1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrAAConvexTessellator.h"
9 #include "SkCanvas.h"
10 #include "SkPath.h"
11 #include "SkPoint.h"
12 #include "SkString.h"
13 #include "GrPathUtils.h"
14
15 // Next steps:
16 // add an interactive sample app slide
17 // add debug check that all points are suitably far apart
18 // test more degenerate cases
19
20 // The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
21 static const SkScalar kClose = (SK_Scalar1 / 16);
22 static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose);
23
24 // tesselation tolerance values, in device space pixels
25 static const SkScalar kQuadTolerance = 0.2f;
26 static const SkScalar kCubicTolerance = 0.2f;
27 static const SkScalar kConicTolerance = 0.5f;
28
29 // dot product below which we use a round cap between curve segments
30 static const SkScalar kRoundCapThreshold = 0.8f;
31
intersect(const SkPoint & p0,const SkPoint & n0,const SkPoint & p1,const SkPoint & n1)32 static SkScalar intersect(const SkPoint& p0, const SkPoint& n0,
33 const SkPoint& p1, const SkPoint& n1) {
34 const SkPoint v = p1 - p0;
35 SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
36 return (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
37 }
38
39 // This is a special case version of intersect where we have the vector
40 // perpendicular to the second line rather than the vector parallel to it.
perp_intersect(const SkPoint & p0,const SkPoint & n0,const SkPoint & p1,const SkPoint & perp)41 static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0,
42 const SkPoint& p1, const SkPoint& perp) {
43 const SkPoint v = p1 - p0;
44 SkScalar perpDot = n0.dot(perp);
45 return v.dot(perp) / perpDot;
46 }
47
duplicate_pt(const SkPoint & p0,const SkPoint & p1)48 static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
49 SkScalar distSq = p0.distanceToSqd(p1);
50 return distSq < kCloseSqd;
51 }
52
abs_dist_from_line(const SkPoint & p0,const SkVector & v,const SkPoint & test)53 static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) {
54 SkPoint testV = test - p0;
55 SkScalar dist = testV.fX * v.fY - testV.fY * v.fX;
56 return SkScalarAbs(dist);
57 }
58
addPt(const SkPoint & pt,SkScalar depth,SkScalar coverage,bool movable,bool isCurve)59 int GrAAConvexTessellator::addPt(const SkPoint& pt,
60 SkScalar depth,
61 SkScalar coverage,
62 bool movable,
63 bool isCurve) {
64 this->validate();
65
66 int index = fPts.count();
67 *fPts.push() = pt;
68 *fCoverages.push() = coverage;
69 *fMovable.push() = movable;
70 *fIsCurve.push() = isCurve;
71
72 this->validate();
73 return index;
74 }
75
popLastPt()76 void GrAAConvexTessellator::popLastPt() {
77 this->validate();
78
79 fPts.pop();
80 fCoverages.pop();
81 fMovable.pop();
82
83 this->validate();
84 }
85
popFirstPtShuffle()86 void GrAAConvexTessellator::popFirstPtShuffle() {
87 this->validate();
88
89 fPts.removeShuffle(0);
90 fCoverages.removeShuffle(0);
91 fMovable.removeShuffle(0);
92
93 this->validate();
94 }
95
updatePt(int index,const SkPoint & pt,SkScalar depth,SkScalar coverage)96 void GrAAConvexTessellator::updatePt(int index,
97 const SkPoint& pt,
98 SkScalar depth,
99 SkScalar coverage) {
100 this->validate();
101 SkASSERT(fMovable[index]);
102
103 fPts[index] = pt;
104 fCoverages[index] = coverage;
105 }
106
addTri(int i0,int i1,int i2)107 void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
108 if (i0 == i1 || i1 == i2 || i2 == i0) {
109 return;
110 }
111
112 *fIndices.push() = i0;
113 *fIndices.push() = i1;
114 *fIndices.push() = i2;
115 }
116
rewind()117 void GrAAConvexTessellator::rewind() {
118 fPts.rewind();
119 fCoverages.rewind();
120 fMovable.rewind();
121 fIndices.rewind();
122 fNorms.rewind();
123 fInitialRing.rewind();
124 fCandidateVerts.rewind();
125 #if GR_AA_CONVEX_TESSELLATOR_VIZ
126 fRings.rewind(); // TODO: leak in this case!
