1 
2 /*
3  * Copyright 2006 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #include "SkEdge.h"
11 #include "SkFDot6.h"
12 #include "SkMath.h"
13 
14 /*
15     In setLine, setQuadratic, setCubic, the first thing we do is to convert
16     the points into FDot6. This is modulated by the shift parameter, which
17     will either be 0, or something like 2 for antialiasing.
18 
19     In the float case, we want to turn the float into .6 by saying pt * 64,
20     or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6).
21 
22     In the fixed case, we want to turn the fixed into .6 by saying pt >> 10,
23     or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift).
24 */
25 
SkFDot6ToFixedDiv2(SkFDot6 value)26 static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) {
27     // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw
28     // away data in value, so just perform a modify up-shift
29     return SkLeftShift(value, 16 - 6 - 1);
30 }
31 
32 /////////////////////////////////////////////////////////////////////////
33 
setLine(const SkPoint & p0,const SkPoint & p1,const SkIRect * clip,int shift)34 int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip,
35                     int shift) {
36     SkFDot6 x0, y0, x1, y1;
37 
38     {
39 #ifdef SK_RASTERIZE_EVEN_ROUNDING
40         x0 = SkScalarRoundToFDot6(p0.fX, shift);
41         y0 = SkScalarRoundToFDot6(p0.fY, shift);
42         x1 = SkScalarRoundToFDot6(p1.fX, shift);
43         y1 = SkScalarRoundToFDot6(p1.fY, shift);
44 #else
45         float scale = float(1 << (shift + 6));
46         x0 = int(p0.fX * scale);
47         y0 = int(p0.fY * scale);
48         x1 = int(p1.fX * scale);
49         y1 = int(p1.fY * scale);
50 #endif
51     }
52 
53     int winding = 1;
54 
55     if (y0 > y1) {
56         SkTSwap(x0, x1);
57         SkTSwap(y0, y1);
58         winding = -1;
59     }
60 
61     int top = SkFDot6Round(y0);
62     int bot = SkFDot6Round(y1);
63 
64     // are we a zero-height line?
65     if (top == bot) {
66         return 0;
67     }
68     // are we completely above or below the clip?
69     if (clip && (top >= clip->fBottom || bot <= clip->fTop)) {
70         return 0;
71     }
72 
73     SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
74     const SkFDot6 dy  = SkEdge_Compute_DY(top, y0);
75 
76     fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
77     fDX         = slope;
78     fFirstY     = top;
79     fLastY      = bot - 1;
80     fCurveCount = 0;
81     fWinding    = SkToS8(winding);
82     fCurveShift = 0;
83 
84     if (clip) {
85         this->chopLineWithClip(*clip);
86     }
87     return 1;
88 }
89 
90 // called from a curve subclass
updateLine(SkFixed x0,SkFixed y0,SkFixed x1,SkFixed y1)91 int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1)
92 {
93     SkASSERT(fWinding == 1 || fWinding == -1);
94     SkASSERT(fCurveCount != 0);
95 //    SkASSERT(fCurveShift != 0);
96 
97     y0 >>= 10;
98     y1 >>= 10;
99 
100     SkASSERT(y0 <= y1);
101 
102     int top = SkFDot6Round(y0);
103     int bot = SkFDot6Round(y1);
104 
105 //  SkASSERT(top >= fFirstY);
106 
107     // are we a zero-height line?
108     if (top == bot)
109         return 0;
110 
111     x0 >>= 10;
112     x1 >>= 10;
113 
114     SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0);
115     const SkFDot6 dy  = SkEdge_Compute_DY(top, y0);
116 
117     fX          = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy));   // + SK_Fixed1/2
118     fDX         = slope;
119     fFirstY     = top;
120     fLastY      = bot - 1;
121 
122     return 1;
123 }
124 
chopLineWithClip(const SkIRect & clip)125 void SkEdge::chopLineWithClip(const SkIRect& clip)
126 {
127     int top = fFirstY;
128 
129     SkASSERT(top < clip.fBottom);
130 
131     // clip the line to the top
132     if (top < clip.fTop)
133     {
134         SkASSERT(fLastY >= clip.fTop);
135         fX += fDX * (clip.fTop - top);
136         fFirstY = clip.fTop;
137     }
138 }
139 
140 ///////////////////////////////////////////////////////////////////////////////
141 
142 /*  We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64.
