1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrAAHairLinePathRenderer.h"
9
10 #include "GrBatchFlushState.h"
11 #include "GrBatchTest.h"
12 #include "GrCaps.h"
13 #include "GrContext.h"
14 #include "GrDefaultGeoProcFactory.h"
15 #include "GrIndexBuffer.h"
16 #include "GrPathUtils.h"
17 #include "GrPipelineBuilder.h"
18 #include "GrProcessor.h"
19 #include "GrResourceProvider.h"
20 #include "GrVertexBuffer.h"
21 #include "SkGeometry.h"
22 #include "SkStroke.h"
23 #include "SkTemplates.h"
24
25 #include "batches/GrVertexBatch.h"
26
27 #include "effects/GrBezierEffect.h"
28
29 #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
30
31 // quadratics are rendered as 5-sided polys in order to bound the
32 // AA stroke around the center-curve. See comments in push_quad_index_buffer and
33 // bloat_quad. Quadratics and conics share an index buffer
34
35 // lines are rendered as:
36 // *______________*
37 // |\ -_______ /|
38 // | \ \ / |
39 // | *--------* |
40 // | / ______/ \ |
41 // */_-__________\*
42 // For: 6 vertices and 18 indices (for 6 triangles)
43
44 // Each quadratic is rendered as a five sided polygon. This poly bounds
45 // the quadratic's bounding triangle but has been expanded so that the
46 // 1-pixel wide area around the curve is inside the poly.
47 // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
48 // that is rendered would look like this:
49 // b0
50 // b
51 //
52 // a0 c0
53 // a c
54 // a1 c1
55 // Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
56 // specified by these 9 indices:
57 static const uint16_t kQuadIdxBufPattern[] = {
58 0, 1, 2,
59 2, 4, 3,
60 1, 4, 2
61 };
62
63 static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern);
64 static const int kQuadNumVertices = 5;
65 static const int kQuadsNumInIdxBuffer = 256;
66 GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
67
ref_quads_index_buffer(GrResourceProvider * resourceProvider)68 static const GrIndexBuffer* ref_quads_index_buffer(GrResourceProvider* resourceProvider) {
69 GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
70 return resourceProvider->findOrCreateInstancedIndexBuffer(
71 kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
72 gQuadsIndexBufferKey);
73 }
74
75
76 // Each line segment is rendered as two quads and two triangles.
77 // p0 and p1 have alpha = 1 while all other points have alpha = 0.
78 // The four external points are offset 1 pixel perpendicular to the
79 // line and half a pixel parallel to the line.
80 //
81 // p4 p5
82 // p0 p1
83 // p2 p3
84 //
85 // Each is drawn as six triangles specified by these 18 indices:
86
87 static const uint16_t kLineSegIdxBufPattern[] = {
88 0, 1, 3,
89 0, 3, 2,
90 0, 4, 5,
91 0, 5, 1,
92 0, 2, 4,
93 1, 5, 3
94 };
95
96 static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern);
97 static const int kLineSegNumVertices = 6;
98 static const int kLineSegsNumInIdxBuffer = 256;
99
100 GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
101
ref_lines_index_buffer(GrResourceProvider * resourceProvider)102 static const GrIndexBuffer* ref_lines_index_buffer(GrResourceProvider* resourceProvider) {
103 GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
104 return resourceProvider->findOrCreateInstancedIndexBuffer(
105 kLineSegIdxBufPattern, kIdxsPerLineSeg, kLineSegsNumInIdxBuffer, kLineSegNumVertices,
106 gLinesIndexBufferKey);
107 }
108
109 // Takes 178th time of logf on Z600 / VC2010
get_float_exp(float x)110 static int get_float_exp(float x) {
111 GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
112 #ifdef SK_DEBUG
113 static bool tested;
114 if (!tested) {
115 tested = true;
116 SkASSERT(get_float_exp(0.25f) == -2);
117 SkASSERT(get_float_exp(0.3f) == -2);
118 SkASSERT(get_float_exp(0.5f) == -1);
119 SkASSERT(get_float_exp(1.f) == 0);
120 SkASSERT(get_float_exp(2.f) == 1);
121 SkASSERT(get_float_exp(2.5f) == 1);
122 SkASSERT(get_float_exp(8.f) == 3);
123 SkASSERT(get_float_exp(100.f) == 6);
124 SkASSERT(get_float_exp(1000.f) == 9);
125 SkASSERT(get_float_exp(1024.f) == 10);
126 SkASSERT(get_float_exp(3000000.f) == 21);
127 }
128 #endif
129 const int* iptr = (const int*)&x;
130 return (((*iptr) & 0x7f800000) >> 23) - 127;
131 }
132
133 // Uses the max curvature function for quads to estimate
134 // where to chop the conic. If the max curvature is not
135 // found along the curve segment it will return 1 and
136 // dst[0] is the original conic. If it returns 2 the dst[0]
137 // and dst[1] are the two new conics.
