1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "GrPathUtils.h"
9 
10 #include "GrTypes.h"
11 #include "SkGeometry.h"
12 
scaleToleranceToSrc(SkScalar devTol,const SkMatrix & viewM,const SkRect & pathBounds)13 SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
14                                           const SkMatrix& viewM,
15                                           const SkRect& pathBounds) {
16     // In order to tesselate the path we get a bound on how much the matrix can
17     // scale when mapping to screen coordinates.
18     SkScalar stretch = viewM.getMaxScale();
19     SkScalar srcTol = devTol;
20 
21     if (stretch < 0) {
22         // take worst case mapRadius amoung four corners.
23         // (less than perfect)
24         for (int i = 0; i < 4; ++i) {
25             SkMatrix mat;
26             mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
27                              (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
28             mat.postConcat(viewM);
29             stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
30         }
31     }
32     return srcTol / stretch;
33 }
34 
35 static const int MAX_POINTS_PER_CURVE = 1 << 10;
36 static const SkScalar gMinCurveTol = 0.0001f;
37 
quadraticPointCount(const SkPoint points[],SkScalar tol)38 uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[],
39                                           SkScalar tol) {
40     if (tol < gMinCurveTol) {
41         tol = gMinCurveTol;
42     }
43     SkASSERT(tol > 0);
44 
45     SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
46     if (d <= tol) {
47         return 1;
48     } else {
49         // Each time we subdivide, d should be cut in 4. So we need to
50         // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
51         // points.
52         // 2^(log4(x)) = sqrt(x);
53         SkScalar divSqrt = SkScalarSqrt(d / tol);
54         if (((SkScalar)SK_MaxS32) <= divSqrt) {
55             return MAX_POINTS_PER_CURVE;
56         } else {
57             int temp = SkScalarCeilToInt(divSqrt);
58             int pow2 = GrNextPow2(temp);
59             // Because of NaNs & INFs we can wind up with a degenerate temp
60             // such that pow2 comes out negative. Also, our point generator
61             // will always output at least one pt.
62             if (pow2 < 1) {
63                 pow2 = 1;
64             }
65             return SkTMin(pow2, MAX_POINTS_PER_CURVE);
66         }
67     }
68 }
69 
generateQuadraticPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,SkScalar tolSqd,SkPoint ** points,uint32_t pointsLeft)70 uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
71                                               const SkPoint& p1,
72                                               const SkPoint& p2,
73                                               SkScalar tolSqd,
74                                               SkPoint** points,
75                                               uint32_t pointsLeft) {
76     if (pointsLeft < 2 ||
77         (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
78         (*points)[0] = p2;
79         *points += 1;
80         return 1;
81     }
82 
83     SkPoint q[] = {
84         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
85         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
86     };
87     SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
88 
89     pointsLeft >>= 1;
90     uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
91     uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
92     return a + b;
93 }
94 
cubicPointCount(const SkPoint points[],SkScalar tol)95 uint32_t GrPathUtils::cubicPointCount(const SkPoint points[],
96                                            SkScalar tol) {
97     if (tol < gMinCurveTol) {
98         tol = gMinCurveTol;
99     }
100     SkASSERT(tol > 0);
101 
102     SkScalar d = SkTMax(
103         points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
104         points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
105     d = SkScalarSqrt(d);
106     if (d <= tol) {
107         return 1;
108     } else {
109         SkScalar divSqrt = SkScalarSqrt(d / tol);
110         if (((SkScalar)SK_MaxS32) <= divSqrt) {
111             return MAX_POINTS_PER_CURVE;
112         } else {
113             int temp = SkScalarCeilToInt(SkScalarSqrt(d / tol));
114             int pow2 = GrNextPow2(temp);
115             // Because of NaNs & INFs we can wind up with a degenerate temp
116             // such that pow2 comes out negative. Also, our point generator
117             // will always output at least one pt.