127 #else
128 fRings[0].rewind();
129 fRings[1].rewind();
130 #endif
131 }
132
computeBisectors()133 void GrAAConvexTessellator::computeBisectors() {
134 fBisectors.setCount(fNorms.count());
135
136 int prev = fBisectors.count() - 1;
137 for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) {
138 fBisectors[cur] = fNorms[cur] + fNorms[prev];
139 if (!fBisectors[cur].normalize()) {
140 SkASSERT(SkPoint::kLeft_Side == fSide || SkPoint::kRight_Side == fSide);
141 fBisectors[cur].setOrthog(fNorms[cur], (SkPoint::Side)-fSide);
142 SkVector other;
143 other.setOrthog(fNorms[prev], fSide);
144 fBisectors[cur] += other;
145 SkAssertResult(fBisectors[cur].normalize());
146 } else {
147 fBisectors[cur].negate(); // make the bisector face in
148 }
149
150 SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
151 }
152 }
153
154 // Create as many rings as we need to (up to a predefined limit) to reach the specified target
155 // depth. If we are in fill mode, the final ring will automatically be fanned.
createInsetRings(Ring & previousRing,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage,Ring ** finalRing)156 bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth,
157 SkScalar initialCoverage, SkScalar targetDepth,
158 SkScalar targetCoverage, Ring** finalRing) {
159 static const int kMaxNumRings = 8;
160
161 if (previousRing.numPts() < 3) {
162 return false;
163 }
164 Ring* currentRing = &previousRing;
165 int i;
166 for (i = 0; i < kMaxNumRings; ++i) {
167 Ring* nextRing = this->getNextRing(currentRing);
168 SkASSERT(nextRing != currentRing);
169
170 bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage,
171 targetDepth, targetCoverage, i == 0);
172 currentRing = nextRing;
173 if (done) {
174 break;
175 }
176 currentRing->init(*this);
177 }
178
179 if (kMaxNumRings == i) {
180 // Bail if we've exceeded the amount of time we want to throw at this.
181 this->terminate(*currentRing);
182 return false;
183 }
184 bool done = currentRing->numPts() >= 3;
185 if (done) {
186 currentRing->init(*this);
187 }
188 *finalRing = currentRing;
189 return done;
190 }
191
192 // The general idea here is to, conceptually, start with the original polygon and slide
193 // the vertices along the bisectors until the first intersection. At that
194 // point two of the edges collapse and the process repeats on the new polygon.
195 // The polygon state is captured in the Ring class while the GrAAConvexTessellator
196 // controls the iteration. The CandidateVerts holds the formative points for the
197 // next ring.
tessellate(const SkMatrix & m,const SkPath & path)198 bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
199 if (!this->extractFromPath(m, path)) {
200 return false;
201 }
202
203 SkScalar coverage = 1.0f;
204 SkScalar scaleFactor = 0.0f;
205 if (fStrokeWidth >= 0.0f) {
206 SkASSERT(m.isSimilarity());
207 scaleFactor = m.getMaxScale(); // x and y scale are the same
208 SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
209 Ring outerStrokeRing;
210 this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius,
211 coverage, &outerStrokeRing);
212 outerStrokeRing.init(*this);
213 Ring outerAARing;
214 this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing);
215 } else {
216 Ring outerAARing;
217 this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing);
218 }
219
220 // the bisectors are only needed for the computation of the outer ring
221 fBisectors.rewind();
222 if (fStrokeWidth >= 0.0f && fInitialRing.numPts() > 2) {
223 SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
224 Ring* insetStrokeRing;
225 SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius;
226 if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage,
227 &insetStrokeRing)) {
228 Ring* insetAARing;
229 this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth +
230 kAntialiasingRadius * 2, 0.0f, &insetAARing);
231 }
232 } else {
233 Ring* insetAARing;
234 this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing);
235 }
236
237 SkDEBUGCODE(this->validate();)
238 return true;
239 }
240
computeDepthFromEdge(int edgeIdx,const SkPoint & p) const241 SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
242 SkASSERT(edgeIdx < fNorms.count());
243
244 SkPoint v = p - fPts[edgeIdx];
245 SkScalar depth = -fNorms[edgeIdx].dot(v);
246 return depth;
247 }
248
249 // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
250 // along the 'bisector' from the 'startIdx'-th point.