split_conic(const SkPoint src[3],SkConic dst[2],const SkScalar weight)138 static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
139 SkScalar t = SkFindQuadMaxCurvature(src);
140 if (t == 0) {
141 if (dst) {
142 dst[0].set(src, weight);
143 }
144 return 1;
145 } else {
146 if (dst) {
147 SkConic conic;
148 conic.set(src, weight);
149 conic.chopAt(t, dst);
150 }
151 return 2;
152 }
153 }
154
155 // Calls split_conic on the entire conic and then once more on each subsection.
156 // Most cases will result in either 1 conic (chop point is not within t range)
157 // or 3 points (split once and then one subsection is split again).
chop_conic(const SkPoint src[3],SkConic dst[4],const SkScalar weight)158 static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
159 SkConic dstTemp[2];
160 int conicCnt = split_conic(src, dstTemp, weight);
161 if (2 == conicCnt) {
162 int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
163 conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
164 } else {
165 dst[0] = dstTemp[0];
166 }
167 return conicCnt;
168 }
169
170 // returns 0 if quad/conic is degen or close to it
171 // in this case approx the path with lines
172 // otherwise returns 1
is_degen_quad_or_conic(const SkPoint p[3],SkScalar * dsqd)173 static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
174 static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
175 static const SkScalar gDegenerateToLineTolSqd =
176 SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
177
178 if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
179 p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
180 return 1;
181 }
182
183 *dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
184 if (*dsqd < gDegenerateToLineTolSqd) {
185 return 1;
186 }
187
188 if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
189 return 1;
190 }
191 return 0;
192 }
193
is_degen_quad_or_conic(const SkPoint p[3])194 static int is_degen_quad_or_conic(const SkPoint p[3]) {
195 SkScalar dsqd;
196 return is_degen_quad_or_conic(p, &dsqd);
197 }
198
199 // we subdivide the quads to avoid huge overfill
200 // if it returns -1 then should be drawn as lines
num_quad_subdivs(const SkPoint p[3])201 static int num_quad_subdivs(const SkPoint p[3]) {
202 SkScalar dsqd;
203 if (is_degen_quad_or_conic(p, &dsqd)) {
204 return -1;
205 }
206
207 // tolerance of triangle height in pixels
208 // tuned on windows Quadro FX 380 / Z600
209 // trade off of fill vs cpu time on verts
210 // maybe different when do this using gpu (geo or tess shaders)
211 static const SkScalar gSubdivTol = 175 * SK_Scalar1;
212
213 if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) {
214 return 0;
215 } else {
216 static const int kMaxSub = 4;
217 // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
218 // = log4(d*d/tol*tol)/2
219 // = log2(d*d/tol*tol)
220
221 // +1 since we're ignoring the mantissa contribution.
222 int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
223 log = SkTMin(SkTMax(0, log), kMaxSub);
224 return log;
225 }
226 }
227
228 /**
229 * Generates the lines and quads to be rendered. Lines are always recorded in
230 * device space. We will do a device space bloat to account for the 1pixel
231 * thickness.
232 * Quads are recorded in device space unless m contains
233 * perspective, then in they are in src space. We do this because we will
234 * subdivide large quads to reduce over-fill. This subdivision has to be
235 * performed before applying the perspective matrix.
236 */
gather_lines_and_quads(const SkPath & path,const SkMatrix & m,const SkIRect & devClipBounds,GrAAHairLinePathRenderer::PtArray * lines,GrAAHairLinePathRenderer::PtArray * quads,GrAAHairLinePathRenderer::PtArray * conics,GrAAHairLinePathRenderer::IntArray * quadSubdivCnts,GrAAHairLinePathRenderer::FloatArray * conicWeights)237 static int gather_lines_and_quads(const SkPath& path,
238 const SkMatrix& m,
239 const SkIRect& devClipBounds,
240 GrAAHairLinePathRenderer::PtArray* lines,
241 GrAAHairLinePathRenderer::PtArray* quads,
242 GrAAHairLinePathRenderer::PtArray* conics,
243 GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
244 GrAAHairLinePathRenderer::FloatArray* conicWeights) {
245 SkPath::Iter iter(path, false);
246
247 int totalQuadCount = 0;
248 SkRect bounds;
249 SkIRect ibounds;
250
251 bool persp = m.hasPerspective();
252
253 for (;;) {
254 SkPoint pathPts[4];
255 SkPoint devPts[4];
256 SkPath::Verb verb = iter.next(pathPts);
257 switch (verb) {
258 case SkPath::kConic_Verb: {
259 SkConic dst[4];
260 // We chop the conics to create tighter clipping to hide error
261 // that appears near max curvature of very thin conics. Thin
262 // hyperbolas with high weight still show error.