118             if (pow2 < 1) {
119                 pow2 = 1;
120             }
121             return SkTMin(pow2, MAX_POINTS_PER_CURVE);
122         }
123     }
124 }
125 
generateCubicPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,SkPoint ** points,uint32_t pointsLeft)126 uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
127                                           const SkPoint& p1,
128                                           const SkPoint& p2,
129                                           const SkPoint& p3,
130                                           SkScalar tolSqd,
131                                           SkPoint** points,
132                                           uint32_t pointsLeft) {
133     if (pointsLeft < 2 ||
134         (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
135          p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
136         (*points)[0] = p3;
137         *points += 1;
138         return 1;
139     }
140     SkPoint q[] = {
141         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
142         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
143         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
144     };
145     SkPoint r[] = {
146         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
147         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
148     };
149     SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
150     pointsLeft >>= 1;
151     uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
152     uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
153     return a + b;
154 }
155 
worstCasePointCount(const SkPath & path,int * subpaths,SkScalar tol)156 int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
157                                      SkScalar tol) {
158     if (tol < gMinCurveTol) {
159         tol = gMinCurveTol;
160     }
161     SkASSERT(tol > 0);
162 
163     int pointCount = 0;
164     *subpaths = 1;
165 
166     bool first = true;
167 
168     SkPath::Iter iter(path, false);
169     SkPath::Verb verb;
170 
171     SkPoint pts[4];
172     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
173 
174         switch (verb) {
175             case SkPath::kLine_Verb:
176                 pointCount += 1;
177                 break;
178             case SkPath::kConic_Verb: {
179                 SkScalar weight = iter.conicWeight();
180                 SkAutoConicToQuads converter;
181                 const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.25f);
182                 for (int i = 0; i < converter.countQuads(); ++i) {
183                     pointCount += quadraticPointCount(quadPts + 2*i, tol);
184                 }
185             }
186             case SkPath::kQuad_Verb:
187                 pointCount += quadraticPointCount(pts, tol);
188                 break;
189             case SkPath::kCubic_Verb:
190                 pointCount += cubicPointCount(pts, tol);
191                 break;
192             case SkPath::kMove_Verb:
193                 pointCount += 1;
194                 if (!first) {
195                     ++(*subpaths);
196                 }
197                 break;
198             default:
199                 break;
200         }
201         first = false;
202     }
203     return pointCount;
204 }
205 
set(const SkPoint qPts[3])206 void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
207     SkMatrix m;
208     // We want M such that M * xy_pt = uv_pt
209     // We know M * control_pts = [0  1/2 1]
210     //                           [0  0   1]
211     //                           [1  1   1]
212     // And control_pts = [x0 x1 x2]
213     //                   [y0 y1 y2]
214     //                   [1  1  1 ]
215     // We invert the control pt matrix and post concat to both sides to get M.
216     // Using the known form of the control point matrix and the result, we can
217     // optimize and improve precision.
218 
219     double x0 = qPts[0].fX;
220     double y0 = qPts[0].fY;
221     double x1 = qPts[1].fX;
222     double y1 = qPts[1].fY;
223     double x2 = qPts[2].fX;
224     double y2 = qPts[2].fY;
225     double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
226 
227     if (!sk_float_isfinite(det)
228         || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
229         // The quad is degenerate. Hopefully this is rare. Find the pts that are
230         // farthest apart to compute a line (unless it is really a pt).
231         SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
232         int maxEdge = 0;
233         SkScalar d = qPts[1].distanceToSqd(qPts[2]);
234         if (d > maxD) {
235             maxD = d;
236             maxEdge = 1;
237         }
238         d = qPts[2].distanceToSqd(qPts[0]);
239         if (d > maxD) {
240             maxD = d;
241             maxEdge = 2;
242         }
243         // We could have a tolerance here, not sure if it would improve anything
244         if (maxD > 0) {
245             // Set the matrix to give (u = 0, v = distance_to_line)
246             SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
247             // when looking from the point 0 down the line we want positive
248             // distances to be to the left. This matches the non-degenerate
249             // case.
