieldlen = strlen(field);
196     const char* bufend = buffer + buflen;
197     char* result = NULL;
198     int len, ignore;
199     const char *p, *q;
200 
201     /* Look for first field occurence, and ensures it starts the line. */
202     p = buffer;
203     for (;;) {
204         p = memmem(p, bufend-p, field, fieldlen);
205         if (p == NULL)
206             goto EXIT;
207 
208         if (p == buffer || p[-1] == '\n')
209             break;
210 
211         p += fieldlen;
212     }
213 
214     /* Skip to the first column followed by a space */
215     p += fieldlen;
216     p  = memchr(p, ':', bufend-p);
217     if (p == NULL || p[1] != ' ')
218         goto EXIT;
219 
220     /* Find the end of the line */
221     p += 2;
222     q = memchr(p, '\n', bufend-p);
223     if (q == NULL)
224         q = bufend;
225 
226     /* Copy the line into a heap-allocated buffer */
227     len = q-p;
228     result = malloc(len+1);
229     if (result == NULL)
230         goto EXIT;
231 
232     memcpy(result, p, len);
233     result[len] = '\0';
234 
235 EXIT:
236     return result;
237 }
238 
239 /* Checks that a space-separated list of items contains one given 'item'.
240  * Returns 1 if found, 0 otherwise.
241  */
242 static int
has_list_item(const char * list,const char * item)243 has_list_item(const char* list, const char* item)
244 {
245     const char*  p = list;
246     int itemlen = strlen(item);
247 
248     if (list == NULL)
249         return 0;
250 
251     while (*p) {
252         const char*  q;
253 
254         /* skip spaces */
255         while (*p == ' ' || *p == '\t')
256             p++;
257 
258         /* find end of current list item */
259         q = p;
260         while (*q && *q != ' ' && *q != '\t')
261             q++;
262 
263         if (itemlen == q-p && !memcmp(p, item, itemlen))
264             return 1;
265 
266         /* skip to next item */
267         p = q;
268     }
269     return 0;
270 }
271 
272 /* Parse a number starting from 'input', but not going further
273  * than 'limit'. Return the value into '*result'.
274  *
275  * NOTE: Does not skip over leading spaces, or deal with sign characters.
276  * NOTE: Ignores overflows.
277  *
278  * The function returns NULL in case of error (bad format), or the new
279  * position after the decimal number in case of success (which will always
280  * be <= 'limit').
281  */
282 static const char*
parse_number(const char * input,const char * limit,int base,int * result)283 parse_number(const char* input, const char* limit, int base, int* result)
284 {
285     const char* p = input;
286     int val = 0;
287     while (p < limit) {
288         int d = (*p - '0');
289         if ((unsigned)d >= 10U) {
290             d = (*p - 'a');
291             if ((unsigned)d >= 6U)
292               d = (*p - 'A');
293             if ((unsigned)d >= 6U)
294               break;
295             d += 10;
296         }
297         if (d >= base)
298           break;
299         val = val*base + d;
300         p++;
301     }
302     if (p == input)
303         return NULL;
304 
305     *result = val;
306     return p;
307 }
308 
309 static const char*
parse_decimal(const char * input,const char * limit,int * result)310 parse_decimal(const char* input, const char* limit, int* result)
311 {
312     return parse_number(input, limit, 10, result);
313 }
314 
315 static const char*
parse_hexadecimal(const char * input,const char * limit,int * result)316 parse_hexadecimal(const char* input, const char* limit, int* result)
317 {
318     return parse_number(input, limit, 16, result);
319 }
320 
321 /* This small data type is used to represent a CPU list / mask, as read
322  * from sysfs on Linux. See http://www.kernel.org/doc/Documentation/cputopology.txt
323  *
324  * For now, we don't expect more than 32 cores on mobile devices, so keep
325  * everything simple.
326  */
327 typedef struct {
328     uint32_t mask;
329 } CpuList;
330 
331 static __inline__ void
cpulist_init(CpuList * list)332 cpulist_init(CpuList* list) {
333     list->mask = 0;
334 }
335 
336 static __inline__ void
cpulist_and(CpuList * list1,CpuList * list2)337 cpulist_and(CpuList* list1, CpuList* list2) {
338     list1->mask &= list2->mask;
339 }
340 
341 static __inline__ void
cpulist_set(CpuList * list,int index)342 cpulist_set(CpuList* list, int index) {
343     if ((unsigned)index < 32) {
344         list->mask |= (uint32_t)(1U << index);
345     }
346 }
347 
348 static __inline__ int
cpulist_count(CpuList * list)349 cpulist_count(CpuList* list) {
350     return __builtin_popcount(list->mask);
351 }
352 
353 /* Parse a textual list of cpus and store the result inside a CpuList object.
354  * Input format is the following:
355  * - comma-separated list of items (no spaces)
356  * - each item is either a single decimal number (cpu index), or a range made
357  *   of two numbers separated by a single dash (-). Ranges are inclusive.