263 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
264 for (int i = 0; i < conicCnt; ++i) {
265 SkPoint* chopPnts = dst[i].fPts;
266 m.mapPoints(devPts, chopPnts, 3);
267 bounds.setBounds(devPts, 3);
268 bounds.outset(SK_Scalar1, SK_Scalar1);
269 bounds.roundOut(&ibounds);
270 if (SkIRect::Intersects(devClipBounds, ibounds)) {
271 if (is_degen_quad_or_conic(devPts)) {
272 SkPoint* pts = lines->push_back_n(4);
273 pts[0] = devPts[0];
274 pts[1] = devPts[1];
275 pts[2] = devPts[1];
276 pts[3] = devPts[2];
277 } else {
278 // when in perspective keep conics in src space
279 SkPoint* cPts = persp ? chopPnts : devPts;
280 SkPoint* pts = conics->push_back_n(3);
281 pts[0] = cPts[0];
282 pts[1] = cPts[1];
283 pts[2] = cPts[2];
284 conicWeights->push_back() = dst[i].fW;
285 }
286 }
287 }
288 break;
289 }
290 case SkPath::kMove_Verb:
291 break;
292 case SkPath::kLine_Verb:
293 m.mapPoints(devPts, pathPts, 2);
294 bounds.setBounds(devPts, 2);
295 bounds.outset(SK_Scalar1, SK_Scalar1);
296 bounds.roundOut(&ibounds);
297 if (SkIRect::Intersects(devClipBounds, ibounds)) {
298 SkPoint* pts = lines->push_back_n(2);
299 pts[0] = devPts[0];
300 pts[1] = devPts[1];
301 }
302 break;
303 case SkPath::kQuad_Verb: {
304 SkPoint choppedPts[5];
305 // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
306 // When it is degenerate it allows the approximation with lines to work since the
307 // chop point (if there is one) will be at the parabola's vertex. In the nearly
308 // degenerate the QuadUVMatrix computed for the points is almost singular which
309 // can cause rendering artifacts.
310 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
311 for (int i = 0; i < n; ++i) {
312 SkPoint* quadPts = choppedPts + i * 2;
313 m.mapPoints(devPts, quadPts, 3);
314 bounds.setBounds(devPts, 3);
315 bounds.outset(SK_Scalar1, SK_Scalar1);
316 bounds.roundOut(&ibounds);
317
318 if (SkIRect::Intersects(devClipBounds, ibounds)) {
319 int subdiv = num_quad_subdivs(devPts);
320 SkASSERT(subdiv >= -1);
321 if (-1 == subdiv) {
322 SkPoint* pts = lines->push_back_n(4);
323 pts[0] = devPts[0];
324 pts[1] = devPts[1];
325 pts[2] = devPts[1];
326 pts[3] = devPts[2];
327 } else {
328 // when in perspective keep quads in src space
329 SkPoint* qPts = persp ? quadPts : devPts;
330 SkPoint* pts = quads->push_back_n(3);
331 pts[0] = qPts[0];
332 pts[1] = qPts[1];
333 pts[2] = qPts[2];
334 quadSubdivCnts->push_back() = subdiv;
335 totalQuadCount += 1 << subdiv;
336 }
337 }
338 }
339 break;
340 }
341 case SkPath::kCubic_Verb:
342 m.mapPoints(devPts, pathPts, 4);
343 bounds.setBounds(devPts, 4);
344 bounds.outset(SK_Scalar1, SK_Scalar1);
345 bounds.roundOut(&ibounds);
346 if (SkIRect::Intersects(devClipBounds, ibounds)) {
347 PREALLOC_PTARRAY(32) q;
348 // We convert cubics to quadratics (for now).
349 // In perspective have to do conversion in src space.
350 if (persp) {
351 SkScalar tolScale =
352 GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
353 GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
354 } else {
355 GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
356 }
357 for (int i = 0; i < q.count(); i += 3) {
358 SkPoint* qInDevSpace;
359 // bounds has to be calculated in device space, but q is
360 // in src space when there is perspective.