250             lineVec.setOrthog(lineVec, SkPoint::kLeft_Side);
251             lineVec.dot(qPts[0]);
252             // first row
253             fM[0] = 0;
254             fM[1] = 0;
255             fM[2] = 0;
256             // second row
257             fM[3] = lineVec.fX;
258             fM[4] = lineVec.fY;
259             fM[5] = -lineVec.dot(qPts[maxEdge]);
260         } else {
261             // It's a point. It should cover zero area. Just set the matrix such
262             // that (u, v) will always be far away from the quad.
263             fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
264             fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
265         }
266     } else {
267         double scale = 1.0/det;
268 
269         // compute adjugate matrix
270         double a0, a1, a2, a3, a4, a5, a6, a7, a8;
271         a0 = y1-y2;
272         a1 = x2-x1;
273         a2 = x1*y2-x2*y1;
274 
275         a3 = y2-y0;
276         a4 = x0-x2;
277         a5 = x2*y0-x0*y2;
278 
279         a6 = y0-y1;
280         a7 = x1-x0;
281         a8 = x0*y1-x1*y0;
282 
283         // this performs the uv_pts*adjugate(control_pts) multiply,
284         // then does the scale by 1/det afterwards to improve precision
285         m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
286         m[SkMatrix::kMSkewX]  = (float)((0.5*a4 + a7)*scale);
287         m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
288 
289         m[SkMatrix::kMSkewY]  = (float)(a6*scale);
290         m[SkMatrix::kMScaleY] = (float)(a7*scale);
291         m[SkMatrix::kMTransY] = (float)(a8*scale);
292 
293         m[SkMatrix::kMPersp0] = (float)((a0 + a3 + a6)*scale);
294         m[SkMatrix::kMPersp1] = (float)((a1 + a4 + a7)*scale);
295         m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
296 
297         // The matrix should not have perspective.
298         SkDEBUGCODE(static const SkScalar gTOL = 1.f / 100.f);
299         SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL);
300         SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL);
301 
302         // It may not be normalized to have 1.0 in the bottom right
303         float m33 = m.get(SkMatrix::kMPersp2);
304         if (1.f != m33) {
305             m33 = 1.f / m33;
306             fM[0] = m33 * m.get(SkMatrix::kMScaleX);
307             fM[1] = m33 * m.get(SkMatrix::kMSkewX);
308             fM[2] = m33 * m.get(SkMatrix::kMTransX);
309             fM[3] = m33 * m.get(SkMatrix::kMSkewY);
310             fM[4] = m33 * m.get(SkMatrix::kMScaleY);
311             fM[5] = m33 * m.get(SkMatrix::kMTransY);
312         } else {
313             fM[0] = m.get(SkMatrix::kMScaleX);
314             fM[1] = m.get(SkMatrix::kMSkewX);
315             fM[2] = m.get(SkMatrix::kMTransX);
316             fM[3] = m.get(SkMatrix::kMSkewY);
317             fM[4] = m.get(SkMatrix::kMScaleY);
318             fM[5] = m.get(SkMatrix::kMTransY);
319         }
320     }
321 }
322 
323 ////////////////////////////////////////////////////////////////////////////////
324 
325 // k = (y2 - y0, x0 - x2, (x2 - x0)*y0 - (y2 - y0)*x0 )
326 // l = (2*w * (y1 - y0), 2*w * (x0 - x1), 2*w * (x1*y0 - x0*y1))
327 // m = (2*w * (y2 - y1), 2*w * (x1 - x2), 2*w * (x2*y1 - x1*y2))
getConicKLM(const SkPoint p[3],const SkScalar weight,SkScalar klm[9])328 void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]) {
329     const SkScalar w2 = 2.f * weight;
330     klm[0] = p[2].fY - p[0].fY;
331     klm[1] = p[0].fX - p[2].fX;
332     klm[2] = (p[2].fX - p[0].fX) * p[0].fY - (p[2].fY - p[0].fY) * p[0].fX;
333 
334     klm[3] = w2 * (p[1].fY - p[0].fY);
335     klm[4] = w2 * (p[0].fX - p[1].fX);
336     klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
337 
338     klm[6] = w2 * (p[2].fY - p[1].fY);
339     klm[7] = w2 * (p[1].fX - p[2].fX);
340     klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
341 
342     // scale the max absolute value of coeffs to 10
343     SkScalar scale = 0.f;
344     for (int i = 0; i < 9; ++i) {
345        scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
346     }
347     SkASSERT(scale > 0.f);
348     scale = 10.f / scale;
349     for (int i = 0; i < 9; ++i) {
350         klm[i] *= scale;
351     }
352 }
353 
354 ////////////////////////////////////////////////////////////////////////////////
355 
356 namespace {
357 
358 // a is the first control point of the cubic.