143     Note that this limits the number of lines we use to approximate a curve.
144     If we need to increase this, we need to store fCurveCount in something
145     larger than int8_t.
146 */
147 #define MAX_COEFF_SHIFT     6
148 
cheap_distance(SkFDot6 dx,SkFDot6 dy)149 static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy)
150 {
151     dx = SkAbs32(dx);
152     dy = SkAbs32(dy);
153     // return max + min/2
154     if (dx > dy)
155         dx += dy >> 1;
156     else
157         dx = dy + (dx >> 1);
158     return dx;
159 }
160 
diff_to_shift(SkFDot6 dx,SkFDot6 dy)161 static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy)
162 {
163     // cheap calc of distance from center of p0-p2 to the center of the curve
164     SkFDot6 dist = cheap_distance(dx, dy);
165 
166     // shift down dist (it is currently in dot6)
167     // down by 5 should give us 1/2 pixel accuracy (assuming our dist is accurate...)
168     // this is chosen by heuristic: make it as big as possible (to minimize segments)
169     // ... but small enough so that our curves still look smooth
170     dist = (dist + (1 << 4)) >> 5;
171 
172     // each subdivision (shift value) cuts this dist (error) by 1/4
173     return (32 - SkCLZ(dist)) >> 1;
174 }
175 
setQuadratic(const SkPoint pts[3],int shift)176 int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift)
177 {
178     SkFDot6 x0, y0, x1, y1, x2, y2;
179 
180     {
181 #ifdef SK_RASTERIZE_EVEN_ROUNDING
182         x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
183         y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
184         x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
185         y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
186         x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
187         y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
188 #else
189         float scale = float(1 << (shift + 6));
190         x0 = int(pts[0].fX * scale);
191         y0 = int(pts[0].fY * scale);
192         x1 = int(pts[1].fX * scale);
193         y1 = int(pts[1].fY * scale);
194         x2 = int(pts[2].fX * scale);
195         y2 = int(pts[2].fY * scale);
196 #endif
197     }
198 
199     int winding = 1;
200     if (y0 > y2)
201     {
202         SkTSwap(x0, x2);
203         SkTSwap(y0, y2);
204         winding = -1;
205     }
206     SkASSERT(y0 <= y1 && y1 <= y2);
207 
208     int top = SkFDot6Round(y0);
209     int bot = SkFDot6Round(y2);
210 
211     // are we a zero-height quad (line)?
212     if (top == bot)
213         return 0;
214 
215     // compute number of steps needed (1 << shift)
216     {
217         SkFDot6 dx = (SkLeftShift(x1, 1) - x0 - x2) >> 2;
218         SkFDot6 dy = (SkLeftShift(y1, 1) - y0 - y2) >> 2;
219         shift = diff_to_shift(dx, dy);
220         SkASSERT(shift >= 0);
221     }
222     // need at least 1 subdivision for our bias trick
223     if (shift == 0) {
224         shift = 1;
225     } else if (shift > MAX_COEFF_SHIFT) {
226         shift = MAX_COEFF_SHIFT;
227     }
228 
229     fWinding    = SkToS8(winding);
230     //fCubicDShift only set for cubics
231     fCurveCount = SkToS8(1 << shift);
232 
233     /*
234      *  We want to reformulate into polynomial form, to make it clear how we
235      *  should forward-difference.
236      *
237      *  p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C
238      *
239      *  A = p0 - 2p1 + p2
240      *  B = 2(p1 - p0)
241      *  C = p0
242      *
243      *  Our caller must have constrained our inputs (p0..p2) to all fit into
244      *  16.16. However, as seen above, we sometimes compute values that can be
245      *  larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store
246      *  A and B at 1/2 of their actual value, and just apply a 2x scale during
247      *  application in updateQuadratic(). Hence we store (shift - 1) in
248      *  fCurveShift.
