1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_ARM64_ASSEMBLER_ARM64_INL_H_
6 #define V8_ARM64_ASSEMBLER_ARM64_INL_H_
7 
8 #include "src/arm64/assembler-arm64.h"
9 #include "src/assembler.h"
10 #include "src/debug/debug.h"
11 
12 
13 namespace v8 {
14 namespace internal {
15 
16 
SupportsCrankshaft()17 bool CpuFeatures::SupportsCrankshaft() { return true; }
18 
19 
apply(intptr_t delta)20 void RelocInfo::apply(intptr_t delta) {
21   // On arm64 only internal references need extra work.
22   DCHECK(RelocInfo::IsInternalReference(rmode_));
23 
24   // Absolute code pointer inside code object moves with the code object.
25   intptr_t* p = reinterpret_cast<intptr_t*>(pc_);
26   *p += delta;  // Relocate entry.
27 }
28 
29 
set_target_address(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)30 void RelocInfo::set_target_address(Address target,
31                                    WriteBarrierMode write_barrier_mode,
32                                    ICacheFlushMode icache_flush_mode) {
33   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
34   Assembler::set_target_address_at(isolate_, pc_, host_, target,
35                                    icache_flush_mode);
36   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
37       IsCodeTarget(rmode_)) {
38     Object* target_code = Code::GetCodeFromTargetAddress(target);
39     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
40         host(), this, HeapObject::cast(target_code));
41   }
42 }
43 
44 
code()45 inline int CPURegister::code() const {
46   DCHECK(IsValid());
47   return reg_code;
48 }
49 
50 
type()51 inline CPURegister::RegisterType CPURegister::type() const {
52   DCHECK(IsValidOrNone());
53   return reg_type;
54 }
55 
56 
Bit()57 inline RegList CPURegister::Bit() const {
58   DCHECK(static_cast<size_t>(reg_code) < (sizeof(RegList) * kBitsPerByte));
59   return IsValid() ? 1UL << reg_code : 0;
60 }
61 
62 
SizeInBits()63 inline int CPURegister::SizeInBits() const {
64   DCHECK(IsValid());
65   return reg_size;
66 }
67 
68 
SizeInBytes()69 inline int CPURegister::SizeInBytes() const {
70   DCHECK(IsValid());
71   DCHECK(SizeInBits() % 8 == 0);
72   return reg_size / 8;
73 }
74 
75 
Is32Bits()76 inline bool CPURegister::Is32Bits() const {
77   DCHECK(IsValid());
78   return reg_size == 32;
79 }
80 
81 
Is64Bits()82 inline bool CPURegister::Is64Bits() const {
83   DCHECK(IsValid());
84   return reg_size == 64;
85 }
86 
87 
IsValid()88 inline bool CPURegister::IsValid() const {
89   if (IsValidRegister() || IsValidFPRegister()) {
90     DCHECK(!IsNone());
91     return true;
92   } else {
93     DCHECK(IsNone());
94     return false;
95   }
96 }
97 
98 
IsValidRegister()99 inline bool CPURegister::IsValidRegister() const {
100   return IsRegister() &&
101          ((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits)) &&
102          ((reg_code < kNumberOfRegisters) || (reg_code == kSPRegInternalCode));
103 }
104 
105 
IsValidFPRegister()106 inline bool CPURegister::IsValidFPRegister() const {
107   return IsFPRegister() &&
108          ((reg_size == kSRegSizeInBits) || (reg_size == kDRegSizeInBits)) &&
109          (reg_code < kNumberOfFPRegisters);
110 }
111 
112 
IsNone()113 inline bool CPURegister::IsNone() const {
114   // kNoRegister types should always have size 0 and code 0.
