1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkRandom.h"
9 #include "SkRefCnt.h"
10 #include "SkTSearch.h"
11 #include "SkTSort.h"
12 #include "SkUtils.h"
13 #include "Test.h"
14
15 class RefClass : public SkRefCnt {
16 public:
17
18
RefClass(int n)19 RefClass(int n) : fN(n) {}
get() const20 int get() const { return fN; }
21
22 private:
23 int fN;
24
25 typedef SkRefCnt INHERITED;
26 };
27
test_autounref(skiatest::Reporter * reporter)28 static void test_autounref(skiatest::Reporter* reporter) {
29 RefClass obj(0);
30 REPORTER_ASSERT(reporter, obj.unique());
31
32 SkAutoTUnref<RefClass> tmp(&obj);
33 REPORTER_ASSERT(reporter, &obj == tmp.get());
34 REPORTER_ASSERT(reporter, obj.unique());
35
36 REPORTER_ASSERT(reporter, &obj == tmp.detach());
37 REPORTER_ASSERT(reporter, obj.unique());
38 REPORTER_ASSERT(reporter, nullptr == tmp.detach());
39 REPORTER_ASSERT(reporter, nullptr == tmp.get());
40
41 obj.ref();
42 REPORTER_ASSERT(reporter, !obj.unique());
43 {
44 SkAutoTUnref<RefClass> tmp2(&obj);
45 }
46 REPORTER_ASSERT(reporter, obj.unique());
47 }
48
test_autostarray(skiatest::Reporter * reporter)49 static void test_autostarray(skiatest::Reporter* reporter) {
50 RefClass obj0(0);
51 RefClass obj1(1);
52 REPORTER_ASSERT(reporter, obj0.unique());
53 REPORTER_ASSERT(reporter, obj1.unique());
54
55 {
56 SkAutoSTArray<2, SkAutoTUnref<RefClass> > tmp;
57 REPORTER_ASSERT(reporter, 0 == tmp.count());
58
59 tmp.reset(0); // test out reset(0) when already at 0
60 tmp.reset(4); // this should force a new allocation
61 REPORTER_ASSERT(reporter, 4 == tmp.count());
62 tmp[0].reset(SkRef(&obj0));
63 tmp[1].reset(SkRef(&obj1));
64 REPORTER_ASSERT(reporter, !obj0.unique());
65 REPORTER_ASSERT(reporter, !obj1.unique());
66
67 // test out reset with data in the array (and a new allocation)
68 tmp.reset(0);
69 REPORTER_ASSERT(reporter, 0 == tmp.count());
70 REPORTER_ASSERT(reporter, obj0.unique());
71 REPORTER_ASSERT(reporter, obj1.unique());
72
73 tmp.reset(2); // this should use the preexisting allocation
74 REPORTER_ASSERT(reporter, 2 == tmp.count());
75 tmp[0].reset(SkRef(&obj0));
76 tmp[1].reset(SkRef(&obj1));
77 }
78
79 // test out destructor with data in the array (and using existing allocation)
80 REPORTER_ASSERT(reporter, obj0.unique());
81 REPORTER_ASSERT(reporter, obj1.unique());
82
83 {
84 // test out allocating ctor (this should allocate new memory)
85 SkAutoSTArray<2, SkAutoTUnref<RefClass> > tmp(4);
86 REPORTER_ASSERT(reporter, 4 == tmp.count());
87
88 tmp[0].reset(SkRef(&obj0));
89 tmp[1].reset(SkRef(&obj1));
90 REPORTER_ASSERT(reporter, !obj0.unique());
91 REPORTER_ASSERT(reporter, !obj1.unique());
92
93 // Test out resut with data in the array and malloced storage
94 tmp.reset(0);
95 REPORTER_ASSERT(reporter, obj0.unique());
96 REPORTER_ASSERT(reporter, obj1.unique());
97
98 tmp.reset(2); // this should use the preexisting storage
99 tmp[0].reset(SkRef(&obj0));
100 tmp[1].reset(SkRef(&obj1));
101 REPORTER_ASSERT(reporter, !obj0.unique());
102 REPORTER_ASSERT(reporter, !obj1.unique());
103
104 tmp.reset(4); // this should force a new malloc
105 REPORTER_ASSERT(reporter, obj0.unique());
106 REPORTER_ASSERT(reporter, obj1.unique());
107
108 tmp[0].reset(SkRef(&obj0));
109 tmp[1].reset(SkRef(&obj1));
110 REPORTER_ASSERT(reporter, !obj0.unique());
111 REPORTER_ASSERT(reporter, !obj1.unique());
112 }
113