359 // ab is the vector from a to the second control point.
360 // dc is the vector from the fourth to the third control point.
361 // d is the fourth control point.
362 // p is the candidate quadratic control point.
363 // this assumes that the cubic doesn't inflect and is simple
is_point_within_cubic_tangents(const SkPoint & a,const SkVector & ab,const SkVector & dc,const SkPoint & d,SkPathPriv::FirstDirection dir,const SkPoint p)364 bool is_point_within_cubic_tangents(const SkPoint& a,
365                                     const SkVector& ab,
366                                     const SkVector& dc,
367                                     const SkPoint& d,
368                                     SkPathPriv::FirstDirection dir,
369                                     const SkPoint p) {
370     SkVector ap = p - a;
371     SkScalar apXab = ap.cross(ab);
372     if (SkPathPriv::kCW_FirstDirection == dir) {
373         if (apXab > 0) {
374             return false;
375         }
376     } else {
377         SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
378         if (apXab < 0) {
379             return false;
380         }
381     }
382 
383     SkVector dp = p - d;
384     SkScalar dpXdc = dp.cross(dc);
385     if (SkPathPriv::kCW_FirstDirection == dir) {
386         if (dpXdc < 0) {
387             return false;
388         }
389     } else {
390         SkASSERT(SkPathPriv::kCCW_FirstDirection == dir);
391         if (dpXdc > 0) {
392             return false;
393         }
394     }
395     return true;
396 }
397 
convert_noninflect_cubic_to_quads(const SkPoint p[4],SkScalar toleranceSqd,bool constrainWithinTangents,SkPathPriv::FirstDirection dir,SkTArray<SkPoint,true> * quads,int sublevel=0)398 void convert_noninflect_cubic_to_quads(const SkPoint p[4],
399                                        SkScalar toleranceSqd,
400                                        bool constrainWithinTangents,
401                                        SkPathPriv::FirstDirection dir,
402                                        SkTArray<SkPoint, true>* quads,
403                                        int sublevel = 0) {
404 
405     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
406     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
407 
408     SkVector ab = p[1] - p[0];
409     SkVector dc = p[2] - p[3];
410 
411     if (ab.lengthSqd() < SK_ScalarNearlyZero) {
412         if (dc.lengthSqd() < SK_ScalarNearlyZero) {
413             SkPoint* degQuad = quads->push_back_n(3);
414             degQuad[0] = p[0];
415             degQuad[1] = p[0];
416             degQuad[2] = p[3];
417             return;
418         }
419         ab = p[2] - p[0];
420     }
421     if (dc.lengthSqd() < SK_ScalarNearlyZero) {
422         dc = p[1] - p[3];
423     }
424 
425     // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
426     // constraint that the quad point falls between the tangents becomes hard to enforce and we are
427     // likely to hit the max subdivision count. However, in this case the cubic is approaching a
428     // line and the accuracy of the quad point isn't so important. We check if the two middle cubic
429     // control points are very close to the baseline vector. If so then we just pick quadratic
430     // points on the control polygon.
431 
432     if (constrainWithinTangents) {
433         SkVector da = p[0] - p[3];
434         bool doQuads = dc.lengthSqd() < SK_ScalarNearlyZero ||
435                        ab.lengthSqd() < SK_ScalarNearlyZero;
436         if (!doQuads) {
437             SkScalar invDALengthSqd = da.lengthSqd();
438             if (invDALengthSqd > SK_ScalarNearlyZero) {
439                 invDALengthSqd = SkScalarInvert(invDALengthSqd);
440                 // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
441                 // same goes for point c using vector cd.
