1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkRandom.h"
9 #include "SkRefCnt.h"
10 #include "SkTSearch.h"
11 #include "SkTSort.h"
12 #include "SkUtils.h"
13 #include "Test.h"
14 
15 class RefClass : public SkRefCnt {
16 public:
17 
18 
RefClass(int n)19     RefClass(int n) : fN(n) {}
get() const20     int get() const { return fN; }
21 
22 private:
23     int fN;
24 
25     typedef SkRefCnt INHERITED;
26 };
27 
test_autounref(skiatest::Reporter * reporter)28 static void test_autounref(skiatest::Reporter* reporter) {
29     RefClass obj(0);
30     REPORTER_ASSERT(reporter, obj.unique());
31 
32     SkAutoTUnref<RefClass> tmp(&obj);
33     REPORTER_ASSERT(reporter, &obj == tmp.get());
34     REPORTER_ASSERT(reporter, obj.unique());
35 
36     REPORTER_ASSERT(reporter, &obj == tmp.detach());
37     REPORTER_ASSERT(reporter, obj.unique());
38     REPORTER_ASSERT(reporter, nullptr == tmp.detach());
39     REPORTER_ASSERT(reporter, nullptr == tmp.get());
40 
41     obj.ref();
42     REPORTER_ASSERT(reporter, !obj.unique());
43     {
44         SkAutoTUnref<RefClass> tmp2(&obj);
45     }
46     REPORTER_ASSERT(reporter, obj.unique());
47 }
48 
test_autostarray(skiatest::Reporter * reporter)49 static void test_autostarray(skiatest::Reporter* reporter) {
50     RefClass obj0(0);
51     RefClass obj1(1);
52     REPORTER_ASSERT(reporter, obj0.unique());
53     REPORTER_ASSERT(reporter, obj1.unique());
54 
55     {
56         SkAutoSTArray<2, SkAutoTUnref<RefClass> > tmp;
57         REPORTER_ASSERT(reporter, 0 == tmp.count());
58 
59         tmp.reset(0);   // test out reset(0) when already at 0
60         tmp.reset(4);   // this should force a new allocation
61         REPORTER_ASSERT(reporter, 4 == tmp.count());
62         tmp[0].reset(SkRef(&obj0));
63         tmp[1].reset(SkRef(&obj1));
64         REPORTER_ASSERT(reporter, !obj0.unique());
65         REPORTER_ASSERT(reporter, !obj1.unique());
66 
67         // test out reset with data in the array (and a new allocation)
68         tmp.reset(0);
69         REPORTER_ASSERT(reporter, 0 == tmp.count());
70         REPORTER_ASSERT(reporter, obj0.unique());
71         REPORTER_ASSERT(reporter, obj1.unique());
72 
73         tmp.reset(2);   // this should use the preexisting allocation
74         REPORTER_ASSERT(reporter, 2 == tmp.count());
75         tmp[0].reset(SkRef(&obj0));
76         tmp[1].reset(SkRef(&obj1));
77     }
78 
79     // test out destructor with data in the array (and using existing allocation)
80     REPORTER_ASSERT(reporter, obj0.unique());
81     REPORTER_ASSERT(reporter, obj1.unique());
82 
83     {
84         // test out allocating ctor (this should allocate new memory)
85         SkAutoSTArray<2, SkAutoTUnref<RefClass> > tmp(4);
86         REPORTER_ASSERT(reporter, 4 == tmp.count());
87 
88         tmp[0].reset(SkRef(&obj0));
89         tmp[1].reset(SkRef(&obj1));
90         REPORTER_ASSERT(reporter, !obj0.unique());
91         REPORTER_ASSERT(reporter, !obj1.unique());
92 
93         // Test out resut with data in the array and malloced storage
94         tmp.reset(0);
95         REPORTER_ASSERT(reporter, obj0.unique());
96         REPORTER_ASSERT(reporter, obj1.unique());
97 
98         tmp.reset(2);   // this should use the preexisting storage
99         tmp[0].reset(SkRef(&obj0));
100         tmp[1].reset(SkRef(&obj1));
101         REPORTER_ASSERT(reporter, !obj0.unique());
102         REPORTER_ASSERT(reporter, !obj1.unique());
103 
104         tmp.reset(4);   // this should force a new malloc
105         REPORTER_ASSERT(reporter, obj0.unique());
106         REPORTER_ASSERT(reporter, obj1.unique());
107 
108         tmp[0].reset(SkRef(&obj0));
109         tmp[1].reset(SkRef(&obj1));
110         REPORTER_ASSERT(reporter, !obj0.unique());
111         REPORTER_ASSERT(reporter, !obj1.unique());
112     }
113 
114     REPORTER_ASSERT(reporter, obj0.unique());
115     REPORTER_ASSERT(reporter, obj1.unique());
116 }
117 
118 /////////////////////////////////////////////////////////////////////////////
