1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "PathOpsTestCommon.h"
8 #include "SkIntersections.h"
9 #include "SkPathOpsCubic.h"
10 #include "SkPathOpsLine.h"
11 #include "SkPathOpsQuad.h"
12 #include "SkRandom.h"
13 #include "SkReduceOrder.h"
14 #include "Test.h"
15 
16 static bool gPathOpsCubicLineIntersectionIdeasVerbose = false;
17 
18 static struct CubicLineFailures {
19     SkDCubic c;
20     double t;
21     SkDPoint p;
22 } cubicLineFailures[] = {
23     {{{{-164.3726806640625, 36.826904296875}, {-189.045166015625, -953.2220458984375},
24         {926.505859375, -897.36175537109375}, {-139.33489990234375, 204.40771484375}}},
25         0.37329583, {107.54935269006289, -632.13736293162208}},
26     {{{{784.056884765625, -554.8350830078125}, {67.5489501953125, 509.0224609375},
27         {-447.713134765625, 751.375}, {415.7784423828125, 172.22265625}}},
28         0.660005242, {-32.973148967736151, 478.01341797403569}},
29     {{{{-580.6834716796875, -127.044921875}, {-872.8983154296875, -945.54302978515625},
30         {260.8092041015625, -909.34991455078125}, {-976.2125244140625, -18.46551513671875}}},
31         0.578826774, {-390.17910153915489, -687.21144412296007}},
32 };
33 
34 int cubicLineFailuresCount = (int) SK_ARRAY_COUNT(cubicLineFailures);
35 
36 double measuredSteps[] = {
37     9.15910731e-007, 8.6600277e-007, 7.4122059e-007, 6.92087618e-007, 8.35290245e-007,
38     3.29763199e-007, 5.07547773e-007, 4.41294224e-007, 0, 0,
39     3.76879167e-006, 1.06126249e-006, 2.36873967e-006, 1.62421134e-005, 3.09103599e-005,
40     4.38917976e-005, 0.000112348938, 0.000243149242, 0.000433174114, 0.00170880232,
41     0.00272619724, 0.00518844604, 0.000352621078, 0.00175960064, 0.027875185,
42     0.0351329803, 0.103964925,
43 };
44 
45 /* last output : errors=3121
46     9.1796875e-007 8.59375e-007 7.5e-007 6.875e-007 8.4375e-007
47     3.125e-007 5e-007 4.375e-007 0 0
48     3.75e-006 1.09375e-006 2.1875e-006 1.640625e-005 3.0859375e-005
49     4.38964844e-005 0.000112304687 0.000243164063 0.000433181763 0.00170898437
50     0.00272619247 0.00518844604 0.000352621078 0.00175960064 0.027875185
51     0.0351329803 0.103964925
52 */
53 
binary_search(const SkDCubic & cubic,double step,const SkDPoint & pt,double t,int * iters)54 static double binary_search(const SkDCubic& cubic, double step, const SkDPoint& pt, double t,
55         int* iters) {
56     double firstStep = step;
57     do {
58         *iters += 1;
59         SkDPoint cubicAtT = cubic.ptAtT(t);
60         if (cubicAtT.approximatelyEqual(pt)) {
61             break;
62         }
63         double calcX = cubicAtT.fX - pt.fX;
64         double calcY = cubicAtT.fY - pt.fY;
65         double calcDist = calcX * calcX + calcY * calcY;
66         if (step == 0) {
67             SkDebugf("binary search failed: step=%1.9g cubic=", firstStep);
68             cubic.dump();
69             SkDebugf(" t=%1.9g ", t);
70             pt.dump();
71             SkDebugf("\n");
72             return -1;
73         }
74         double lastStep = step;
75         step /= 2;
76         SkDPoint lessPt = cubic.ptAtT(t - lastStep);
77         double lessX = lessPt.fX - pt.fX;
78         double lessY = lessPt.fY - pt.fY;
79         double lessDist = lessX * lessX + lessY * lessY;
80         // use larger x/y difference to choose step
81         if (calcDist > lessDist) {
82             t -= step;
83             t = SkTMax(0., t);
84         } else {
85             SkDPoint morePt = cubic.ptAtT(t + lastStep);
86             double moreX = morePt.fX - pt.fX;
87             double moreY = morePt.fY - pt.fY;
88             double moreDist = moreX * moreX + moreY * moreY;
89             if (calcDist <= moreDist) {
90                 continue;