442                 SkScalar detABSqd = ab.cross(da);
443                 detABSqd = SkScalarSquare(detABSqd);
444                 SkScalar detDCSqd = dc.cross(da);
445                 detDCSqd = SkScalarSquare(detDCSqd);
446                 if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd &&
447                     SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) {
448                     doQuads = true;
449                 }
450             }
451         }
452         if (doQuads) {
453             SkPoint b = p[0] + ab;
454             SkPoint c = p[3] + dc;
455             SkPoint mid = b + c;
456             mid.scale(SK_ScalarHalf);
457             // Insert two quadratics to cover the case when ab points away from d and/or dc
458             // points away from a.
459             if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
460                 SkPoint* qpts = quads->push_back_n(6);
461                 qpts[0] = p[0];
462                 qpts[1] = b;
463                 qpts[2] = mid;
464                 qpts[3] = mid;
465                 qpts[4] = c;
466                 qpts[5] = p[3];
467             } else {
468                 SkPoint* qpts = quads->push_back_n(3);
469                 qpts[0] = p[0];
470                 qpts[1] = mid;
471                 qpts[2] = p[3];
472             }
473             return;
474         }
475     }
476 
477     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
478     static const int kMaxSubdivs = 10;
479 
480     ab.scale(kLengthScale);
481     dc.scale(kLengthScale);
482 
483     // e0 and e1 are extrapolations along vectors ab and dc.
484     SkVector c0 = p[0];
485     c0 += ab;
486     SkVector c1 = p[3];
487     c1 += dc;
488 
489     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
490     if (dSqd < toleranceSqd) {
491         SkPoint cAvg = c0;
492         cAvg += c1;
493         cAvg.scale(SK_ScalarHalf);
494 
495         bool subdivide = false;
496 
497         if (constrainWithinTangents &&
498             !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
499             // choose a new cAvg that is the intersection of the two tangent lines.
500             ab.setOrthog(ab);
501             SkScalar z0 = -ab.dot(p[0]);
502             dc.setOrthog(dc);
503             SkScalar z1 = -dc.dot(p[3]);
504             cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY);
505             cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1);
506             SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX);
507             z = SkScalarInvert(z);
508             cAvg.fX *= z;
509             cAvg.fY *= z;
510             if (sublevel <= kMaxSubdivs) {
511                 SkScalar d0Sqd = c0.distanceToSqd(cAvg);
512                 SkScalar d1Sqd = c1.distanceToSqd(cAvg);
513                 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
514                 // the distances and tolerance can't be negative.
515                 // (d0 + d1)^2 > toleranceSqd
516                 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
517                 SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd));
518                 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
519             }
520         }
521         if (!subdivide) {
522             SkPoint* pts = quads->push_back_n(3);
523             pts[0] = p[0];
524             pts[1] = cAvg;
525             pts[2] = p[3];
526             return;
527         }
528     }
529     SkPoint choppedPts[7];
530     SkChopCubicAtHalf(p, choppedPts);
531     convert_noninflect_cubic_to_quads(choppedPts + 0,
532                                       toleranceSqd,
533                                       constrainWithinTangents,
534                                       dir,
535                                       quads,
536                                       sublevel + 1);
537     convert_noninflect_cubic_to_quads(choppedPts + 3,
538                                       toleranceSqd,
539                                       constrainWithinTangents,
540                                       dir,
541                                       quads,
542                                       sublevel + 1);
543 }
544 }
545 
convertCubicToQuads(const SkPoint p[4],SkScalar tolScale,SkTArray<SkPoint,true> * quads)546 void GrPathUtils::convertCubicToQuads(const SkPoint p[4],
547                                       SkScalar tolScale,
548                                       SkTArray<SkPoint, true>* quads) {
549     SkPoint chopped[10];
550     int count = SkChopCubicAtInflections(p, chopped);
551 
552     const SkScalar tolSqd = SkScalarSquare(tolScale);
553 
554     for (int i = 0; i < count; ++i) {
555         SkPoint* cubic = chopped + 3*i;
556         // The direction param is ignored if the third param is false.