361 if (persp) {
362 m.mapPoints(devPts, &q[i], 3);
363 bounds.setBounds(devPts, 3);
364 qInDevSpace = devPts;
365 } else {
366 bounds.setBounds(&q[i], 3);
367 qInDevSpace = &q[i];
368 }
369 bounds.outset(SK_Scalar1, SK_Scalar1);
370 bounds.roundOut(&ibounds);
371 if (SkIRect::Intersects(devClipBounds, ibounds)) {
372 int subdiv = num_quad_subdivs(qInDevSpace);
373 SkASSERT(subdiv >= -1);
374 if (-1 == subdiv) {
375 SkPoint* pts = lines->push_back_n(4);
376 // lines should always be in device coords
377 pts[0] = qInDevSpace[0];
378 pts[1] = qInDevSpace[1];
379 pts[2] = qInDevSpace[1];
380 pts[3] = qInDevSpace[2];
381 } else {
382 SkPoint* pts = quads->push_back_n(3);
383 // q is already in src space when there is no
384 // perspective and dev coords otherwise.
385 pts[0] = q[0 + i];
386 pts[1] = q[1 + i];
387 pts[2] = q[2 + i];
388 quadSubdivCnts->push_back() = subdiv;
389 totalQuadCount += 1 << subdiv;
390 }
391 }
392 }
393 }
394 break;
395 case SkPath::kClose_Verb:
396 break;
397 case SkPath::kDone_Verb:
398 return totalQuadCount;
399 }
400 }
401 }
402
403 struct LineVertex {
404 SkPoint fPos;
405 float fCoverage;
406 };
407
408 struct BezierVertex {
409 SkPoint fPos;
410 union {
411 struct {
412 SkScalar fK;
413 SkScalar fL;
414 SkScalar fM;
415 } fConic;
416 SkVector fQuadCoord;
417 struct {
418 SkScalar fBogus[4];
419 };
420 };
421 };
422
423 GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
424
intersect_lines(const SkPoint & ptA,const SkVector & normA,const SkPoint & ptB,const SkVector & normB,SkPoint * result)425 static void intersect_lines(const SkPoint& ptA, const SkVector& normA,
426 const SkPoint& ptB, const SkVector& normB,
427 SkPoint* result) {
428
429 SkScalar lineAW = -normA.dot(ptA);
430 SkScalar lineBW = -normB.dot(ptB);
431
432 SkScalar wInv = SkScalarMul(normA.fX, normB.fY) -
433 SkScalarMul(normA.fY, normB.fX);
434 wInv = SkScalarInvert(wInv);
435
436 result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY);
437 result->fX = SkScalarMul(result->fX, wInv);
438
439 result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW);
440 result->fY = SkScalarMul(result->fY, wInv);
441 }
442
set_uv_quad(const SkPoint qpts[3],BezierVertex verts[kQuadNumVertices])443 static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
444 // this should be in the src space, not dev coords, when we have perspective
445 GrPathUtils::QuadUVMatrix DevToUV(qpts);
446 DevToUV.apply<kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)>(verts);
447 }
448
bloat_quad(const SkPoint qpts[3],const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex verts[kQuadNumVertices])449 static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
450 const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) {
451 SkASSERT(!toDevice == !toSrc);
452 // original quad is specified by tri a,b,c
453 SkPoint a = qpts[0];
454 SkPoint b = qpts[1];
455 SkPoint c = qpts[2];
456
457 if (toDevice) {
458 toDevice->mapPoints(&a, 1);
459 toDevice->mapPoints(&b, 1);
460 toDevice->mapPoints(&c, 1);
461 }
462 // make a new poly where we replace a and c by a 1-pixel wide edges orthog
463 // to edges ab and bc:
464 //
465 // before | after
466 // | b0
467 // b |
468 // |
469 // | a0 c0
470 // a c | a1 c1
471 //
472 // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
473 // respectively.