358  *
359  * Examples:   0
360  *             2,4-127,128-143
361  *             0-1
362  */
363 static void
cpulist_parse(CpuList * list,const char * line,int line_len)364 cpulist_parse(CpuList* list, const char* line, int line_len)
365 {
366     const char* p = line;
367     const char* end = p + line_len;
368     const char* q;
369 
370     /* NOTE: the input line coming from sysfs typically contains a
371      * trailing newline, so take care of it in the code below
372      */
373     while (p < end && *p != '\n')
374     {
375         int val, start_value, end_value;
376 
377         /* Find the end of current item, and put it into 'q' */
378         q = memchr(p, ',', end-p);
379         if (q == NULL) {
380             q = end;
381         }
382 
383         /* Get first value */
384         p = parse_decimal(p, q, &start_value);
385         if (p == NULL)
386             goto BAD_FORMAT;
387 
388         end_value = start_value;
389 
390         /* If we're not at the end of the item, expect a dash and
391          * and integer; extract end value.
392          */
393         if (p < q && *p == '-') {
394             p = parse_decimal(p+1, q, &end_value);
395             if (p == NULL)
396                 goto BAD_FORMAT;
397         }
398 
399         /* Set bits CPU list bits */
400         for (val = start_value; val <= end_value; val++) {
401             cpulist_set(list, val);
402         }
403 
404         /* Jump to next item */
405         p = q;
406         if (p < end)
407             p++;
408     }
409 
410 BAD_FORMAT:
411     ;
412 }
413 
414 /* Read a CPU list from one sysfs file */
415 static void
cpulist_read_from(CpuList * list,const char * filename)416 cpulist_read_from(CpuList* list, const char* filename)
417 {
418     char   file[64];
419     int    filelen;
420 
421     cpulist_init(list);
422 
423     filelen = read_file(filename, file, sizeof file);
424     if (filelen < 0) {
425         D("Could not read %s: %s\n", filename, strerror(errno));
426         return;
427     }
428 
429     cpulist_parse(list, file, filelen);
430 }
431 #if defined(__aarch64__)
432 // see <uapi/asm/hwcap.h> kernel header
433 #define HWCAP_FP                (1 << 0)
434 #define HWCAP_ASIMD             (1 << 1)
435 #define HWCAP_AES               (1 << 3)
436 #define HWCAP_PMULL             (1 << 4)
437 #define HWCAP_SHA1              (1 << 5)
438 #define HWCAP_SHA2              (1 << 6)
439 #define HWCAP_CRC32             (1 << 7)
440 #endif
441 
442 #if defined(__arm__)
443 
444 // See <asm/hwcap.h> kernel header.
445 #define HWCAP_VFP       (1 << 6)
446 #define HWCAP_IWMMXT    (1 << 9)
447 #define HWCAP_NEON      (1 << 12)
448 #define HWCAP_VFPv3     (1 << 13)
449 #define HWCAP_VFPv3D16  (1 << 14)
450 #define HWCAP_VFPv4     (1 << 16)
451 #define HWCAP_IDIVA     (1 << 17)
452 #define HWCAP_IDIVT     (1 << 18)
453 
454 // see <uapi/asm/hwcap.h> kernel header
455 #define HWCAP2_AES     (1 << 0)
456 #define HWCAP2_PMULL   (1 << 1)
457 #define HWCAP2_SHA1    (1 << 2)
458 #define HWCAP2_SHA2    (1 << 3)
459 #define HWCAP2_CRC32   (1 << 4)
460 
461 // This is the list of 32-bit ARMv7 optional features that are _always_
462 // supported by ARMv8 CPUs, as mandated by the ARM Architecture Reference
463 // Manual.
464 #define HWCAP_SET_FOR_ARMV8  \
465   ( HWCAP_VFP | \
466     HWCAP_NEON | \
467     HWCAP_VFPv3 | \
468     HWCAP_VFPv4 | \
469     HWCAP_IDIVA | \
470     HWCAP_IDIVT )
471 #endif
472 
473 #if defined(__arm__) || defined(__aarch64__)
474 
475 #define AT_HWCAP 16
476 #define AT_HWCAP2 26
477 
478 // Probe the system's C library for a 'getauxval' function and call it if
479 // it exits, or return 0 for failure. This function is available since API
480 // level 20.
481 //
482 // This code does *NOT* check for '__ANDROID_API__ >= 20' to support the
483 // edge case where some NDK developers use headers for a platform that is
484 // newer than the one really targetted by their application.
485 // This is typically done to use newer native APIs only when running on more
486 // recent Android versions, and requires careful symbol management.
487 //
488 // Note that getauxval() can't really be re-implemented here, because
489 // its implementation does not parse /proc/self/auxv. Instead it depends
490 // on values  that are passed by the kernel at process-init time to the
491 // C runtime initialization layer.
492 static uint32_t
get_elf_hwcap_from_getauxval(int hwcap_type)493 get_elf_hwcap_from_getauxval(int hwcap_type) {
494     typedef unsigned long getauxval_func_t(unsigned long);
495 
496     dlerror();
497     void* libc_handle = dlopen("libc.so", RTLD_NOW);
498     if (!libc_handle) {
499         D("Could not dlopen() C library: %s\n", dlerror());
500         return 0;
501     }
502 
503     uint32_t ret = 0;
504     getauxval_func_t* func = (getauxval_func_t*)
505             dlsym(libc_handle, "getauxval");
506     if (!func) {
507         D("Could not find getauxval() in C library\n");
508     } else {
509         // Note: getauxval() returns 0 on failure. Doesn't touch errno.