91             }
92             t += step;
93             t = SkTMin(1., t);
94         }
95     } while (true);
96     return t;
97 }
98 
99 #if 0
100 static bool r2check(double A, double B, double C, double D, double* R2MinusQ3Ptr) {
101     if (approximately_zero(A)
102             && approximately_zero_when_compared_to(A, B)
103             && approximately_zero_when_compared_to(A, C)
104             && approximately_zero_when_compared_to(A, D)) {  // we're just a quadratic
105         return false;
106     }
107     if (approximately_zero_when_compared_to(D, A)
108             && approximately_zero_when_compared_to(D, B)
109             && approximately_zero_when_compared_to(D, C)) {  // 0 is one root
110         return false;
111     }
112     if (approximately_zero(A + B + C + D)) {  // 1 is one root
113         return false;
114     }
115     double a, b, c;
116     {
117         double invA = 1 / A;
118         a = B * invA;
119         b = C * invA;
120         c = D * invA;
121     }
122     double a2 = a * a;
123     double Q = (a2 - b * 3) / 9;
124     double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
125     double R2 = R * R;
126     double Q3 = Q * Q * Q;
127     double R2MinusQ3 = R2 - Q3;
128     *R2MinusQ3Ptr = R2MinusQ3;
129     return true;
130 }
131 #endif
132 
133 /* What is the relationship between the accuracy of the root in range and the magnitude of all
134    roots? To find out, create a bunch of cubics, and measure */
135 
DEF_TEST(PathOpsCubicLineRoots,reporter)136 DEF_TEST(PathOpsCubicLineRoots, reporter) {
137     if (!gPathOpsCubicLineIntersectionIdeasVerbose) {  // slow; exclude it by default
138         return;
139     }
140     SkRandom ran;
141     double worstStep[256] = {0};
142     int errors = 0;
143     int iters = 0;
144     double smallestR2 = 0;
145     double largestR2 = 0;
146     for (int index = 0; index < 1000000000; ++index) {
147         SkDPoint origin = {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)};
148         SkDCubic cubic = {{origin,
149                 {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
150                 {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
151                 {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}
152         }};
153         // construct a line at a known intersection
154         double t = ran.nextRangeF(0, 1);
155         SkDPoint pt = cubic.ptAtT(t);
156         // skip answers with no intersections (although note the bug!) or two, or more
157         // see if the line / cubic has a fun range of roots
158         double A, B, C, D;
159         SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D);
160         D -= pt.fY;
161         double allRoots[3] = {0}, validRoots[3] = {0};
162         int realRoots = SkDCubic::RootsReal(A, B, C, D, allRoots);
163         int valid = SkDQuad::AddValidTs(allRoots, realRoots, validRoots);
164         if (valid != 1) {
165             continue;
166         }
167         if (realRoots == 1) {
168             continue;
169         }
170         t = validRoots[0];
171         SkDPoint calcPt = cubic.ptAtT(t);
172         if (calcPt.approximatelyEqual(pt)) {
173             continue;
174         }
175 #if 0
176         double R2MinusQ3;
177         if (r2check(A, B, C, D, &R2MinusQ3)) {
178             smallestR2 = SkTMin(smallestR2, R2MinusQ3);
179             largestR2 = SkTMax(largestR2, R2MinusQ3);
180         }
181 #endif
182         double largest = SkTMax(fabs(allRoots[0]), fabs(allRoots[1]));
183         if (realRoots == 3) {
184             largest = SkTMax(largest, fabs(allRoots[2]));
185         }
186         int largeBits;
187         if (largest <= 1) {
188 #if 0