114 REPORTER_ASSERT(reporter, obj0.unique());
115 REPORTER_ASSERT(reporter, obj1.unique());
116 }
117
118 /////////////////////////////////////////////////////////////////////////////
119
120 #define kSEARCH_COUNT 91
121
test_search(skiatest::Reporter * reporter)122 static void test_search(skiatest::Reporter* reporter) {
123 int i, array[kSEARCH_COUNT];
124 SkRandom rand;
125
126 for (i = 0; i < kSEARCH_COUNT; i++) {
127 array[i] = rand.nextS();
128 }
129
130 SkTHeapSort<int>(array, kSEARCH_COUNT);
131 // make sure we got sorted properly
132 for (i = 1; i < kSEARCH_COUNT; i++) {
133 REPORTER_ASSERT(reporter, array[i-1] <= array[i]);
134 }
135
136 // make sure we can find all of our values
137 for (i = 0; i < kSEARCH_COUNT; i++) {
138 int index = SkTSearch<int>(array, kSEARCH_COUNT, array[i], sizeof(int));
139 REPORTER_ASSERT(reporter, index == i);
140 }
141
142 // make sure that random values are either found, or the correct
143 // insertion index is returned
144 for (i = 0; i < 10000; i++) {
145 int value = rand.nextS();
146 int index = SkTSearch<int>(array, kSEARCH_COUNT, value, sizeof(int));
147
148 if (index >= 0) {
149 REPORTER_ASSERT(reporter,
150 index < kSEARCH_COUNT && array[index] == value);
151 } else {
152 index = ~index;
153 REPORTER_ASSERT(reporter, index <= kSEARCH_COUNT);
154 if (index < kSEARCH_COUNT) {
155 REPORTER_ASSERT(reporter, value < array[index]);
156 if (index > 0) {
157 REPORTER_ASSERT(reporter, value > array[index - 1]);
158 }
159 } else {
160 // we should append the new value
161 REPORTER_ASSERT(reporter, value > array[kSEARCH_COUNT - 1]);
162 }
163 }
164 }
165 }
166
test_utf16(skiatest::Reporter * reporter)167 static void test_utf16(skiatest::Reporter* reporter) {
168 static const SkUnichar gUni[] = {
169 0x10000, 0x18080, 0x20202, 0xFFFFF, 0x101234
170 };
171
172 uint16_t buf[2];
173
174 for (size_t i = 0; i < SK_ARRAY_COUNT(gUni); i++) {
175 size_t count = SkUTF16_FromUnichar(gUni[i], buf);
176 REPORTER_ASSERT(reporter, count == 2);
177 size_t count2 = SkUTF16_CountUnichars(buf, 2);
178 REPORTER_ASSERT(reporter, count2 == 1);
179 const uint16_t* ptr = buf;
180 SkUnichar c = SkUTF16_NextUnichar(&ptr);
181 REPORTER_ASSERT(reporter, c == gUni[i]);
182 REPORTER_ASSERT(reporter, ptr - buf == 2);
183 }
184 }
185
DEF_TEST(Utils,reporter)186 DEF_TEST(Utils, reporter) {
187 static const struct {
188 const char* fUtf8;
189 SkUnichar fUni;
190 } gTest[] = {
191 { "a", 'a' },
192 { "\x7f", 0x7f },
193 { "\xC2\x80", 0x80 },
194 { "\xC3\x83", (3 << 6) | 3 },
195 { "\xDF\xBF", 0x7ff },
196 { "\xE0\xA0\x80", 0x800 },
197 { "\xE0\xB0\xB8", 0xC38 },
198 { "\xE3\x83\x83", (3 << 12) | (3 << 6) | 3 },
199 { "\xEF\xBF\xBF", 0xFFFF },
200 { "\xF0\x90\x80\x80", 0x10000 },
201 { "\xF3\x83\x83\x83", (3 << 18) | (3 << 12) | (3 << 6) | 3 }
202 };
203
204 for (size_t i = 0; i < SK_ARRAY_COUNT(gTest); i++) {
205 const char* p = gTest[i].fUtf8;
206 int n = SkUTF8_CountUnichars(p);
207 SkUnichar u0 = SkUTF8_ToUnichar(gTest[i].fUtf8);
208 SkUnichar u1 = SkUTF8_NextUnichar(&p);
209
210 REPORTER_ASSERT(reporter, n == 1);
211 REPORTER_ASSERT(reporter, u0 == u1);
212 REPORTER_ASSERT(reporter, u0 == gTest[i].fUni);
213 REPORTER_ASSERT(reporter,
214 p - gTest[i].fUtf8 == (int)strlen(gTest[i].fUtf8));
215 }
216
217 test_utf16(reporter);
218 test_search(reporter);
219 test_autounref(reporter);
220 test_autostarray(reporter);
221 }
222