474 BezierVertex& a0 = verts[0];
475 BezierVertex& a1 = verts[1];
476 BezierVertex& b0 = verts[2];
477 BezierVertex& c0 = verts[3];
478 BezierVertex& c1 = verts[4];
479
480 SkVector ab = b;
481 ab -= a;
482 SkVector ac = c;
483 ac -= a;
484 SkVector cb = b;
485 cb -= c;
486
487 // We should have already handled degenerates
488 SkASSERT(ab.length() > 0 && cb.length() > 0);
489
490 ab.normalize();
491 SkVector abN;
492 abN.setOrthog(ab, SkVector::kLeft_Side);
493 if (abN.dot(ac) > 0) {
494 abN.negate();
495 }
496
497 cb.normalize();
498 SkVector cbN;
499 cbN.setOrthog(cb, SkVector::kLeft_Side);
500 if (cbN.dot(ac) < 0) {
501 cbN.negate();
502 }
503
504 a0.fPos = a;
505 a0.fPos += abN;
506 a1.fPos = a;
507 a1.fPos -= abN;
508
509 c0.fPos = c;
510 c0.fPos += cbN;
511 c1.fPos = c;
512 c1.fPos -= cbN;
513
514 intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
515
516 if (toSrc) {
517 toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kQuadNumVertices);
518 }
519 }
520
521 // Equations based off of Loop-Blinn Quadratic GPU Rendering
522 // Input Parametric:
523 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
524 // Output Implicit:
525 // f(x, y, w) = f(P) = K^2 - LM
526 // K = dot(k, P), L = dot(l, P), M = dot(m, P)
527 // k, l, m are calculated in function GrPathUtils::getConicKLM
set_conic_coeffs(const SkPoint p[3],BezierVertex verts[kQuadNumVertices],const SkScalar weight)528 static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices],
529 const SkScalar weight) {
530 SkScalar klm[9];
531
532 GrPathUtils::getConicKLM(p, weight, klm);
533
534 for (int i = 0; i < kQuadNumVertices; ++i) {
535 const SkPoint pnt = verts[i].fPos;
536 verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2];
537 verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5];
538 verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8];
539 }
540 }
541
add_conics(const SkPoint p[3],const SkScalar weight,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)542 static void add_conics(const SkPoint p[3],
543 const SkScalar weight,
544 const SkMatrix* toDevice,
545 const SkMatrix* toSrc,
546 BezierVertex** vert) {
547 bloat_quad(p, toDevice, toSrc, *vert);
548 set_conic_coeffs(p, *vert, weight);
549 *vert += kQuadNumVertices;
550 }
551
add_quads(const SkPoint p[3],int subdiv,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)552 static void add_quads(const SkPoint p[3],
553 int subdiv,
554 const SkMatrix* toDevice,
555 const SkMatrix* toSrc,
556 BezierVertex** vert) {
557 SkASSERT(subdiv >= 0);
558 if (subdiv) {
559 SkPoint newP[5];
560 SkChopQuadAtHalf(p, newP);
561 add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert);
562 add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert);
563 } else {
564 bloat_quad(p, toDevice, toSrc, *vert);
565 set_uv_quad(p, *vert);
566 *vert += kQuadNumVertices;
567 }
568 }
569
add_line(const SkPoint p[2],const SkMatrix * toSrc,uint8_t coverage,LineVertex ** vert)570 static void add_line(const SkPoint p[2],
571 const SkMatrix* toSrc,
572 uint8_t coverage,
573 LineVertex** vert) {
574 const SkPoint& a = p[0];
575 const SkPoint& b = p[1];
576
577 SkVector ortho, vec = b;
578 vec -= a;
579
580 if (vec.setLength(SK_ScalarHalf)) {
581 // Create a vector orthogonal to 'vec' and of unit length
582 ortho.fX = 2.0f * vec.fY;
583 ortho.fY = -2.0f * vec.fX;
584
585 float floatCoverage = GrNormalizeByteToFloat(coverage);
586
587 (*vert)[0].fPos = a;
588 (*vert)[0].fCoverage = floatCoverage;
589 (*vert)[1].fPos = b;
590 (*vert)[1].fCoverage = floatCoverage;
591 (*vert)[2].fPos = a - vec + ortho;
592 (*vert)[2].fCoverage = 0;
593 (*vert)[3].fPos = b + vec + ortho;
594 (*vert)[3].fCoverage = 0;
595 (*vert)[4].fPos = a - vec - ortho;
596 (*vert)[4].fCoverage = 0;
597 (*vert)[5].fPos = b + vec - ortho;
598 (*vert)[5].fCoverage = 0;
599
600 if (toSrc) {
601 toSrc->mapPointsWithStride(&(*vert)->fPos,
602 sizeof(LineVertex),
603 kLineSegNumVertices);
604 }
605 } else {
606 // just make it degenerate and likely offscreen
607 for (int i = 0; i < kLineSegNumVertices; ++i) {
608 (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
609 }
610 }
611
612 *vert += kLineSegNumVertices;
613 }
614
615 ///////////////////////////////////////////////////////////////////////////////
616
onCanDrawPath(const CanDrawPathArgs & args) const617 bool GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
618 if (!args.fAntiAlias) {
619 return false;
620 }
621
622 if (!IsStrokeHairlineOrEquivalent(*args.fStroke, *args.fViewMatrix, nullptr)) {
623 return false;
624 }
625
626 if (SkPath::kLine_SegmentMask == args.fPath->getSegmentMasks() ||
627 args.fShaderCaps->shaderDerivativeSupport()) {
628 return true;
629 }
630 return false;
631 }
632
633 template <class VertexType>
check_bounds(const SkMatrix & viewMatrix,const SkRect & devBounds,void * vertices,int vCount)634 bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount)
635 {
636 SkRect tolDevBounds = devBounds;
637 // The bounds ought to be tight, but in perspective the below code runs the verts
638 // through the view matrix to get back to dev coords, which can introduce imprecision.