189             SkDebugf("realRoots=%d (%1.9g, %1.9g, %1.9g) valid=%d (%1.9g, %1.9g, %1.9g)\n",
190                 realRoots, allRoots[0], allRoots[1], allRoots[2], valid, validRoots[0],
191                 validRoots[1], validRoots[2]);
192 #endif
193             double smallest = SkTMin(allRoots[0], allRoots[1]);
194             if (realRoots == 3) {
195                 smallest = SkTMin(smallest, allRoots[2]);
196             }
197             SkASSERT_RELEASE(smallest < 0);
198             SkASSERT_RELEASE(smallest >= -1);
199             largeBits = 0;
200         } else {
201             frexp(largest, &largeBits);
202             SkASSERT_RELEASE(largeBits >= 0);
203             SkASSERT_RELEASE(largeBits < 256);
204         }
205         double step = 1e-6;
206         if (largeBits > 21) {
207             step = 1e-1;
208         } else if (largeBits > 18) {
209             step = 1e-2;
210         } else if (largeBits > 15) {
211             step = 1e-3;
212         } else if (largeBits > 12) {
213             step = 1e-4;
214         } else if (largeBits > 9) {
215             step = 1e-5;
216         }
217         double diff;
218         do {
219             double newT = binary_search(cubic, step, pt, t, &iters);
220             if (newT >= 0) {
221                 diff = fabs(t - newT);
222                 break;
223             }
224             step *= 1.5;
225             SkASSERT_RELEASE(step < 1);
226         } while (true);
227         worstStep[largeBits] = SkTMax(worstStep[largeBits], diff);
228 #if 0
229         {
230             cubic.dump();
231             SkDebugf("\n");
232             SkDLine line = {{{pt.fX - 1, pt.fY}, {pt.fX + 1, pt.fY}}};
233             line.dump();
234             SkDebugf("\n");
235         }
236 #endif
237         ++errors;
238     }
239     SkDebugf("errors=%d avgIter=%1.9g", errors, (double) iters / errors);
240     SkDebugf(" steps: ");
241     int worstLimit = SK_ARRAY_COUNT(worstStep);
242     while (worstStep[--worstLimit] == 0) ;
243     for (int idx2 = 0; idx2 <= worstLimit; ++idx2) {
244         SkDebugf("%1.9g ", worstStep[idx2]);
245     }
246     SkDebugf("\n");
247     SkDebugf("smallestR2=%1.9g largestR2=%1.9g\n", smallestR2, largestR2);
248 }
249 
testOneFailure(const CubicLineFailures & failure)250 static double testOneFailure(const CubicLineFailures& failure) {
251     const SkDCubic& cubic = failure.c;
252     const SkDPoint& pt = failure.p;
253     double A, B, C, D;
254     SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D);
255     D -= pt.fY;
256     double allRoots[3] = {0}, validRoots[3] = {0};
257     int realRoots = SkDCubic::RootsReal(A, B, C, D, allRoots);
258     int valid = SkDQuad::AddValidTs(allRoots, realRoots, validRoots);
259     SkASSERT_RELEASE(valid == 1);
260     SkASSERT_RELEASE(realRoots != 1);
261     double t = validRoots[0];
262     SkDPoint calcPt = cubic.ptAtT(t);
263     SkASSERT_RELEASE(!calcPt.approximatelyEqual(pt));
264     int iters = 0;
265     double newT = binary_search(cubic, 0.1, pt, t, &iters);
266     return newT;
267 }
268 
DEF_TEST(PathOpsCubicLineFailures,reporter)269 DEF_TEST(PathOpsCubicLineFailures, reporter) {
270     return;  // disable for now
271     for (int index = 0; index < cubicLineFailuresCount; ++index) {
272         const CubicLineFailures& failure = cubicLineFailures[index];
273         double newT = testOneFailure(failure);
274         SkASSERT_RELEASE(newT >= 0);
275     }
276 }
277 
DEF_TEST(PathOpsCubicLineOneFailure,reporter)278 DEF_TEST(PathOpsCubicLineOneFailure, reporter) {
279     return;  // disable for now
280     const CubicLineFailures& failure = cubicLineFailures[1];
281     double newT = testOneFailure(failure);
282     SkASSERT_RELEASE(newT >= 0);
283 }
284