115   DCHECK((reg_type != kNoRegister) || (reg_code == 0));
116   DCHECK((reg_type != kNoRegister) || (reg_size == 0));
117 
118   return reg_type == kNoRegister;
119 }
120 
121 
Is(const CPURegister & other)122 inline bool CPURegister::Is(const CPURegister& other) const {
123   DCHECK(IsValidOrNone() && other.IsValidOrNone());
124   return Aliases(other) && (reg_size == other.reg_size);
125 }
126 
127 
Aliases(const CPURegister & other)128 inline bool CPURegister::Aliases(const CPURegister& other) const {
129   DCHECK(IsValidOrNone() && other.IsValidOrNone());
130   return (reg_code == other.reg_code) && (reg_type == other.reg_type);
131 }
132 
133 
IsRegister()134 inline bool CPURegister::IsRegister() const {
135   return reg_type == kRegister;
136 }
137 
138 
IsFPRegister()139 inline bool CPURegister::IsFPRegister() const {
140   return reg_type == kFPRegister;
141 }
142 
143 
IsSameSizeAndType(const CPURegister & other)144 inline bool CPURegister::IsSameSizeAndType(const CPURegister& other) const {
145   return (reg_size == other.reg_size) && (reg_type == other.reg_type);
146 }
147 
148 
IsValidOrNone()149 inline bool CPURegister::IsValidOrNone() const {
150   return IsValid() || IsNone();
151 }
152 
153 
IsZero()154 inline bool CPURegister::IsZero() const {
155   DCHECK(IsValid());
156   return IsRegister() && (reg_code == kZeroRegCode);
157 }
158 
159 
IsSP()160 inline bool CPURegister::IsSP() const {
161   DCHECK(IsValid());
162   return IsRegister() && (reg_code == kSPRegInternalCode);
163 }
164 
165 
Combine(const CPURegList & other)166 inline void CPURegList::Combine(const CPURegList& other) {
167   DCHECK(IsValid());
168   DCHECK(other.type() == type_);
169   DCHECK(other.RegisterSizeInBits() == size_);
170   list_ |= other.list();
171 }
172 
173 
Remove(const CPURegList & other)174 inline void CPURegList::Remove(const CPURegList& other) {
175   DCHECK(IsValid());
176   if (other.type() == type_) {
177     list_ &= ~other.list();
178   }
179 }
180 
181 
Combine(const CPURegister & other)182 inline void CPURegList::Combine(const CPURegister& other) {
183   DCHECK(other.type() == type_);
184   DCHECK(other.SizeInBits() == size_);
185   Combine(other.code());
186 }
187 
188 
Remove(const CPURegister & other1,const CPURegister & other2,const CPURegister & other3,const CPURegister & other4)189 inline void CPURegList::Remove(const CPURegister& other1,
190                                const CPURegister& other2,
191                                const CPURegister& other3,
192                                const CPURegister& other4) {
193   if (!other1.IsNone() && (other1.type() == type_)) Remove(other1.code());
194   if (!other2.IsNone() && (other2.type() == type_)) Remove(other2.code());
195   if (!other3.IsNone() && (other3.type() == type_)) Remove(other3.code());
196   if (!other4.IsNone() && (other4.type() == type_)) Remove(other4.code());
197 }
198 
199 
Combine(int code)200 inline void CPURegList::Combine(int code) {
201   DCHECK(IsValid());
202   DCHECK(CPURegister::Create(code, size_, type_).IsValid());
203   list_ |= (1UL << code);
204 }
205 
206 
Remove(int code)207 inline void CPURegList::Remove(int code) {
208   DCHECK(IsValid());
209   DCHECK(CPURegister::Create(code, size_, type_).IsValid());
210   list_ &= ~(1UL << code);
211 }
212 
213 
XRegFromCode(unsigned code)214 inline Register Register::XRegFromCode(unsigned code) {
215   if (code == kSPRegInternalCode) {
216     return csp;
217   } else {
218     DCHECK(code < kNumberOfRegisters);
219     return Register::Create(code, kXRegSizeInBits);
220   }
221 }
222 
223 
WRegFromCode(unsigned code)224 inline Register Register::WRegFromCode(unsigned code) {
225   if (code == kSPRegInternalCode) {
226     return wcsp;
227   } else {
228     DCHECK(code < kNumberOfRegisters);
229     return Register::Create(code, kWRegSizeInBits);
230   }
231 }
232 
233 
SRegFromCode(unsigned code)234 inline FPRegister FPRegister::SRegFromCode(unsigned code) {
235   DCHECK(code < kNumberOfFPRegisters);
236   return FPRegister::Create(code, kSRegSizeInBits);
237 }
238 
239 
DRegFromCode(unsigned code)240 inline FPRegister FPRegister::DRegFromCode(unsigned code) {
241   DCHECK(code < kNumberOfFPRegisters);
242   return FPRegister::Create(code, kDRegSizeInBits);
243 }
244 
245 
W()246 inline Register CPURegister::W() const {
247   DCHECK(IsValidRegister());
248   return Register::WRegFromCode(reg_code);
249 }
250 
251 
X()252 inline Register CPURegister::X() const {
253   DCHECK(IsValidRegister());
254   return Register::XRegFromCode(reg_code);
255 }
256 
257 
S()258 inline FPRegister CPURegister::S() const {
259   DCHECK(IsValidFPRegister());
260   return FPRegister::SRegFromCode(reg_code);
261 }
262 
263 
D()264 inline FPRegister CPURegister::D() const {
265   DCHECK(IsValidFPRegister());
266   return FPRegister::DRegFromCode(reg_code);
267 }
268 
269 
270 // Immediate.