510         ret = (uint32_t)(*func)(hwcap_type);
511     }
512     dlclose(libc_handle);
513     return ret;
514 }
515 #endif
516 
517 #if defined(__arm__)
518 // Parse /proc/self/auxv to extract the ELF HW capabilities bitmap for the
519 // current CPU. Note that this file is not accessible from regular
520 // application processes on some Android platform releases.
521 // On success, return new ELF hwcaps, or 0 on failure.
522 static uint32_t
get_elf_hwcap_from_proc_self_auxv(void)523 get_elf_hwcap_from_proc_self_auxv(void) {
524     const char filepath[] = "/proc/self/auxv";
525     int fd = TEMP_FAILURE_RETRY(open(filepath, O_RDONLY));
526     if (fd < 0) {
527         D("Could not open %s: %s\n", filepath, strerror(errno));
528         return 0;
529     }
530 
531     struct { uint32_t tag; uint32_t value; } entry;
532 
533     uint32_t result = 0;
534     for (;;) {
535         int ret = TEMP_FAILURE_RETRY(read(fd, (char*)&entry, sizeof entry));
536         if (ret < 0) {
537             D("Error while reading %s: %s\n", filepath, strerror(errno));
538             break;
539         }
540         // Detect end of list.
541         if (ret == 0 || (entry.tag == 0 && entry.value == 0))
542           break;
543         if (entry.tag == AT_HWCAP) {
544           result = entry.value;
545           break;
546         }
547     }
548     close(fd);
549     return result;
550 }
551 
552 /* Compute the ELF HWCAP flags from the content of /proc/cpuinfo.
553  * This works by parsing the 'Features' line, which lists which optional
554  * features the device's CPU supports, on top of its reference
555  * architecture.
556  */
557 static uint32_t
get_elf_hwcap_from_proc_cpuinfo(const char * cpuinfo,int cpuinfo_len)558 get_elf_hwcap_from_proc_cpuinfo(const char* cpuinfo, int cpuinfo_len) {
559     uint32_t hwcaps = 0;
560     long architecture = 0;
561     char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
562     if (cpuArch) {
563         architecture = strtol(cpuArch, NULL, 10);
564         free(cpuArch);
565 
566         if (architecture >= 8L) {
567             // This is a 32-bit ARM binary running on a 64-bit ARM64 kernel.
568             // The 'Features' line only lists the optional features that the
569             // device's CPU supports, compared to its reference architecture
570             // which are of no use for this process.
571             D("Faking 32-bit ARM HWCaps on ARMv%ld CPU\n", architecture);
572             return HWCAP_SET_FOR_ARMV8;
573         }
574     }
575 
576     char* cpuFeatures = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Features");
577     if (cpuFeatures != NULL) {
578         D("Found cpuFeatures = '%s'\n", cpuFeatures);
579 
580         if (has_list_item(cpuFeatures, "vfp"))
581             hwcaps |= HWCAP_VFP;
582         if (has_list_item(cpuFeatures, "vfpv3"))
583             hwcaps |= HWCAP_VFPv3;
584         if (has_list_item(cpuFeatures, "vfpv3d16"))
585             hwcaps |= HWCAP_VFPv3D16;
586         if (has_list_item(cpuFeatures, "vfpv4"))
587             hwcaps |= HWCAP_VFPv4;
588         if (has_list_item(cpuFeatures, "neon"))
589             hwcaps |= HWCAP_NEON;
590         if (has_list_item(cpuFeatures, "idiva"))
591             hwcaps |= HWCAP_IDIVA;
592         if (has_list_item(cpuFeatures, "idivt"))
593             hwcaps |= HWCAP_IDIVT;
594         if (has_list_item(cpuFeatures, "idiv"))
595             hwcaps |= HWCAP_IDIVA | HWCAP_IDIVT;
596         if (has_list_item(cpuFeatures, "iwmmxt"))
597             hwcaps |= HWCAP_IWMMXT;
598 
599         free(cpuFeatures);
600     }
601     return hwcaps;
602 }
603 
604 /* Check Houdini Binary Translator is installed on the system.
605  *
606  * If this function returns 1, get_elf_hwcap_from_getauxval() function
607  * will causes SIGSEGV while calling getauxval() function.
608  */
609 static int
has_houdini_binary_translator(void)610 has_houdini_binary_translator(void) {
611     int found = 0;
612     if (access("/system/lib/libhoudini.so", F_OK) != -1) {
613         D("Found Houdini binary translator\n");
614         found = 1;
615     }
616     return found;
617 }
618 #endif  /* __arm__ */
619 
620 /* Return the number of cpus present on a given device.
621  *
622  * To handle all weird kernel configurations, we need to compute the
623  * intersection of the 'present' and 'possible' CPU lists and count
624  * the result.
625  */
626 static int
get_cpu_count(void)627 get_cpu_count(void)
628 {
629     CpuList cpus_present[1];
630     CpuList cpus_possible[1];
631 
632     cpulist_read_from(cpus_present, "/sys/devices/system/cpu/present");
633     cpulist_read_from(cpus_possible, "/sys/devices/system/cpu/possible");
634 
635     /* Compute the intersection of both sets to get the actual number of
636      * CPU cores that can be used on this device by the kernel.