119 
120 #define kSEARCH_COUNT   91
121 
test_search(skiatest::Reporter * reporter)122 static void test_search(skiatest::Reporter* reporter) {
123     int         i, array[kSEARCH_COUNT];
124     SkRandom    rand;
125 
126     for (i = 0; i < kSEARCH_COUNT; i++) {
127         array[i] = rand.nextS();
128     }
129 
130     SkTHeapSort<int>(array, kSEARCH_COUNT);
131     // make sure we got sorted properly
132     for (i = 1; i < kSEARCH_COUNT; i++) {
133         REPORTER_ASSERT(reporter, array[i-1] <= array[i]);
134     }
135 
136     // make sure we can find all of our values
137     for (i = 0; i < kSEARCH_COUNT; i++) {
138         int index = SkTSearch<int>(array, kSEARCH_COUNT, array[i], sizeof(int));
139         REPORTER_ASSERT(reporter, index == i);
140     }
141 
142     // make sure that random values are either found, or the correct
143     // insertion index is returned
144     for (i = 0; i < 10000; i++) {
145         int value = rand.nextS();
146         int index = SkTSearch<int>(array, kSEARCH_COUNT, value, sizeof(int));
147 
148         if (index >= 0) {
149             REPORTER_ASSERT(reporter,
150                             index < kSEARCH_COUNT && array[index] == value);
151         } else {
152             index = ~index;
153             REPORTER_ASSERT(reporter, index <= kSEARCH_COUNT);
154             if (index < kSEARCH_COUNT) {
155                 REPORTER_ASSERT(reporter, value < array[index]);
156                 if (index > 0) {
157                     REPORTER_ASSERT(reporter, value > array[index - 1]);
158                 }
159             } else {
160                 // we should append the new value
161                 REPORTER_ASSERT(reporter, value > array[kSEARCH_COUNT - 1]);
162             }
163         }
164     }
165 }
166 
test_utf16(skiatest::Reporter * reporter)167 static void test_utf16(skiatest::Reporter* reporter) {
168     static const SkUnichar gUni[] = {
169         0x10000, 0x18080, 0x20202, 0xFFFFF, 0x101234
170     };
171 
172     uint16_t buf[2];
173 
174     for (size_t i = 0; i < SK_ARRAY_COUNT(gUni); i++) {
175         size_t count = SkUTF16_FromUnichar(gUni[i], buf);
176         REPORTER_ASSERT(reporter, count == 2);
177         size_t count2 = SkUTF16_CountUnichars(buf, 2);
178         REPORTER_ASSERT(reporter, count2 == 1);
179         const uint16_t* ptr = buf;
180         SkUnichar c = SkUTF16_NextUnichar(&ptr);
181         REPORTER_ASSERT(reporter, c == gUni[i]);
182         REPORTER_ASSERT(reporter, ptr - buf == 2);
183     }
184 }
185 
DEF_TEST(Utils,reporter)186 DEF_TEST(Utils, reporter) {
187     static const struct {
188         const char* fUtf8;
189         SkUnichar   fUni;
190     } gTest[] = {
191         { "a",                  'a' },
192         { "\x7f",               0x7f },
193         { "\xC2\x80",           0x80 },
194         { "\xC3\x83",           (3 << 6) | 3    },
195         { "\xDF\xBF",           0x7ff },
196         { "\xE0\xA0\x80",       0x800 },
197         { "\xE0\xB0\xB8",       0xC38 },
198         { "\xE3\x83\x83",       (3 << 12) | (3 << 6) | 3    },
199         { "\xEF\xBF\xBF",       0xFFFF },
200         { "\xF0\x90\x80\x80",   0x10000 },
201         { "\xF3\x83\x83\x83",   (3 << 18) | (3 << 12) | (3 << 6) | 3    }
202     };
203 
204     for (size_t i = 0; i < SK_ARRAY_COUNT(gTest); i++) {
205         const char* p = gTest[i].fUtf8;
206         int         n = SkUTF8_CountUnichars(p);
207         SkUnichar   u0 = SkUTF8_ToUnichar(gTest[i].fUtf8);
208         SkUnichar   u1 = SkUTF8_NextUnichar(&p);
209 
210         REPORTER_ASSERT(reporter, n == 1);
211         REPORTER_ASSERT(reporter, u0 == u1);
212         REPORTER_ASSERT(reporter, u0 == gTest[i].fUni);
213         REPORTER_ASSERT(reporter,
214                         p - gTest[i].fUtf8 == (int)strlen(gTest[i].fUtf8));
215     }
216 
217     test_utf16(reporter);
218     test_search(reporter);
219     test_autounref(reporter);
220     test_autostarray(reporter);
221 }
222