computePtAlongBisector(int startIdx,const SkVector & bisector,int edgeIdx,SkScalar desiredDepth,SkPoint * result) const251 bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
252 const SkVector& bisector,
253 int edgeIdx,
254 SkScalar desiredDepth,
255 SkPoint* result) const {
256 const SkPoint& norm = fNorms[edgeIdx];
257
258 // First find the point where the edge and the bisector intersect
259 SkPoint newP;
260
261 SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
262 if (SkScalarNearlyEqual(t, 0.0f)) {
263 // the start point was one of the original ring points
264 SkASSERT(startIdx < fPts.count());
265 newP = fPts[startIdx];
266 } else if (t < 0.0f) {
267 newP = bisector;
268 newP.scale(t);
269 newP += fPts[startIdx];
270 } else {
271 return false;
272 }
273
274 // Then offset along the bisector from that point the correct distance
275 SkScalar dot = bisector.dot(norm);
276 t = -desiredDepth / dot;
277 *result = bisector;
278 result->scale(t);
279 *result += newP;
280
281 return true;
282 }
283
extractFromPath(const SkMatrix & m,const SkPath & path)284 bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
285 SkASSERT(SkPath::kConvex_Convexity == path.getConvexity());
286
287 // Outer ring: 3*numPts
288 // Middle ring: numPts
289 // Presumptive inner ring: numPts
290 this->reservePts(5*path.countPoints());
291 // Outer ring: 12*numPts
292 // Middle ring: 0
293 // Presumptive inner ring: 6*numPts + 6
294 fIndices.setReserve(18*path.countPoints() + 6);
295
296 fNorms.setReserve(path.countPoints());
297
298 // TODO: is there a faster way to extract the points from the path? Perhaps
299 // get all the points via a new entry point, transform them all in bulk
300 // and then walk them to find duplicates?
301 SkPath::Iter iter(path, true);
302 SkPoint pts[4];
303 SkPath::Verb verb;
304 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
305 switch (verb) {
306 case SkPath::kLine_Verb:
307 this->lineTo(m, pts[1], false);
308 break;
309 case SkPath::kQuad_Verb:
310 this->quadTo(m, pts);
311 break;
312 case SkPath::kCubic_Verb:
313 this->cubicTo(m, pts);
314 break;
315 case SkPath::kConic_Verb:
316 this->conicTo(m, pts, iter.conicWeight());
317 break;
318 case SkPath::kMove_Verb:
319 case SkPath::kClose_Verb:
320 case SkPath::kDone_Verb:
321 break;
322 }
323 }
324
325 if (this->numPts() < 2) {
326 return false;
327 }
328
329 // check if last point is a duplicate of the first point. If so, remove it.
330 if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
331 this->popLastPt();
332 fNorms.pop();
333 }
334
335 SkASSERT(fPts.count() == fNorms.count()+1);
336 if (this->numPts() >= 3) {
337 if (abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) {
338 // The last point is on the line from the second to last to the first point.
339 this->popLastPt();
340 fNorms.pop();
341 }
342
343 *fNorms.push() = fPts[0] - fPts.top();
344 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
345 SkASSERT(len > 0.0f);
346 SkASSERT(fPts.count() == fNorms.count());
347 }
348
349 if (this->numPts() >= 3 && abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) {
350 // The first point is on the line from the last to the second.
351 this->popFirstPtShuffle();
352 fNorms.removeShuffle(0);
353 fNorms[0] = fPts[1] - fPts[0];
354 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]);
355 SkASSERT(len > 0.0f);
356 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
357 }
358
359 if (this->numPts() >= 3) {
360 // Check the cross product of the final trio
361 SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
362 if (cross > 0.0f) {
363 fSide = SkPoint::kRight_Side;
364 } else {
365 fSide = SkPoint::kLeft_Side;
366 }
367
368 // Make all the normals face outwards rather than along the edge
369 for (int cur = 0; cur < fNorms.count(); ++cur) {
370 fNorms[cur].setOrthog(fNorms[cur], fSide);
371 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
372 }
373
374 this->computeBisectors();
375 } else if (this->numPts() == 2) {
376 // We've got two points, so we're degenerate.