637      */
638     cpulist_and(cpus_present, cpus_possible);
639 
640     return cpulist_count(cpus_present);
641 }
642 
643 static void
android_cpuInitFamily(void)644 android_cpuInitFamily(void)
645 {
646 #if defined(__arm__)
647     g_cpuFamily = ANDROID_CPU_FAMILY_ARM;
648 #elif defined(__i386__)
649     g_cpuFamily = ANDROID_CPU_FAMILY_X86;
650 #elif defined(__mips64)
651 /* Needs to be before __mips__ since the compiler defines both */
652     g_cpuFamily = ANDROID_CPU_FAMILY_MIPS64;
653 #elif defined(__mips__)
654     g_cpuFamily = ANDROID_CPU_FAMILY_MIPS;
655 #elif defined(__aarch64__)
656     g_cpuFamily = ANDROID_CPU_FAMILY_ARM64;
657 #elif defined(__x86_64__)
658     g_cpuFamily = ANDROID_CPU_FAMILY_X86_64;
659 #else
660     g_cpuFamily = ANDROID_CPU_FAMILY_UNKNOWN;
661 #endif
662 }
663 
664 static void
android_cpuInit(void)665 android_cpuInit(void)
666 {
667     char* cpuinfo = NULL;
668     int   cpuinfo_len;
669 
670     android_cpuInitFamily();
671 
672     g_cpuFeatures = 0;
673     g_cpuCount    = 1;
674     g_inited      = 1;
675 
676     cpuinfo_len = get_file_size("/proc/cpuinfo");
677     if (cpuinfo_len < 0) {
678       D("cpuinfo_len cannot be computed!");
679       return;
680     }
681     cpuinfo = malloc(cpuinfo_len);
682     if (cpuinfo == NULL) {
683       D("cpuinfo buffer could not be allocated");
684       return;
685     }
686     cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, cpuinfo_len);
687     D("cpuinfo_len is (%d):\n%.*s\n", cpuinfo_len,
688       cpuinfo_len >= 0 ? cpuinfo_len : 0, cpuinfo);
689 
690     if (cpuinfo_len < 0)  /* should not happen */ {
691         free(cpuinfo);
692         return;
693     }
694 
695     /* Count the CPU cores, the value may be 0 for single-core CPUs */
696     g_cpuCount = get_cpu_count();
697     if (g_cpuCount == 0) {
698         g_cpuCount = 1;
699     }
700 
701     D("found cpuCount = %d\n", g_cpuCount);
702 
703 #ifdef __arm__
704     {
705         /* Extract architecture from the "CPU Architecture" field.
706          * The list is well-known, unlike the the output of
707          * the 'Processor' field which can vary greatly.
708          *
709          * See the definition of the 'proc_arch' array in
710          * $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
711          * same file.
712          */
713         char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
714 
715         if (cpuArch != NULL) {
716             char*  end;
717             long   archNumber;
718             int    hasARMv7 = 0;
719 
720             D("found cpuArch = '%s'\n", cpuArch);
721 
722             /* read the initial decimal number, ignore the rest */
723             archNumber = strtol(cpuArch, &end, 10);
724 
725             /* Note that ARMv8 is upwards compatible with ARMv7. */
726             if (end > cpuArch && archNumber >= 7) {
727                 hasARMv7 = 1;
728             }
729 
730             /* Unfortunately, it seems that certain ARMv6-based CPUs
731              * report an incorrect architecture number of 7!
732              *
733              * See http://code.google.com/p/android/issues/detail?id=10812
734              *
735              * We try to correct this by looking at the 'elf_format'
736              * field reported by the 'Processor' field, which is of the
737              * form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
738              * an ARMv6-one.
739              */
740             if (hasARMv7) {
741                 char* cpuProc = extract_cpuinfo_field(cpuinfo, cpuinfo_len,
742                                                       "Processor");
743                 if (cpuProc != NULL) {
744                     D("found cpuProc = '%s'\n", cpuProc);
745                     if (has_list_item(cpuProc, "(v6l)")) {
746                         D("CPU processor and architecture mismatch!!\n");
747                         hasARMv7 = 0;
748                     }
749                     free(cpuProc);
750                 }
751             }
752 
753             if (hasARMv7) {
754                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_ARMv7;
755             }
756 
757             /* The LDREX / STREX instructions are available from ARMv6 */
758             if (archNumber >= 6) {
759                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_LDREX_STREX;
760             }
761 
762             free(cpuArch);
763         }
764 
765         /* Check Houdini binary translator is installed */
766         int has_houdini = has_houdini_binary_translator();
767 
768         /* Extract the list of CPU features from ELF hwcaps */
769         uint32_t hwcaps = 0;
770         if (!has_houdini) {
771             hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
772         }
773         if (!hwcaps) {
774             D("Parsing /proc/self/auxv to extract ELF hwcaps!\n");
775             hwcaps = get_elf_hwcap_from_proc_self_auxv();
776         }
777         if (!hwcaps) {
778             // Parsing /proc/self/auxv will fail from regular application
779             // processes on some Android platform versions, when this happens
780             // parse proc/cpuinfo instead.