639 if (viewMatrix.hasPerspective()) {
640 tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
641 } else {
642 // Non-persp matrices cause this path renderer to draw in device space.
643 SkASSERT(viewMatrix.isIdentity());
644 }
645 SkRect actualBounds;
646
647 VertexType* verts = reinterpret_cast<VertexType*>(vertices);
648 bool first = true;
649 for (int i = 0; i < vCount; ++i) {
650 SkPoint pos = verts[i].fPos;
651 // This is a hack to workaround the fact that we move some degenerate segments offscreen.
652 if (SK_ScalarMax == pos.fX) {
653 continue;
654 }
655 viewMatrix.mapPoints(&pos, 1);
656 if (first) {
657 actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
658 first = false;
659 } else {
660 actualBounds.growToInclude(pos.fX, pos.fY);
661 }
662 }
663 if (!first) {
664 return tolDevBounds.contains(actualBounds);
665 }
666
667 return true;
668 }
669
670 class AAHairlineBatch : public GrVertexBatch {
671 public:
672 DEFINE_BATCH_CLASS_ID
673
674 struct Geometry {
675 GrColor fColor;
676 uint8_t fCoverage;
677 SkMatrix fViewMatrix;
678 SkPath fPath;
679 SkIRect fDevClipBounds;
680 };
681
Create(const Geometry & geometry)682 static GrDrawBatch* Create(const Geometry& geometry) { return new AAHairlineBatch(geometry); }
683
name() const684 const char* name() const override { return "AAHairlineBatch"; }
685
computePipelineOptimizations(GrInitInvariantOutput * color,GrInitInvariantOutput * coverage,GrBatchToXPOverrides * overrides) const686 void computePipelineOptimizations(GrInitInvariantOutput* color,
687 GrInitInvariantOutput* coverage,
688 GrBatchToXPOverrides* overrides) const override {
689 // When this is called on a batch, there is only one geometry bundle
690 color->setKnownFourComponents(fGeoData[0].fColor);
691 coverage->setUnknownSingleComponent();
692 }
693
694 private:
initBatchTracker(const GrXPOverridesForBatch & overrides)695 void initBatchTracker(const GrXPOverridesForBatch& overrides) override {
696 // Handle any color overrides
697 if (!overrides.readsColor()) {
698 fGeoData[0].fColor = GrColor_ILLEGAL;
699 }
700 overrides.getOverrideColorIfSet(&fGeoData[0].fColor);
701
702 // setup batch properties
703 fBatch.fColorIgnored = !overrides.readsColor();
704 fBatch.fColor = fGeoData[0].fColor;
705 fBatch.fUsesLocalCoords = overrides.readsLocalCoords();
706 fBatch.fCoverageIgnored = !overrides.readsCoverage();
707 fBatch.fCoverage = fGeoData[0].fCoverage;
708 }
709
geoData()710 SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; }
711
712 void onPrepareDraws(Target*) const override;
713
714 typedef SkTArray<SkPoint, true> PtArray;
715 typedef SkTArray<int, true> IntArray;
716 typedef SkTArray<float, true> FloatArray;
717
AAHairlineBatch(const Geometry & geometry)718 AAHairlineBatch(const Geometry& geometry) : INHERITED(ClassID()) {
719 fGeoData.push_back(geometry);
720
721 // compute bounds
722 fBounds = geometry.fPath.getBounds();
723 geometry.fViewMatrix.mapRect(&fBounds);
724
725 // This is b.c. hairlines are notionally infinitely thin so without expansion
726 // two overlapping lines could be reordered even though they hit the same pixels.
727 fBounds.outset(0.5f, 0.5f);
728 }
729
onCombineIfPossible(GrBatch * t,const GrCaps & caps)730 bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override {
731 AAHairlineBatch* that = t->cast<AAHairlineBatch>();
732
733 if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(),
734 that->bounds(), caps)) {
735 return false;
736 }
737
738 if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
739 return false;
740 }
741
742 // We go to identity if we don't have perspective
743 if (this->viewMatrix().hasPerspective() &&
744 !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
745 return false;
746 }
747
748 // TODO we can actually batch hairlines if they are the same color in a kind of bulk method
749 // but we haven't implemented this yet
750 // TODO investigate going to vertex color and coverage?