377 if (fStrokeWidth < 0.0f) {
378 // it's a fill, so we don't need to worry about degenerate paths
379 return false;
380 }
381 // For stroking, we still need to process the degenerate path, so fix it up
382 fSide = SkPoint::kLeft_Side;
383
384 // Make all the normals face outwards rather than along the edge
385 for (int cur = 0; cur < fNorms.count(); ++cur) {
386 fNorms[cur].setOrthog(fNorms[cur], fSide);
387 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
388 }
389
390 fNorms.push(SkPoint::Make(-fNorms[0].fX, -fNorms[0].fY));
391 // we won't actually use the bisectors, so just push zeroes
392 fBisectors.push(SkPoint::Make(0.0, 0.0));
393 fBisectors.push(SkPoint::Make(0.0, 0.0));
394 } else {
395 return false;
396 }
397
398 fCandidateVerts.setReserve(this->numPts());
399 fInitialRing.setReserve(this->numPts());
400 for (int i = 0; i < this->numPts(); ++i) {
401 fInitialRing.addIdx(i, i);
402 }
403 fInitialRing.init(fNorms, fBisectors);
404
405 this->validate();
406 return true;
407 }
408
getNextRing(Ring * lastRing)409 GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
410 #if GR_AA_CONVEX_TESSELLATOR_VIZ
411 Ring* ring = *fRings.push() = new Ring;
412 ring->setReserve(fInitialRing.numPts());
413 ring->rewind();
414 return ring;
415 #else
416 // Flip flop back and forth between fRings[0] & fRings[1]
417 int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
418 fRings[nextRing].setReserve(fInitialRing.numPts());
419 fRings[nextRing].rewind();
420 return &fRings[nextRing];
421 #endif
422 }
423
fanRing(const Ring & ring)424 void GrAAConvexTessellator::fanRing(const Ring& ring) {
425 // fan out from point 0
426 int startIdx = ring.index(0);
427 for (int cur = ring.numPts() - 2; cur >= 0; --cur) {
428 this->addTri(startIdx, ring.index(cur), ring.index(cur + 1));
429 }
430 }
431
createOuterRing(const Ring & previousRing,SkScalar outset,SkScalar coverage,Ring * nextRing)432 void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset,
433 SkScalar coverage, Ring* nextRing) {
434 const int numPts = previousRing.numPts();
435 if (numPts == 0) {
436 return;
437 }
438
439 int prev = numPts - 1;
440 int lastPerpIdx = -1, firstPerpIdx = -1;
441
442 const SkScalar outsetSq = SkScalarMul(outset, outset);
443 SkScalar miterLimitSq = SkScalarMul(outset, fMiterLimit);
444 miterLimitSq = SkScalarMul(miterLimitSq, miterLimitSq);
445 for (int cur = 0; cur < numPts; ++cur) {
446 int originalIdx = previousRing.index(cur);
447 // For each vertex of the original polygon we add at least two points to the
448 // outset polygon - one extending perpendicular to each impinging edge. Connecting these
449 // two points yields a bevel join. We need one additional point for a mitered join, and
450 // a round join requires one or more points depending upon curvature.
451
452 // The perpendicular point for the last edge
453 SkPoint normal1 = previousRing.norm(prev);
454 SkPoint perp1 = normal1;
455 perp1.scale(outset);
456 perp1 += this->point(originalIdx);
457
458 // The perpendicular point for the next edge.
459 SkPoint normal2 = previousRing.norm(cur);
460 SkPoint perp2 = normal2;
461 perp2.scale(outset);
462 perp2 += fPts[originalIdx];
463
464 bool isCurve = fIsCurve[originalIdx];
465
466 // We know it isn't a duplicate of the prior point (since it and this
467 // one are just perpendicular offsets from the non-merged polygon points)
468 int perp1Idx = this->addPt(perp1, -outset, coverage, false, isCurve);
469 nextRing->addIdx(perp1Idx, originalIdx);
470
471 int perp2Idx;
472 // For very shallow angles all the corner points could fuse.
473 if (duplicate_pt(perp2, this->point(perp1Idx))) {
474 perp2Idx = perp1Idx;
475 } else {
476 perp2Idx = this->addPt(perp2, -outset, coverage, false, isCurve);
477 }
478
479 if (perp2Idx != perp1Idx) {
480 if (isCurve) {
481 // bevel or round depending upon curvature
482 SkScalar dotProd = normal1.dot(normal2);
483 if (dotProd < kRoundCapThreshold) {
484 // Currently we "round" by creating a single extra point, which produces
485 // good results for common cases. For thick strokes with high curvature, we will
486 // need to add more points; for the time being we simply fall back to software
487 // rendering for thick strokes.