249      */
250 
251     fCurveShift = SkToU8(shift - 1);
252 
253     SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2);  // 1/2 the real value
254     SkFixed B = SkFDot6ToFixed(x1 - x0);                // 1/2 the real value
255 
256     fQx     = SkFDot6ToFixed(x0);
257     fQDx    = B + (A >> shift);     // biased by shift
258     fQDDx   = A >> (shift - 1);     // biased by shift
259 
260     A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2);  // 1/2 the real value
261     B = SkFDot6ToFixed(y1 - y0);                // 1/2 the real value
262 
263     fQy     = SkFDot6ToFixed(y0);
264     fQDy    = B + (A >> shift);     // biased by shift
265     fQDDy   = A >> (shift - 1);     // biased by shift
266 
267     fQLastX = SkFDot6ToFixed(x2);
268     fQLastY = SkFDot6ToFixed(y2);
269 
270     return this->updateQuadratic();
271 }
272 
updateQuadratic()273 int SkQuadraticEdge::updateQuadratic()
274 {
275     int     success;
276     int     count = fCurveCount;
277     SkFixed oldx = fQx;
278     SkFixed oldy = fQy;
279     SkFixed dx = fQDx;
280     SkFixed dy = fQDy;
281     SkFixed newx, newy;
282     int     shift = fCurveShift;
283 
284     SkASSERT(count > 0);
285 
286     do {
287         if (--count > 0)
288         {
289             newx    = oldx + (dx >> shift);
290             dx    += fQDDx;
291             newy    = oldy + (dy >> shift);
292             dy    += fQDDy;
293         }
294         else    // last segment
295         {
296             newx    = fQLastX;
297             newy    = fQLastY;
298         }
299         success = this->updateLine(oldx, oldy, newx, newy);
300         oldx = newx;
301         oldy = newy;
302     } while (count > 0 && !success);
303 
304     fQx         = newx;
305     fQy         = newy;
306     fQDx        = dx;
307     fQDy        = dy;
308     fCurveCount = SkToS8(count);
309     return success;
310 }
311 
312 /////////////////////////////////////////////////////////////////////////
313 
SkFDot6UpShift(SkFDot6 x,int upShift)314 static inline int SkFDot6UpShift(SkFDot6 x, int upShift) {
315     SkASSERT((SkLeftShift(x, upShift) >> upShift) == x);
316     return SkLeftShift(x, upShift);
317 }
318 
319 /*  f(1/3) = (8a + 12b + 6c + d) / 27
320     f(2/3) = (a + 6b + 12c + 8d) / 27
321 
322     f(1/3)-b = (8a - 15b + 6c + d) / 27
323     f(2/3)-c = (a + 6b - 15c + 8d) / 27
324 
325     use 16/512 to approximate 1/27
326 */
cubic_delta_from_line(SkFDot6 a,SkFDot6 b,SkFDot6 c,SkFDot6 d)327 static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d)
328 {
329     SkFDot6 oneThird = ((a << 3) - ((b << 4) - b) + 6*c + d) * 19 >> 9;
330     SkFDot6 twoThird = (a + 6*b - ((c << 4) - c) + (d << 3)) * 19 >> 9;
331 
332     return SkMax32(SkAbs32(oneThird), SkAbs32(twoThird));
333 }
334 
setCubic(const SkPoint pts[4],int shift)335 int SkCubicEdge::setCubic(const SkPoint pts[4], int shift) {
336     SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3;
337 
338     {
339 #ifdef SK_RASTERIZE_EVEN_ROUNDING
340         x0 = SkScalarRoundToFDot6(pts[0].fX, shift);
341         y0 = SkScalarRoundToFDot6(pts[0].fY, shift);
342         x1 = SkScalarRoundToFDot6(pts[1].fX, shift);
343         y1 = SkScalarRoundToFDot6(pts[1].fY, shift);
344         x2 = SkScalarRoundToFDot6(pts[2].fX, shift);
345         y2 = SkScalarRoundToFDot6(pts[2].fY, shift);
346         x3 = SkScalarRoundToFDot6(pts[3].fX, shift);
347         y3 = SkScalarRoundToFDot6(pts[3].fY, shift);
348 #else
349         float scale = float(1 << (shift + 6));
350         x0 = int(pts[0].fX * scale);
351         y0 = int(pts[0].fY * scale);
352         x1 = int(pts[1].fX * scale);
353         y1 = int(pts[1].fY * scale);
354         x2 = int(pts[2].fX * scale);
355         y2 = int(pts[2].fY * scale);
356         x3 = int(pts[3].fX * scale);
357         y3 = int(pts[3].fY * scale);
358 #endif
359     }
360 
361     int winding = 1;
362     if (y0 > y3)
363     {
364         SkTSwap(x0, x3);
365         SkTSwap(x1, x2);
366         SkTSwap(y0, y3);
367         SkTSwap(y1, y2);
368         winding = -1;
369     }
370 
371     int top = SkFDot6Round(y0);
372     int bot = SkFDot6Round(y3);
373 
374     // are we a zero-height cubic (line)?