557         convert_noninflect_cubic_to_quads(cubic, tolSqd, false,
558                                           SkPathPriv::kCCW_FirstDirection, quads);
559     }
560 }
561 
convertCubicToQuadsConstrainToTangents(const SkPoint p[4],SkScalar tolScale,SkPathPriv::FirstDirection dir,SkTArray<SkPoint,true> * quads)562 void GrPathUtils::convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
563                                                          SkScalar tolScale,
564                                                          SkPathPriv::FirstDirection dir,
565                                                          SkTArray<SkPoint, true>* quads) {
566     SkPoint chopped[10];
567     int count = SkChopCubicAtInflections(p, chopped);
568 
569     const SkScalar tolSqd = SkScalarSquare(tolScale);
570 
571     for (int i = 0; i < count; ++i) {
572         SkPoint* cubic = chopped + 3*i;
573         convert_noninflect_cubic_to_quads(cubic, tolSqd, true, dir, quads);
574     }
575 }
576 
577 ////////////////////////////////////////////////////////////////////////////////
578 
579 // Solves linear system to extract klm
580 // P.K = k (similarly for l, m)
581 // Where P is matrix of control points
582 // K is coefficients for the line K
583 // k is vector of values of K evaluated at the control points
584 // Solving for K, thus K = P^(-1) . k
calc_cubic_klm(const SkPoint p[4],const SkScalar controlK[4],const SkScalar controlL[4],const SkScalar controlM[4],SkScalar k[3],SkScalar l[3],SkScalar m[3])585 static void calc_cubic_klm(const SkPoint p[4], const SkScalar controlK[4],
586                            const SkScalar controlL[4], const SkScalar controlM[4],
587                            SkScalar k[3], SkScalar l[3], SkScalar m[3]) {
588     SkMatrix matrix;
589     matrix.setAll(p[0].fX, p[0].fY, 1.f,
590                   p[1].fX, p[1].fY, 1.f,
591                   p[2].fX, p[2].fY, 1.f);
592     SkMatrix inverse;
593     if (matrix.invert(&inverse)) {
594        inverse.mapHomogeneousPoints(k, controlK, 1);
595        inverse.mapHomogeneousPoints(l, controlL, 1);
596        inverse.mapHomogeneousPoints(m, controlM, 1);
597     }
598 
599 }
600 
set_serp_klm(const SkScalar d[3],SkScalar k[4],SkScalar l[4],SkScalar m[4])601 static void set_serp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
602     SkScalar tempSqrt = SkScalarSqrt(9.f * d[1] * d[1] - 12.f * d[0] * d[2]);
603     SkScalar ls = 3.f * d[1] - tempSqrt;
604     SkScalar lt = 6.f * d[0];
605     SkScalar ms = 3.f * d[1] + tempSqrt;
606     SkScalar mt = 6.f * d[0];
607 
608     k[0] = ls * ms;
609     k[1] = (3.f * ls * ms - ls * mt - lt * ms) / 3.f;
610     k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
611     k[3] = (lt - ls) * (mt - ms);
612 
613     l[0] = ls * ls * ls;
614     const SkScalar lt_ls = lt - ls;
615     l[1] = ls * ls * lt_ls * -1.f;
616     l[2] = lt_ls * lt_ls * ls;
617     l[3] = -1.f * lt_ls * lt_ls * lt_ls;
618 
619     m[0] = ms * ms * ms;
620     const SkScalar mt_ms = mt - ms;
621     m[1] = ms * ms * mt_ms * -1.f;
622     m[2] = mt_ms * mt_ms * ms;
623     m[3] = -1.f * mt_ms * mt_ms * mt_ms;
624 
625     // If d0 < 0 we need to flip the orientation of our curve
626     // This is done by negating the k and l values
627     // We want negative distance values to be on the inside
628     if ( d[0] > 0) {
629         for (int i = 0; i < 4; ++i) {
630             k[i] = -k[i];
631             l[i] = -l[i];
632         }
633     }
634 }
635 