488 SkPoint miter = previousRing.bisector(cur);
489 miter.setLength(-outset);
490 miter += fPts[originalIdx];
491
492 // For very shallow angles all the corner points could fuse
493 if (!duplicate_pt(miter, this->point(perp1Idx))) {
494 int miterIdx;
495 miterIdx = this->addPt(miter, -outset, coverage, false, false);
496 nextRing->addIdx(miterIdx, originalIdx);
497 // The two triangles for the corner
498 this->addTri(originalIdx, perp1Idx, miterIdx);
499 this->addTri(originalIdx, miterIdx, perp2Idx);
500 }
501 } else {
502 this->addTri(originalIdx, perp1Idx, perp2Idx);
503 }
504 } else {
505 switch (fJoin) {
506 case SkPaint::Join::kMiter_Join: {
507 // The bisector outset point
508 SkPoint miter = previousRing.bisector(cur);
509 SkScalar dotProd = normal1.dot(normal2);
510 SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotProd);
511 SkScalar lengthSq = outsetSq / sinHalfAngleSq;
512 if (lengthSq > miterLimitSq) {
513 // just bevel it
514 this->addTri(originalIdx, perp1Idx, perp2Idx);
515 break;
516 }
517 miter.setLength(-SkScalarSqrt(lengthSq));
518 miter += fPts[originalIdx];
519
520 // For very shallow angles all the corner points could fuse
521 if (!duplicate_pt(miter, this->point(perp1Idx))) {
522 int miterIdx;
523 miterIdx = this->addPt(miter, -outset, coverage, false, false);
524 nextRing->addIdx(miterIdx, originalIdx);
525 // The two triangles for the corner
526 this->addTri(originalIdx, perp1Idx, miterIdx);
527 this->addTri(originalIdx, miterIdx, perp2Idx);
528 }
529 break;
530 }
531 case SkPaint::Join::kBevel_Join:
532 this->addTri(originalIdx, perp1Idx, perp2Idx);
533 break;
534 default:
535 // kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is
536 // only willing to draw mitered or beveled, so we should never get here.
537 SkASSERT(false);
538 }
539 }
540
541 nextRing->addIdx(perp2Idx, originalIdx);
542 }
543
544 if (0 == cur) {
545 // Store the index of the first perpendicular point to finish up
546 firstPerpIdx = perp1Idx;
547 SkASSERT(-1 == lastPerpIdx);
548 } else {
549 // The triangles for the previous edge
550 int prevIdx = previousRing.index(prev);
551 this->addTri(prevIdx, perp1Idx, originalIdx);
552 this->addTri(prevIdx, lastPerpIdx, perp1Idx);
553 }
554
555 // Track the last perpendicular outset point so we can construct the
556 // trailing edge triangles.
557 lastPerpIdx = perp2Idx;
558 prev = cur;
559 }
560
561 // pick up the final edge rect
562 int lastIdx = previousRing.index(numPts - 1);
563 this->addTri(lastIdx, firstPerpIdx, previousRing.index(0));
564 this->addTri(lastIdx, lastPerpIdx, firstPerpIdx);
565
566 this->validate();
567 }
568
569 // Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead
570 // and fan it.
terminate(const Ring & ring)571 void GrAAConvexTessellator::terminate(const Ring& ring) {
572 if (fStrokeWidth < 0.0f) {
573 this->fanRing(ring);
574 }
575 }
576
compute_coverage(SkScalar depth,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage)577 static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage,
578 SkScalar targetDepth, SkScalar targetCoverage) {
579 if (SkScalarNearlyEqual(initialDepth, targetDepth)) {
580 return targetCoverage;
581 }
582 SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) *
583 (targetCoverage - initialCoverage) + initialCoverage;
584 return SkScalarClampMax(result, 1.0f);
585 }
586
587 // return true when processing is complete
createInsetRing(const Ring & lastRing,Ring * nextRing,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage,bool forceNew)588 bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing,
589 SkScalar initialDepth, SkScalar initialCoverage,
590 SkScalar targetDepth, SkScalar targetCoverage,
591 bool forceNew) {
592 bool done = false;
593
594 fCandidateVerts.rewind();
595
596 // Loop through all the points in the ring and find the intersection with the smallest depth
597 SkScalar minDist = SK_ScalarMax, minT = 0.0f;
598 int minEdgeIdx = -1;
599
600 for (int cur = 0; cur < lastRing.numPts(); ++cur) {
601 int next = (cur + 1) % lastRing.numPts();
602 SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur),
603 this->point(lastRing.index(next)), lastRing.bisector(next));
604 SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
605
606 if (minDist > dist) {
607 minDist = dist;
608 minT = t;
609 minEdgeIdx = cur;
610 }
611 }
612
613 if (minEdgeIdx == -1) {
614 return false;
615 }
616 SkPoint newPt = lastRing.bisector(minEdgeIdx);
617 newPt.scale(minT);
618 newPt += this->point(lastRing.index(minEdgeIdx));
619
620 SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
621 if (depth >= targetDepth) {
622 // None of the bisectors intersect before reaching the desired depth.
623 // Just step them all to the desired depth
624 depth = targetDepth;
625 done = true;
626 }
627
628 // 'dst' stores where each point in the last ring maps to/transforms into
629 // in the next ring.