781             D("Parsing /proc/cpuinfo to extract ELF hwcaps!\n");
782             hwcaps = get_elf_hwcap_from_proc_cpuinfo(cpuinfo, cpuinfo_len);
783         }
784 
785         if (hwcaps != 0) {
786             int has_vfp = (hwcaps & HWCAP_VFP);
787             int has_vfpv3 = (hwcaps & HWCAP_VFPv3);
788             int has_vfpv3d16 = (hwcaps & HWCAP_VFPv3D16);
789             int has_vfpv4 = (hwcaps & HWCAP_VFPv4);
790             int has_neon = (hwcaps & HWCAP_NEON);
791             int has_idiva = (hwcaps & HWCAP_IDIVA);
792             int has_idivt = (hwcaps & HWCAP_IDIVT);
793             int has_iwmmxt = (hwcaps & HWCAP_IWMMXT);
794 
795             // The kernel does a poor job at ensuring consistency when
796             // describing CPU features. So lots of guessing is needed.
797 
798             // 'vfpv4' implies VFPv3|VFP_FMA|FP16
799             if (has_vfpv4)
800                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3    |
801                                  ANDROID_CPU_ARM_FEATURE_VFP_FP16 |
802                                  ANDROID_CPU_ARM_FEATURE_VFP_FMA;
803 
804             // 'vfpv3' or 'vfpv3d16' imply VFPv3. Note that unlike GCC,
805             // a value of 'vfpv3' doesn't necessarily mean that the D32
806             // feature is present, so be conservative. All CPUs in the
807             // field that support D32 also support NEON, so this should
808             // not be a problem in practice.
809             if (has_vfpv3 || has_vfpv3d16)
810                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
811 
812             // 'vfp' is super ambiguous. Depending on the kernel, it can
813             // either mean VFPv2 or VFPv3. Make it depend on ARMv7.
814             if (has_vfp) {
815               if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_ARMv7)
816                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
817               else
818                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2;
819             }
820 
821             // Neon implies VFPv3|D32, and if vfpv4 is detected, NEON_FMA
822             if (has_neon) {
823                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 |
824                                  ANDROID_CPU_ARM_FEATURE_NEON |
825                                  ANDROID_CPU_ARM_FEATURE_VFP_D32;
826               if (has_vfpv4)
827                   g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_NEON_FMA;
828             }
829 
830             // VFPv3 implies VFPv2 and ARMv7
831             if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_VFPv3)
832                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2 |
833                                  ANDROID_CPU_ARM_FEATURE_ARMv7;
834 
835             if (has_idiva)
836                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
837             if (has_idivt)
838                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2;
839 
840             if (has_iwmmxt)
841                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_iWMMXt;
842         }
843 
844         /* Extract the list of CPU features from ELF hwcaps2 */
845         uint32_t hwcaps2 = 0;
846         if (!has_houdini) {
847             hwcaps2 = get_elf_hwcap_from_getauxval(AT_HWCAP2);
848         }
849         if (hwcaps2 != 0) {
850             int has_aes     = (hwcaps2 & HWCAP2_AES);
851             int has_pmull   = (hwcaps2 & HWCAP2_PMULL);
852             int has_sha1    = (hwcaps2 & HWCAP2_SHA1);
853             int has_sha2    = (hwcaps2 & HWCAP2_SHA2);
854             int has_crc32   = (hwcaps2 & HWCAP2_CRC32);
855 
856             if (has_aes)
857                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_AES;
858             if (has_pmull)
859                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_PMULL;
860             if (has_sha1)
861                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_SHA1;
862             if (has_sha2)
863                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_SHA2;
864             if (has_crc32)
865                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_CRC32;
866         }
867         /* Extract the cpuid value from various fields */
868         // The CPUID value is broken up in several entries in /proc/cpuinfo.
869         // This table is used to rebuild it from the entries.
870         static const struct CpuIdEntry {
871             const char* field;
872             char        format;
873             char        bit_lshift;
874             char        bit_length;
875         } cpu_id_entries[] = {
876             { "CPU implementer", 'x', 24, 8 },
877             { "CPU variant", 'x', 20, 4 },
878             { "CPU part", 'x', 4, 12 },
879             { "CPU revision", 'd', 0, 4 },
880         };
881         size_t i;
882         D("Parsing /proc/cpuinfo to recover CPUID\n");
883         for (i = 0;
884              i < sizeof(cpu_id_entries)/sizeof(cpu_id_entries[0]);
885              ++i) {
886             const struct CpuIdEntry* entry = &cpu_id_entries[i];
887             char* value = extract_cpuinfo_field(cpuinfo,
888                                                 cpuinfo_len,
889                                                 entry->field);
890             if (value == NULL)
891                 continue;
892 
893             D("field=%s value='%s'\n", entry->field, value);
894             char* value_end = value + strlen(value);
895             int val = 0;
896             const char* start = value;
897             const char* p;
898             if (value[0] == '0' && (value[1] == 'x' || value[1] == 'X')) {
899               start += 2;
900               p = parse_hexadecimal(start, value_end, &val);
901             } else if (entry->format == 'x')
902               p = parse_hexadecimal(value, value_end, &val);
903             else
904               p = parse_decimal(value, value_end, &val);
905 
906             if (p > (const char*)start) {
907               val &= ((1 << entry->bit_length)-1);
908               val <<= entry->bit_lshift;
909               g_cpuIdArm |= (uint32_t) val;
910             }
911 
912             free(value);
913         }
914 
915         // Handle kernel configuration bugs that prevent the correct
916         // reporting of CPU features.