set_loop_klm(const SkScalar d[3],SkScalar k[4],SkScalar l[4],SkScalar m[4])636 static void set_loop_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
637     SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
638     SkScalar ls = d[1] - tempSqrt;
639     SkScalar lt = 2.f * d[0];
640     SkScalar ms = d[1] + tempSqrt;
641     SkScalar mt = 2.f * d[0];
642 
643     k[0] = ls * ms;
644     k[1] = (3.f * ls*ms - ls * mt - lt * ms) / 3.f;
645     k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
646     k[3] = (lt - ls) * (mt - ms);
647 
648     l[0] = ls * ls * ms;
649     l[1] = (ls * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/-3.f;
650     l[2] = ((lt - ls) * (ls * (2.f * mt - 3.f * ms) + lt * ms))/3.f;
651     l[3] = -1.f * (lt - ls) * (lt - ls) * (mt - ms);
652 
653     m[0] = ls * ms * ms;
654     m[1] = (ms * (ls * (2.f * mt - 3.f * ms) + lt * ms))/-3.f;
655     m[2] = ((mt - ms) * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/3.f;
656     m[3] = -1.f * (lt - ls) * (mt - ms) * (mt - ms);
657 
658 
659     // If (d0 < 0 && sign(k1) > 0) || (d0 > 0 && sign(k1) < 0),
660     // we need to flip the orientation of our curve.
661     // This is done by negating the k and l values
662     if ( (d[0] < 0 && k[1] > 0) || (d[0] > 0 && k[1] < 0)) {
663         for (int i = 0; i < 4; ++i) {
664             k[i] = -k[i];
665             l[i] = -l[i];
666         }
667     }
668 }
669 
set_cusp_klm(const SkScalar d[3],SkScalar k[4],SkScalar l[4],SkScalar m[4])670 static void set_cusp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
671     const SkScalar ls = d[2];
672     const SkScalar lt = 3.f * d[1];
673 
674     k[0] = ls;
675     k[1] = ls - lt / 3.f;
676     k[2] = ls - 2.f * lt / 3.f;
677     k[3] = ls - lt;
678 
679     l[0] = ls * ls * ls;
680     const SkScalar ls_lt = ls - lt;
681     l[1] = ls * ls * ls_lt;
682     l[2] = ls_lt * ls_lt * ls;
683     l[3] = ls_lt * ls_lt * ls_lt;
684 
685     m[0] = 1.f;
686     m[1] = 1.f;
687     m[2] = 1.f;
688     m[3] = 1.f;
689 }
690 
691 // For the case when a cubic is actually a quadratic
692 // M =
693 // 0     0     0
694 // 1/3   0     1/3
695 // 2/3   1/3   2/3
696 // 1     1     1
set_quadratic_klm(const SkScalar d[3],SkScalar k[4],SkScalar l[4],SkScalar m[4])697 static void set_quadratic_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
698     k[0] = 0.f;
699     k[1] = 1.f/3.f;
700     k[2] = 2.f/3.f;
701     k[3] = 1.f;
702 
703     l[0] = 0.f;
704     l[1] = 0.f;
705     l[2] = 1.f/3.f;
706     l[3] = 1.f;
707 
708     m[0] = 0.f;
709     m[1] = 1.f/3.f;
710     m[2] = 2.f/3.f;
711     m[3] = 1.f;
712 
713     // If d2 < 0 we need to flip the orientation of our curve
714     // This is done by negating the k and l values
715     if ( d[2] > 0) {
716         for (int i = 0; i < 4; ++i) {
717             k[i] = -k[i];
718             l[i] = -l[i];
719         }
720     }
721 }
722 
chopCubicAtLoopIntersection(const SkPoint src[4],SkPoint dst[10],SkScalar klm[9],SkScalar klm_rev[3])723 int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkScalar klm[9],
724                                              SkScalar klm_rev[3]) {
725     // Variable to store the two parametric values at the loop double point
726     SkScalar smallS = 0.f;
727     SkScalar largeS = 0.f;
728 
729     SkScalar d[3];
730     SkCubicType cType = SkClassifyCubic(src, d);
731 
732     int chop_count = 0;
733     if (kLoop_SkCubicType == cType) {
734         SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