630 SkTDArray<int> dst;
631 dst.setCount(lastRing.numPts());
632
633 // Create the first point (who compares with no one)
634 if (!this->computePtAlongBisector(lastRing.index(0),
635 lastRing.bisector(0),
636 lastRing.origEdgeID(0),
637 depth, &newPt)) {
638 this->terminate(lastRing);
639 return true;
640 }
641 dst[0] = fCandidateVerts.addNewPt(newPt,
642 lastRing.index(0), lastRing.origEdgeID(0),
643 !this->movable(lastRing.index(0)));
644
645 // Handle the middle points (who only compare with the prior point)
646 for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
647 if (!this->computePtAlongBisector(lastRing.index(cur),
648 lastRing.bisector(cur),
649 lastRing.origEdgeID(cur),
650 depth, &newPt)) {
651 this->terminate(lastRing);
652 return true;
653 }
654 if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
655 dst[cur] = fCandidateVerts.addNewPt(newPt,
656 lastRing.index(cur), lastRing.origEdgeID(cur),
657 !this->movable(lastRing.index(cur)));
658 } else {
659 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
660 }
661 }
662
663 // Check on the last point (handling the wrap around)
664 int cur = lastRing.numPts()-1;
665 if (!this->computePtAlongBisector(lastRing.index(cur),
666 lastRing.bisector(cur),
667 lastRing.origEdgeID(cur),
668 depth, &newPt)) {
669 this->terminate(lastRing);
670 return true;
671 }
672 bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
673 bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
674
675 if (!dupPrev && !dupNext) {
676 dst[cur] = fCandidateVerts.addNewPt(newPt,
677 lastRing.index(cur), lastRing.origEdgeID(cur),
678 !this->movable(lastRing.index(cur)));
679 } else if (dupPrev && !dupNext) {
680 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
681 } else if (!dupPrev && dupNext) {
682 dst[cur] = fCandidateVerts.fuseWithNext();
683 } else {
684 bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
685
686 if (!dupPrevVsNext) {
687 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
688 } else {
689 const int fused = fCandidateVerts.fuseWithBoth();
690 dst[cur] = fused;
691 const int targetIdx = dst[cur - 1];
692 for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) {
693 dst[i] = fused;
694 }
695 }
696 }
697
698 // Fold the new ring's points into the global pool
699 for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
700 int newIdx;
701 if (fCandidateVerts.needsToBeNew(i) || forceNew) {
702 // if the originating index is still valid then this point wasn't
703 // fused (and is thus movable)
704 SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage,
705 targetDepth, targetCoverage);
706 newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage,
707 fCandidateVerts.originatingIdx(i) != -1, false);
708 } else {
709 SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
710 this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth,
711 targetCoverage);
712 newIdx = fCandidateVerts.originatingIdx(i);
713 }
714
715 nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
716 }
717
718 // 'dst' currently has indices into the ring. Remap these to be indices
719 // into the global pool since the triangulation operates in that space.
720 for (int i = 0; i < dst.count(); ++i) {
721 dst[i] = nextRing->index(dst[i]);
722 }
723
724 for (int i = 0; i < lastRing.numPts(); ++i) {
725 int next = (i + 1) % lastRing.numPts();
726
727 this->addTri(lastRing.index(i), lastRing.index(next), dst[next]);
728 this->addTri(lastRing.index(i), dst[next], dst[i]);
729 }
730
731 if (done && fStrokeWidth < 0.0f) {
732 // fill
733 this->fanRing(*nextRing);
734 }
735
736 if (nextRing->numPts() < 3) {
737 done = true;
738 }
739 return done;
740 }
741
validate() const742 void GrAAConvexTessellator::validate() const {
743 SkASSERT(fPts.count() == fMovable.count());
744 SkASSERT(0 == (fIndices.count() % 3));
745 }
746
747 //////////////////////////////////////////////////////////////////////////////
init(const GrAAConvexTessellator & tess)748 void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
749 this->computeNormals(tess);
750 this->computeBisectors(tess);
751 }
752
init(const SkTDArray<SkVector> & norms,const SkTDArray<SkVector> & bisectors)753 void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
754 const SkTDArray<SkVector>& bisectors) {
755 for (int i = 0; i < fPts.count(); ++i) {
756 fPts[i].fNorm = norms[i];
757 fPts[i].fBisector = bisectors[i];
758 }
759 }
760
761 // Compute the outward facing normal at each vertex.