917         static const struct CpuFix {
918             uint32_t  cpuid;
919             uint64_t  or_flags;
920         } cpu_fixes[] = {
921             /* The Nexus 4 (Qualcomm Krait) kernel configuration
922              * forgets to report IDIV support. */
923             { 0x510006f2, ANDROID_CPU_ARM_FEATURE_IDIV_ARM |
924                           ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 },
925             { 0x510006f3, ANDROID_CPU_ARM_FEATURE_IDIV_ARM |
926                           ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 },
927         };
928         size_t n;
929         for (n = 0; n < sizeof(cpu_fixes)/sizeof(cpu_fixes[0]); ++n) {
930             const struct CpuFix* entry = &cpu_fixes[n];
931 
932             if (g_cpuIdArm == entry->cpuid)
933                 g_cpuFeatures |= entry->or_flags;
934         }
935 
936         // Special case: The emulator-specific Android 4.2 kernel fails
937         // to report support for the 32-bit ARM IDIV instruction.
938         // Technically, this is a feature of the virtual CPU implemented
939         // by the emulator. Note that it could also support Thumb IDIV
940         // in the future, and this will have to be slightly updated.
941         char* hardware = extract_cpuinfo_field(cpuinfo,
942                                                cpuinfo_len,
943                                                "Hardware");
944         if (hardware) {
945             if (!strcmp(hardware, "Goldfish") &&
946                 g_cpuIdArm == 0x4100c080 &&
947                 (g_cpuFamily & ANDROID_CPU_ARM_FEATURE_ARMv7) != 0) {
948                 g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
949             }
950             free(hardware);
951         }
952     }
953 #endif /* __arm__ */
954 #ifdef __aarch64__
955     {
956         /* Extract the list of CPU features from ELF hwcaps */
957         uint32_t hwcaps = 0;
958         hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
959         if (hwcaps != 0) {
960             int has_fp      = (hwcaps & HWCAP_FP);
961             int has_asimd   = (hwcaps & HWCAP_ASIMD);
962             int has_aes     = (hwcaps & HWCAP_AES);
963             int has_pmull   = (hwcaps & HWCAP_PMULL);
964             int has_sha1    = (hwcaps & HWCAP_SHA1);
965             int has_sha2    = (hwcaps & HWCAP_SHA2);
966             int has_crc32   = (hwcaps & HWCAP_CRC32);
967 
968             if(has_fp == 0) {
969                 D("ERROR: Floating-point unit missing, but is required by Android on AArch64 CPUs\n");
970             }
971             if(has_asimd == 0) {
972                 D("ERROR: ASIMD unit missing, but is required by Android on AArch64 CPUs\n");
973             }
974 
975             if (has_fp)
976                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_FP;
977             if (has_asimd)
978                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_ASIMD;
979             if (has_aes)
980                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_AES;
981             if (has_pmull)
982                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_PMULL;
983             if (has_sha1)
984                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_SHA1;
985             if (has_sha2)
986                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_SHA2;
987             if (has_crc32)
988                 g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_CRC32;
989         }
990     }
991 #endif /* __aarch64__ */
992 
993 #ifdef __i386__
994     int regs[4];
995 
996 /* According to http://en.wikipedia.org/wiki/CPUID */
997 #define VENDOR_INTEL_b  0x756e6547
998 #define VENDOR_INTEL_c  0x6c65746e
999 #define VENDOR_INTEL_d  0x49656e69
1000 
1001     x86_cpuid(0, regs);
1002     int vendorIsIntel = (regs[1] == VENDOR_INTEL_b &&
1003                          regs[2] == VENDOR_INTEL_c &&
1004                          regs[3] == VENDOR_INTEL_d);
1005 
1006     x86_cpuid(1, regs);
1007     if ((regs[2] & (1 << 9)) != 0) {
1008         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSSE3;
1009     }
1010     if ((regs[2] & (1 << 23)) != 0) {
1011         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_POPCNT;
1012     }
1013     if (vendorIsIntel && (regs[2] & (1 << 22)) != 0) {
1014         g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_MOVBE;
1015     }
1016 #endif
1017 
1018     free(cpuinfo);
1019 }
1020 
1021 
1022 AndroidCpuFamily
android_getCpuFamily(void)1023 android_getCpuFamily(void)
1024 {
1025     pthread_once(&g_once, android_cpuInit);
1026     return g_cpuFamily;
1027 }
1028 
1029 
1030 uint64_t
android_getCpuFeatures(void)1031 android_getCpuFeatures(void)
1032 {
1033     pthread_once(&g_once, android_cpuInit);
1034     return g_cpuFeatures;
1035 }
1036 
1037 
1038 int
android_getCpuCount(void)1039 android_getCpuCount(void)
1040 {
1041     pthread_once(&g_once, android_cpuInit);
1042     return g_cpuCount;
1043 }
1044 
1045 static void
android_cpuInitDummy(void)1046 android_cpuInitDummy(void)
1047 {
1048     g_inited = 1;
1049 }
1050 
1051 int
android_setCpu(int cpu_count,uint64_t cpu_features)1052 android_setCpu(int cpu_count, uint64_t cpu_features)
1053 {
1054     /* Fail if the library was already initialized. */
1055     if (g_inited)
1056         return 0;
1057 
1058     android_cpuInitFamily();
1059     g_cpuCount = (cpu_count <= 0 ? 1 : cpu_count);
1060     g_cpuFeatures = cpu_features;
1061     pthread_once(&g_once, android_cpuInitDummy);
1062 
1063     return 1;
1064 }
1065 
1066 #ifdef __arm__
1067 uint32_t
android_getCpuIdArm(void)1068 android_getCpuIdArm(void)
1069 {
1070     pthread_once(&g_once, android_cpuInit);
1071     return g_cpuIdArm;
1072 }
1073 
1074 int
android_setCpuArm(int cpu_count,uint64_t cpu_features,uint32_t cpu_id)1075 android_setCpuArm(int cpu_count, uint64_t cpu_features, uint32_t cpu_id)
1076 {
1077     if (!android_setCpu(cpu_count, cpu_features))
1078         return 0;
1079 
1080     g_cpuIdArm = cpu_id;
1081     return 1;
1082 }
1083 #endif  /* __arm__ */
1084 
1085 /*
1086  * Technical note: Making sense of ARM's FPU architecture versions.