735         SkScalar ls = d[1] - tempSqrt;
736         SkScalar lt = 2.f * d[0];
737         SkScalar ms = d[1] + tempSqrt;
738         SkScalar mt = 2.f * d[0];
739         ls = ls / lt;
740         ms = ms / mt;
741         // need to have t values sorted since this is what is expected by SkChopCubicAt
742         if (ls <= ms) {
743             smallS = ls;
744             largeS = ms;
745         } else {
746             smallS = ms;
747             largeS = ls;
748         }
749 
750         SkScalar chop_ts[2];
751         if (smallS > 0.f && smallS < 1.f) {
752             chop_ts[chop_count++] = smallS;
753         }
754         if (largeS > 0.f && largeS < 1.f) {
755             chop_ts[chop_count++] = largeS;
756         }
757         if(dst) {
758             SkChopCubicAt(src, dst, chop_ts, chop_count);
759         }
760     } else {
761         if (dst) {
762             memcpy(dst, src, sizeof(SkPoint) * 4);
763         }
764     }
765 
766     if (klm && klm_rev) {
767         // Set klm_rev to to match the sub_section of cubic that needs to have its orientation
768         // flipped. This will always be the section that is the "loop"
769         if (2 == chop_count) {
770             klm_rev[0] = 1.f;
771             klm_rev[1] = -1.f;
772             klm_rev[2] = 1.f;
773         } else if (1 == chop_count) {
774             if (smallS < 0.f) {
775                 klm_rev[0] = -1.f;
776                 klm_rev[1] = 1.f;
777             } else {
778                 klm_rev[0] = 1.f;
779                 klm_rev[1] = -1.f;
780             }
781         } else {
782             if (smallS < 0.f && largeS > 1.f) {
783                 klm_rev[0] = -1.f;
784             } else {
785                 klm_rev[0] = 1.f;
786             }
787         }
788         SkScalar controlK[4];
789         SkScalar controlL[4];
790         SkScalar controlM[4];
791 
792         if (kSerpentine_SkCubicType == cType || (kCusp_SkCubicType == cType && 0.f != d[0])) {
793             set_serp_klm(d, controlK, controlL, controlM);
794         } else if (kLoop_SkCubicType == cType) {
795             set_loop_klm(d, controlK, controlL, controlM);
796         } else if (kCusp_SkCubicType == cType) {
797             SkASSERT(0.f == d[0]);
798             set_cusp_klm(d, controlK, controlL, controlM);
799         } else if (kQuadratic_SkCubicType == cType) {
800             set_quadratic_klm(d, controlK, controlL, controlM);
801         }
802 
803         calc_cubic_klm(src, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
804     }
805     return chop_count + 1;
806 }
807 
getCubicKLM(const SkPoint p[4],SkScalar klm[9])808 void GrPathUtils::getCubicKLM(const SkPoint p[4], SkScalar klm[9]) {
809     SkScalar d[3];
810     SkCubicType cType = SkClassifyCubic(p, d);
811 
812     SkScalar controlK[4];
813     SkScalar controlL[4];
814     SkScalar controlM[4];
815 
816     if (kSerpentine_SkCubicType == cType || (kCusp_SkCubicType == cType && 0.f != d[0])) {
817         set_serp_klm(d, controlK, controlL, controlM);
818     } else if (kLoop_SkCubicType == cType) {
819         set_loop_klm(d, controlK, controlL, controlM);
820     } else if (kCusp_SkCubicType == cType) {
821         SkASSERT(0.f == d[0]);
822         set_cusp_klm(d, controlK, controlL, controlM);
823     } else if (kQuadratic_SkCubicType == cType) {
824         set_quadratic_klm(d, controlK, controlL, controlM);
825     }
826 
827     calc_cubic_klm(p, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
828 }
829