computeNormals(const GrAAConvexTessellator & tess)762 void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
763 for (int cur = 0; cur < fPts.count(); ++cur) {
764 int next = (cur + 1) % fPts.count();
765
766 fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
767 SkPoint::Normalize(&fPts[cur].fNorm);
768 fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side());
769 }
770 }
771
computeBisectors(const GrAAConvexTessellator & tess)772 void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) {
773 int prev = fPts.count() - 1;
774 for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) {
775 fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
776 if (!fPts[cur].fBisector.normalize()) {
777 SkASSERT(SkPoint::kLeft_Side == tess.side() || SkPoint::kRight_Side == tess.side());
778 fPts[cur].fBisector.setOrthog(fPts[cur].fNorm, (SkPoint::Side)-tess.side());
779 SkVector other;
780 other.setOrthog(fPts[prev].fNorm, tess.side());
781 fPts[cur].fBisector += other;
782 SkAssertResult(fPts[cur].fBisector.normalize());
783 } else {
784 fPts[cur].fBisector.negate(); // make the bisector face in
785 }
786 }
787 }
788
789 //////////////////////////////////////////////////////////////////////////////
790 #ifdef SK_DEBUG
791 // Is this ring convex?
isConvex(const GrAAConvexTessellator & tess) const792 bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
793 if (fPts.count() < 3) {
794 return true;
795 }
796
797 SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
798 SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
799 SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
800 SkScalar maxDot = minDot;
801
802 prev = cur;
803 for (int i = 1; i < fPts.count(); ++i) {
804 int next = (i + 1) % fPts.count();
805
806 cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
807 SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
808
809 minDot = SkMinScalar(minDot, dot);
810 maxDot = SkMaxScalar(maxDot, dot);
811
812 prev = cur;
813 }
814
815 if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) {
816 maxDot = 0;
817 }
818 if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) {
819 minDot = 0;
820 }
821 return (maxDot >= 0.0f) == (minDot >= 0.0f);
822 }
823
824 #endif
825
lineTo(SkPoint p,bool isCurve)826 void GrAAConvexTessellator::lineTo(SkPoint p, bool isCurve) {
827 if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) {
828 return;
829 }
830
831 SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1);
832 if (this->numPts() >= 2 &&
833 abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) {
834 // The old last point is on the line from the second to last to the new point
835 this->popLastPt();
836 fNorms.pop();
837 fIsCurve.pop();
838 // double-check that the new last point is not a duplicate of the new point. In an ideal
839 // world this wouldn't be necessary (since it's only possible for non-convex paths), but
840 // floating point precision issues mean it can actually happen on paths that were determined
841 // to be convex.
842 if (duplicate_pt(p, this->lastPoint())) {
843 return;
844 }
845 }
846 SkScalar initialRingCoverage = fStrokeWidth < 0.0f ? 0.5f : 1.0f;
847 this->addPt(p, 0.0f, initialRingCoverage, false, isCurve);
848 if (this->numPts() > 1) {
849 *fNorms.push() = fPts.top() - fPts[fPts.count()-2];
850 SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
851 SkASSERT(len > 0.0f);
852 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length()));
853 }
854 }
855
lineTo(const SkMatrix & m,SkPoint p,bool isCurve)856 void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) {
857 m.mapPoints(&p, 1);
858 this->lineTo(p, isCurve);
859 }
860
quadTo(SkPoint pts[3])861 void GrAAConvexTessellator::quadTo(SkPoint pts[3]) {
862 int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
863 fPointBuffer.setReserve(maxCount);
864 SkPoint* target = fPointBuffer.begin();
865 int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
866 kQuadTolerance, &target, maxCount);
867 fPointBuffer.setCount(count);
868 for (int i = 0; i < count; i++) {
869 lineTo(fPointBuffer[i], true);
870 }
871 }
872
quadTo(const SkMatrix & m,SkPoint pts[3])873 void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) {
874 SkPoint transformed[3];
875 transformed[0] = pts[0];
876 transformed[1] = pts[1];
877 transformed[2] = pts[2];
878 m.mapPoints(transformed, 3);
879 quadTo(transformed);
880 }
881
cubicTo(const SkMatrix & m,SkPoint pts[4])882 void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) {
883 m.mapPoints(pts, 4);
884 int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
885 fPointBuffer.setReserve(maxCount);
886 SkPoint* target = fPointBuffer.begin();
887 int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
888 kCubicTolerance, &target, maxCount);