1087  *
1088  * FPA was ARM's first attempt at an FPU architecture. There is no Android
1089  * device that actually uses it since this technology was already obsolete
1090  * when the project started. If you see references to FPA instructions
1091  * somewhere, you can be sure that this doesn't apply to Android at all.
1092  *
1093  * FPA was followed by "VFP", soon renamed "VFPv1" due to the emergence of
1094  * new versions / additions to it. ARM considers this obsolete right now,
1095  * and no known Android device implements it either.
1096  *
1097  * VFPv2 added a few instructions to VFPv1, and is an *optional* extension
1098  * supported by some ARMv5TE, ARMv6 and ARMv6T2 CPUs. Note that a device
1099  * supporting the 'armeabi' ABI doesn't necessarily support these.
1100  *
1101  * VFPv3-D16 adds a few instructions on top of VFPv2 and is typically used
1102  * on ARMv7-A CPUs which implement a FPU. Note that it is also mandated
1103  * by the Android 'armeabi-v7a' ABI. The -D16 suffix in its name means
1104  * that it provides 16 double-precision FPU registers (d0-d15) and 32
1105  * single-precision ones (s0-s31) which happen to be mapped to the same
1106  * register banks.
1107  *
1108  * VFPv3-D32 is the name of an extension to VFPv3-D16 that provides 16
1109  * additional double precision registers (d16-d31). Note that there are
1110  * still only 32 single precision registers.
1111  *
1112  * VFPv3xD is a *subset* of VFPv3-D16 that only provides single-precision
1113  * registers. It is only used on ARMv7-M (i.e. on micro-controllers) which
1114  * are not supported by Android. Note that it is not compatible with VFPv2.
1115  *
1116  * NOTE: The term 'VFPv3' usually designate either VFPv3-D16 or VFPv3-D32
1117  *       depending on context. For example GCC uses it for VFPv3-D32, but
1118  *       the Linux kernel code uses it for VFPv3-D16 (especially in
1119  *       /proc/cpuinfo). Always try to use the full designation when
1120  *       possible.
1121  *
1122  * NEON, a.k.a. "ARM Advanced SIMD" is an extension that provides
1123  * instructions to perform parallel computations on vectors of 8, 16,
1124  * 32, 64 and 128 bit quantities. NEON requires VFPv32-D32 since all
1125  * NEON registers are also mapped to the same register banks.
1126  *
1127  * VFPv4-D16, adds a few instructions on top of VFPv3-D16 in order to
1128  * perform fused multiply-accumulate on VFP registers, as well as
1129  * half-precision (16-bit) conversion operations.
1130  *
1131  * VFPv4-D32 is VFPv4-D16 with 32, instead of 16, FPU double precision
1132  * registers.
1133  *
1134  * VPFv4-NEON is VFPv4-D32 with NEON instructions. It also adds fused
1135  * multiply-accumulate instructions that work on the NEON registers.
1136  *
1137  * NOTE: Similarly, "VFPv4" might either reference VFPv4-D16 or VFPv4-D32
1138  *       depending on context.
1139  *
1140  * The following information was determined by scanning the binutils-2.22
1141  * sources:
1142  *
1143  * Basic VFP instruction subsets:
1144  *
1145  * #define FPU_VFP_EXT_V1xD 0x08000000     // Base VFP instruction set.
1146  * #define FPU_VFP_EXT_V1   0x04000000     // Double-precision insns.
1147  * #define FPU_VFP_EXT_V2   0x02000000     // ARM10E VFPr1.
1148  * #define FPU_VFP_EXT_V3xD 0x01000000     // VFPv3 single-precision.
1149  * #define FPU_VFP_EXT_V3   0x00800000     // VFPv3 double-precision.
1150  * #define FPU_NEON_EXT_V1  0x00400000     // Neon (SIMD) insns.
1151  * #define FPU_VFP_EXT_D32  0x00200000     // Registers D16-D31.
1152  * #define FPU_VFP_EXT_FP16 0x00100000     // Half-precision extensions.