751 if (this->coverage() != that->coverage()) {
752 return false;
753 }
754
755 if (this->color() != that->color()) {
756 return false;
757 }
758
759 SkASSERT(this->usesLocalCoords() == that->usesLocalCoords());
760 if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
761 return false;
762 }
763
764 fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin());
765 this->joinBounds(that->bounds());
766 return true;
767 }
768
color() const769 GrColor color() const { return fBatch.fColor; }
coverage() const770 uint8_t coverage() const { return fBatch.fCoverage; }
usesLocalCoords() const771 bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; }
viewMatrix() const772 const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; }
coverageIgnored() const773 bool coverageIgnored() const { return fBatch.fCoverageIgnored; }
774
775 struct BatchTracker {
776 GrColor fColor;
777 uint8_t fCoverage;
778 SkRect fDevBounds;
779 bool fUsesLocalCoords;
780 bool fColorIgnored;
781 bool fCoverageIgnored;
782 };
783
784 BatchTracker fBatch;
785 SkSTArray<1, Geometry, true> fGeoData;
786
787 typedef GrVertexBatch INHERITED;
788 };
789
onPrepareDraws(Target * target) const790 void AAHairlineBatch::onPrepareDraws(Target* target) const {
791 // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
792 SkMatrix invert;
793 if (!this->viewMatrix().invert(&invert)) {
794 return;
795 }
796
797 // we will transform to identity space if the viewmatrix does not have perspective
798 bool hasPerspective = this->viewMatrix().hasPerspective();
799 const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
800 const SkMatrix* geometryProcessorLocalM = &invert;
801 const SkMatrix* toDevice = nullptr;
802 const SkMatrix* toSrc = nullptr;
803 if (hasPerspective) {
804 geometryProcessorViewM = &this->viewMatrix();
805 geometryProcessorLocalM = &SkMatrix::I();
806 toDevice = &this->viewMatrix();
807 toSrc = &invert;
808 }
809
810 SkAutoTUnref<const GrGeometryProcessor> lineGP;
811 {
812 using namespace GrDefaultGeoProcFactory;
813
814 Color color(this->color());
815 Coverage coverage(Coverage::kAttribute_Type);
816 LocalCoords localCoords(this->usesLocalCoords() ? LocalCoords::kUsePosition_Type :
817 LocalCoords::kUnused_Type);
818 localCoords.fMatrix = geometryProcessorLocalM;
819 lineGP.reset(GrDefaultGeoProcFactory::Create(color, coverage, localCoords,
820 *geometryProcessorViewM));
821 }
822
823 SkAutoTUnref<const GrGeometryProcessor> quadGP(
824 GrQuadEffect::Create(this->color(),
825 *geometryProcessorViewM,
826 kHairlineAA_GrProcessorEdgeType,
827 target->caps(),
828 *geometryProcessorLocalM,
829 this->usesLocalCoords(),
830 this->coverage()));
831
832 SkAutoTUnref<const GrGeometryProcessor> conicGP(
833 GrConicEffect::Create(this->color(),
834 *geometryProcessorViewM,
835 kHairlineAA_GrProcessorEdgeType,
836 target->caps(),
837 *geometryProcessorLocalM,
838 this->usesLocalCoords(),
839 this->coverage()));
840
841 // This is hand inlined for maximum performance.
842 PREALLOC_PTARRAY(128) lines;
843 PREALLOC_PTARRAY(128) quads;
844 PREALLOC_PTARRAY(128) conics;
845 IntArray qSubdivs;
846 FloatArray cWeights;
847 int quadCount = 0;
848
849 int instanceCount = fGeoData.count();
850 for (int i = 0; i < instanceCount; i++) {
851 const Geometry& args = fGeoData[i];
852 quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
853 &lines, &quads, &conics, &qSubdivs, &cWeights);
854 }
855
856 int lineCount = lines.count() / 2;
857 int conicCount = conics.count() / 3;
858
859 // do lines first
860 if (lineCount) {
861 SkAutoTUnref<const GrIndexBuffer> linesIndexBuffer(
862 ref_lines_index_buffer(target->resourceProvider()));
863 target->initDraw(lineGP, this->pipeline());
864
865 const GrVertexBuffer* vertexBuffer;
866 int firstVertex;
867
868 size_t vertexStride = lineGP->getVertexStride();
869 int vertexCount = kLineSegNumVertices * lineCount;
870 LineVertex* verts = reinterpret_cast<LineVertex*>(
871 target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex));
872
873 if (!verts|| !linesIndexBuffer) {
874 SkDebugf("Could not allocate vertices\n");
875 return;
876 }
877