889 fPointBuffer.setCount(count);
890 for (int i = 0; i < count; i++) {
891 lineTo(fPointBuffer[i], true);
892 }
893 }
894
895 // include down here to avoid compilation errors caused by "-" overload in SkGeometry.h
896 #include "SkGeometry.h"
897
conicTo(const SkMatrix & m,SkPoint pts[3],SkScalar w)898 void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w) {
899 m.mapPoints(pts, 3);
900 SkAutoConicToQuads quadder;
901 const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
902 SkPoint lastPoint = *(quads++);
903 int count = quadder.countQuads();
904 for (int i = 0; i < count; ++i) {
905 SkPoint quadPts[3];
906 quadPts[0] = lastPoint;
907 quadPts[1] = quads[0];
908 quadPts[2] = i == count - 1 ? pts[2] : quads[1];
909 quadTo(quadPts);
910 lastPoint = quadPts[2];
911 quads += 2;
912 }
913 }
914
915 //////////////////////////////////////////////////////////////////////////////
916 #if GR_AA_CONVEX_TESSELLATOR_VIZ
917 static const SkScalar kPointRadius = 0.02f;
918 static const SkScalar kArrowStrokeWidth = 0.0f;
919 static const SkScalar kArrowLength = 0.2f;
920 static const SkScalar kEdgeTextSize = 0.1f;
921 static const SkScalar kPointTextSize = 0.02f;
922
draw_point(SkCanvas * canvas,const SkPoint & p,SkScalar paramValue,bool stroke)923 static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
924 SkPaint paint;
925 SkASSERT(paramValue <= 1.0f);
926 int gs = int(255*paramValue);
927 paint.setARGB(255, gs, gs, gs);
928
929 canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
930
931 if (stroke) {
932 SkPaint stroke;
933 stroke.setColor(SK_ColorYELLOW);
934 stroke.setStyle(SkPaint::kStroke_Style);
935 stroke.setStrokeWidth(kPointRadius/3.0f);
936 canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
937 }
938 }
939
draw_line(SkCanvas * canvas,const SkPoint & p0,const SkPoint & p1,SkColor color)940 static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
941 SkPaint p;
942 p.setColor(color);
943
944 canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
945 }
946
draw_arrow(SkCanvas * canvas,const SkPoint & p,const SkPoint & n,SkScalar len,SkColor color)947 static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
948 SkScalar len, SkColor color) {
949 SkPaint paint;
950 paint.setColor(color);
951 paint.setStrokeWidth(kArrowStrokeWidth);
952 paint.setStyle(SkPaint::kStroke_Style);
953
954 canvas->drawLine(p.fX, p.fY,
955 p.fX + len * n.fX, p.fY + len * n.fY,
956 paint);
957 }
958
draw(SkCanvas * canvas,const GrAAConvexTessellator & tess) const959 void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
960 SkPaint paint;
961 paint.setTextSize(kEdgeTextSize);
962
963 for (int cur = 0; cur < fPts.count(); ++cur) {
964 int next = (cur + 1) % fPts.count();
965
966 draw_line(canvas,
967 tess.point(fPts[cur].fIndex),
968 tess.point(fPts[next].fIndex),
969 SK_ColorGREEN);
970
971 SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
972 mid.scale(0.5f);
973
974 if (fPts.count()) {
975 draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
976 mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
977 mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
978 }
979
980 SkString num;
981 num.printf("%d", this->origEdgeID(cur));
982 canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint);
983
984 if (fPts.count()) {
985 draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
986 kArrowLength, SK_ColorBLUE);
987 }
988 }
989 }
990
draw(SkCanvas * canvas) const991 void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
992 for (int i = 0; i < fIndices.count(); i += 3) {
993 SkASSERT(fIndices[i] < this->numPts()) ;
994 SkASSERT(fIndices[i+1] < this->numPts()) ;
995 SkASSERT(fIndices[i+2] < this->numPts()) ;
996
997 draw_line(canvas,
998 this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
999 SK_ColorBLACK);
1000 draw_line(canvas,
1001 this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
1002 SK_ColorBLACK);
1003 draw_line(canvas,
1004 this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
1005 SK_ColorBLACK);
1006 }
1007
1008 fInitialRing.draw(canvas, *this);
1009 for (int i = 0; i < fRings.count(); ++i) {
1010 fRings[i]->draw(canvas, *this);
1011 }
1012
1013 for (int i = 0; i < this->numPts(); ++i) {
1014 draw_point(canvas,
1015 this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)),
1016 !this->movable(i));
1017
1018 SkPaint paint;
1019 paint.setTextSize(kPointTextSize);
1020 paint.setTextAlign(SkPaint::kCenter_Align);
1021 if (this->depth(i) <= -kAntialiasingRadius) {
1022 paint.setColor(SK_ColorWHITE);
1023 }
1024
1025 SkString num;
1026 num.printf("%d", i);
1027 canvas->drawText(num.c_str(), num.size(),
1028 this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
1029 paint);
1030 }
1031 }
1032
1033 #endif
1034
1035