1153  * #define FPU_NEON_EXT_FMA 0x00080000     // Neon fused multiply-add
1154  * #define FPU_VFP_EXT_FMA  0x00040000     // VFP fused multiply-add
1155  *
1156  * FPU types (excluding NEON)
1157  *
1158  * FPU_VFP_V1xD (EXT_V1xD)
1159  *    |
1160  *    +--------------------------+
1161  *    |                          |
1162  * FPU_VFP_V1 (+EXT_V1)       FPU_VFP_V3xD (+EXT_V2+EXT_V3xD)
1163  *    |                          |
1164  *    |                          |
1165  * FPU_VFP_V2 (+EXT_V2)       FPU_VFP_V4_SP_D16 (+EXT_FP16+EXT_FMA)
1166  *    |
1167  * FPU_VFP_V3D16 (+EXT_Vx3D+EXT_V3)
1168  *    |
1169  *    +--------------------------+
1170  *    |                          |
1171  * FPU_VFP_V3 (+EXT_D32)     FPU_VFP_V4D16 (+EXT_FP16+EXT_FMA)
1172  *    |                          |
1173  *    |                      FPU_VFP_V4 (+EXT_D32)
1174  *    |
1175  * FPU_VFP_HARD (+EXT_FMA+NEON_EXT_FMA)
1176  *
1177  * VFP architectures:
1178  *
1179  * ARCH_VFP_V1xD  (EXT_V1xD)
1180  *   |
1181  *   +------------------+
1182  *   |                  |
1183  *   |             ARCH_VFP_V3xD (+EXT_V2+EXT_V3xD)
1184  *   |                  |
1185  *   |             ARCH_VFP_V3xD_FP16 (+EXT_FP16)
1186  *   |                  |
1187  *   |             ARCH_VFP_V4_SP_D16 (+EXT_FMA)
1188  *   |
1189  * ARCH_VFP_V1 (+EXT_V1)
1190  *   |
1191  * ARCH_VFP_V2 (+EXT_V2)
1192  *   |
1193  * ARCH_VFP_V3D16 (+EXT_V3xD+EXT_V3)
1194  *   |
1195  *   +-------------------+
1196  *   |                   |
1197  *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
1198  *   |
1199  *   +-------------------+
1200  *   |                   |
1201  *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
1202  *   |                   |
1203  *   |         ARCH_VFP_V4 (+EXT_D32)
1204  *   |                   |
1205  *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
1206  *   |
1207  * ARCH_VFP_V3 (+EXT_D32)
1208  *   |
1209  *   +-------------------+
1210  *   |                   |
1211  *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
1212  *   |
1213  * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1214  *   |
1215  * ARCH_NEON_FP16 (+EXT_FP16)
1216  *
1217  * -fpu=<name> values and their correspondance with FPU architectures above:
1218  *
1219  *   {"vfp",               FPU_ARCH_VFP_V2},
1220  *   {"vfp9",              FPU_ARCH_VFP_V2},
1221  *   {"vfp3",              FPU_ARCH_VFP_V3}, // For backwards compatbility.
1222  *   {"vfp10",             FPU_ARCH_VFP_V2},
1223  *   {"vfp10-r0",          FPU_ARCH_VFP_V1},
1224  *   {"vfpxd",             FPU_ARCH_VFP_V1xD},
1225  *   {"vfpv2",             FPU_ARCH_VFP_V2},
1226  *   {"vfpv3",             FPU_ARCH_VFP_V3},
1227  *   {"vfpv3-fp16",        FPU_ARCH_VFP_V3_FP16},
1228  *   {"vfpv3-d16",         FPU_ARCH_VFP_V3D16},
1229  *   {"vfpv3-d16-fp16",    FPU_ARCH_VFP_V3D16_FP16},
1230  *   {"vfpv3xd",           FPU_ARCH_VFP_V3xD},
1231  *   {"vfpv3xd-fp16",      FPU_ARCH_VFP_V3xD_FP16},
1232  *   {"neon",              FPU_ARCH_VFP_V3_PLUS_NEON_V1},
1233  *   {"neon-fp16",         FPU_ARCH_NEON_FP16},
1234  *   {"vfpv4",             FPU_ARCH_VFP_V4},
1235  *   {"vfpv4-d16",         FPU_ARCH_VFP_V4D16},
1236  *   {"fpv4-sp-d16",       FPU_ARCH_VFP_V4_SP_D16},
1237  *   {"neon-vfpv4",        FPU_ARCH_NEON_VFP_V4},
1238  *
1239  *
1240  * Simplified diagram that only includes FPUs supported by Android:
1241  * Only ARCH_VFP_V3D16 is actually mandated by the armeabi-v7a ABI,
1242  * all others are optional and must be probed at runtime.
1243  *
1244  * ARCH_VFP_V3D16 (EXT_V1xD+EXT_V1+EXT_V2+EXT_V3xD+EXT_V3)
1245  *   |
1246  *   +-------------------+
1247  *   |                   |
1248  *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
1249  *   |
1250  *   +-------------------+
1251  *   |                   |
1252  *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
1253  *   |                   |
1254  *   |         ARCH_VFP_V4 (+EXT_D32)
1255  *   |                   |
1256  *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
1257  *   |
1258  * ARCH_VFP_V3 (+EXT_D32)
1259  *   |
1260  *   +-------------------+
1261  *   |                   |
1262  *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
1263  *   |
1264  * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1265  *   |
1266  * ARCH_NEON_FP16 (+EXT_FP16)
1267  *
1268  */
1269 
1270 #endif // defined(__le32__) || defined(__le64__)
1271