878 SkASSERT(lineGP->getVertexStride() == sizeof(LineVertex));
879
880 for (int i = 0; i < lineCount; ++i) {
881 add_line(&lines[2*i], toSrc, this->coverage(), &verts);
882 }
883
884 {
885 GrVertices vertices;
886 vertices.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, linesIndexBuffer,
887 firstVertex, kLineSegNumVertices, kIdxsPerLineSeg, lineCount,
888 kLineSegsNumInIdxBuffer);
889 target->draw(vertices);
890 }
891 }
892
893 if (quadCount || conicCount) {
894 const GrVertexBuffer* vertexBuffer;
895 int firstVertex;
896
897 SkAutoTUnref<const GrIndexBuffer> quadsIndexBuffer(
898 ref_quads_index_buffer(target->resourceProvider()));
899
900 size_t vertexStride = sizeof(BezierVertex);
901 int vertexCount = kQuadNumVertices * quadCount + kQuadNumVertices * conicCount;
902 void *vertices = target->makeVertexSpace(vertexStride, vertexCount,
903 &vertexBuffer, &firstVertex);
904
905 if (!vertices || !quadsIndexBuffer) {
906 SkDebugf("Could not allocate vertices\n");
907 return;
908 }
909
910 // Setup vertices
911 BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);
912
913 int unsubdivQuadCnt = quads.count() / 3;
914 for (int i = 0; i < unsubdivQuadCnt; ++i) {
915 SkASSERT(qSubdivs[i] >= 0);
916 add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
917 }
918
919 // Start Conics
920 for (int i = 0; i < conicCount; ++i) {
921 add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
922 }
923
924 if (quadCount > 0) {
925 target->initDraw(quadGP, this->pipeline());
926
927 {
928 GrVertices tempVerts;
929 tempVerts.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer,
930 firstVertex, kQuadNumVertices, kIdxsPerQuad, quadCount,
931 kQuadsNumInIdxBuffer);
932 target->draw(tempVerts);
933 firstVertex += quadCount * kQuadNumVertices;
934 }
935 }
936
937 if (conicCount > 0) {
938 target->initDraw(conicGP, this->pipeline());
939
940 {
941 GrVertices tempVerts;
942 tempVerts.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer,
943 firstVertex, kQuadNumVertices, kIdxsPerQuad, conicCount,
944 kQuadsNumInIdxBuffer);
945 target->draw(tempVerts);
946 }
947 }
948 }
949 }
950
create_hairline_batch(GrColor color,const SkMatrix & viewMatrix,const SkPath & path,const GrStrokeInfo & stroke,const SkIRect & devClipBounds)951 static GrDrawBatch* create_hairline_batch(GrColor color,
952 const SkMatrix& viewMatrix,
953 const SkPath& path,
954 const GrStrokeInfo& stroke,
955 const SkIRect& devClipBounds) {
956 SkScalar hairlineCoverage;
957 uint8_t newCoverage = 0xff;
958 if (GrPathRenderer::IsStrokeHairlineOrEquivalent(stroke, viewMatrix, &hairlineCoverage)) {
959 newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
960 }
961
962 AAHairlineBatch::Geometry geometry;
963 geometry.fColor = color;
964 geometry.fCoverage = newCoverage;
965 geometry.fViewMatrix = viewMatrix;
966 geometry.fPath = path;
967 geometry.fDevClipBounds = devClipBounds;
968
969 return AAHairlineBatch::Create(geometry);
970 }
971
onDrawPath(const DrawPathArgs & args)972 bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
973 GR_AUDIT_TRAIL_AUTO_FRAME(args.fTarget->getAuditTrail(),"GrAAHairlinePathRenderer::onDrawPath");
974 SkIRect devClipBounds;
975 GrRenderTarget* rt = args.fPipelineBuilder->getRenderTarget();
976 args.fPipelineBuilder->clip().getConservativeBounds(rt->width(), rt->height(), &devClipBounds);
977
978 SkAutoTUnref<GrDrawBatch> batch(create_hairline_batch(args.fColor, *args.fViewMatrix, *args.fPath,
979 *args.fStroke, devClipBounds));
980 args.fTarget->drawBatch(*args.fPipelineBuilder, batch);
981
982 return true;
983 }
984
985 ///////////////////////////////////////////////////////////////////////////////////////////////////
986
987 #ifdef GR_TEST_UTILS
988
DRAW_BATCH_TEST_DEFINE(AAHairlineBatch)989 DRAW_BATCH_TEST_DEFINE(AAHairlineBatch) {
990 GrColor color = GrRandomColor(random);
991 SkMatrix viewMatrix = GrTest::TestMatrix(random);
992 GrStrokeInfo stroke(SkStrokeRec::kHairline_InitStyle);
993 SkPath path = GrTest::TestPath(random);
994 SkIRect devClipBounds;
995 devClipBounds.setEmpty();
996 return create_hairline_batch(color, viewMatrix, path, stroke, devClipBounds);
997 }
998
999 #endif
1000