375     if (top == bot)
376         return 0;
377 
378     // compute number of steps needed (1 << shift)
379     {
380         // Can't use (center of curve - center of baseline), since center-of-curve
381         // need not be the max delta from the baseline (it could even be coincident)
382         // so we try just looking at the two off-curve points
383         SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3);
384         SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3);
385         // add 1 (by observation)
386         shift = diff_to_shift(dx, dy) + 1;
387     }
388     // need at least 1 subdivision for our bias trick
389     SkASSERT(shift > 0);
390     if (shift > MAX_COEFF_SHIFT) {
391         shift = MAX_COEFF_SHIFT;
392     }
393 
394     /*  Since our in coming data is initially shifted down by 10 (or 8 in
395         antialias). That means the most we can shift up is 8. However, we
396         compute coefficients with a 3*, so the safest upshift is really 6
397     */
398     int upShift = 6;    // largest safe value
399     int downShift = shift + upShift - 10;
400     if (downShift < 0) {
401         downShift = 0;
402         upShift = 10 - shift;
403     }
404 
405     fWinding    = SkToS8(winding);
406     fCurveCount = SkToS8(SkLeftShift(-1, shift));
407     fCurveShift = SkToU8(shift);
408     fCubicDShift = SkToU8(downShift);
409 
410     SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift);
411     SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift);
412     SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift);
413 
414     fCx     = SkFDot6ToFixed(x0);
415     fCDx    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
416     fCDDx   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
417     fCDDDx  = 3*D >> (shift - 1);                   // biased by 2*shift
418 
419     B = SkFDot6UpShift(3 * (y1 - y0), upShift);
420     C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift);
421     D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift);
422 
423     fCy     = SkFDot6ToFixed(y0);
424     fCDy    = B + (C >> shift) + (D >> 2*shift);    // biased by shift
425     fCDDy   = 2*C + (3*D >> (shift - 1));           // biased by 2*shift
426     fCDDDy  = 3*D >> (shift - 1);                   // biased by 2*shift
427 
428     fCLastX = SkFDot6ToFixed(x3);
429     fCLastY = SkFDot6ToFixed(y3);
430 
431     return this->updateCubic();
432 }
433 
updateCubic()434 int SkCubicEdge::updateCubic()
435 {
436     int     success;
437     int     count = fCurveCount;
438     SkFixed oldx = fCx;
439     SkFixed oldy = fCy;
440     SkFixed newx, newy;
441     const int ddshift = fCurveShift;
442     const int dshift = fCubicDShift;
443 
444     SkASSERT(count < 0);
445 
446     do {
447         if (++count < 0)
448         {
449             newx    = oldx + (fCDx >> dshift);
450             fCDx    += fCDDx >> ddshift;
451             fCDDx   += fCDDDx;
452 
453             newy    = oldy + (fCDy >> dshift);
454             fCDy    += fCDDy >> ddshift;
455             fCDDy   += fCDDDy;
456         }
457         else    // last segment
458         {
459         //  SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY));
460             newx    = fCLastX;
461             newy    = fCLastY;
462         }
463 
464         // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint
465         // doesn't always achieve that, so we have to explicitly pin it here.
466         if (newy < oldy) {
467             newy = oldy;
468         }
469 
470         success = this->updateLine(oldx, oldy, newx, newy);
471         oldx = newx;
472         oldy = newy;
473     } while (count < 0 && !success);
474 
475     fCx         = newx;
476     fCy         = newy;
477     fCurveCount = SkToS8(count);
478     return success;
479 }
480