271 // Default initializer is for int types
272 template<typename T>
273 struct ImmediateInitializer {
274   static const bool kIsIntType = true;
rmode_forImmediateInitializer275   static inline RelocInfo::Mode rmode_for(T) {
276     return sizeof(T) == 8 ? RelocInfo::NONE64 : RelocInfo::NONE32;
277   }
immediate_forImmediateInitializer278   static inline int64_t immediate_for(T t) {
279     STATIC_ASSERT(sizeof(T) <= 8);
280     return t;
281   }
282 };
283 
284 
285 template<>
286 struct ImmediateInitializer<Smi*> {
287   static const bool kIsIntType = false;
288   static inline RelocInfo::Mode rmode_for(Smi* t) {
289     return RelocInfo::NONE64;
290   }
291   static inline int64_t immediate_for(Smi* t) {;
292     return reinterpret_cast<int64_t>(t);
293   }
294 };
295 
296 
297 template<>
298 struct ImmediateInitializer<ExternalReference> {
299   static const bool kIsIntType = false;
300   static inline RelocInfo::Mode rmode_for(ExternalReference t) {
301     return RelocInfo::EXTERNAL_REFERENCE;
302   }
303   static inline int64_t immediate_for(ExternalReference t) {;
304     return reinterpret_cast<int64_t>(t.address());
305   }
306 };
307 
308 
309 template<typename T>
310 Immediate::Immediate(Handle<T> value) {
311   InitializeHandle(value);
312 }
313 
314 
315 template<typename T>
316 Immediate::Immediate(T t)
317     : value_(ImmediateInitializer<T>::immediate_for(t)),
318       rmode_(ImmediateInitializer<T>::rmode_for(t)) {}
319 
320 
321 template<typename T>
322 Immediate::Immediate(T t, RelocInfo::Mode rmode)
323     : value_(ImmediateInitializer<T>::immediate_for(t)),
324       rmode_(rmode) {
325   STATIC_ASSERT(ImmediateInitializer<T>::kIsIntType);
326 }
327 
328 
329 // Operand.
330 template<typename T>
331 Operand::Operand(Handle<T> value) : immediate_(value), reg_(NoReg) {}
332 
333 
334 template<typename T>
335 Operand::Operand(T t) : immediate_(t), reg_(NoReg) {}
336 
337 
338 template<typename T>
339 Operand::Operand(T t, RelocInfo::Mode rmode)
340     : immediate_(t, rmode),
341       reg_(NoReg) {}
342 
343 
344 Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
345     : immediate_(0),
346       reg_(reg),
347       shift_(shift),
348       extend_(NO_EXTEND),
349       shift_amount_(shift_amount) {
350   DCHECK(reg.Is64Bits() || (shift_amount < kWRegSizeInBits));
351   DCHECK(reg.Is32Bits() || (shift_amount < kXRegSizeInBits));
352   DCHECK(!reg.IsSP());
353 }
354 
355 
356 Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
357     : immediate_(0),
358       reg_(reg),
359       shift_(NO_SHIFT),
360       extend_(extend),
361       shift_amount_(shift_amount) {
362   DCHECK(reg.IsValid());
363   DCHECK(shift_amount <= 4);
364   DCHECK(!reg.IsSP());
365 
366   // Extend modes SXTX and UXTX require a 64-bit register.
367   DCHECK(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
368 }
369 
370 
371 bool Operand::IsImmediate() const {
372   return reg_.Is(NoReg);
373 }
374 
375 
376 bool Operand::IsShiftedRegister() const {
377   return reg_.IsValid() && (shift_ != NO_SHIFT);
378 }
379 
380 
381 bool Operand::IsExtendedRegister() const {
382   return reg_.IsValid() && (extend_ != NO_EXTEND);
383 }
384 
385 
386 bool Operand::IsZero() const {
387   if (IsImmediate()) {
388     return ImmediateValue() == 0;
389   } else {
390     return reg().IsZero();
391   }
392 }
393 
394 
395 Operand Operand::ToExtendedRegister() const {
396   DCHECK(IsShiftedRegister());
397   DCHECK((shift_ == LSL) && (shift_amount_ <= 4));
398   return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
399 }
400 
401 
402 Immediate Operand::immediate() const {
403   DCHECK(IsImmediate());
404   return immediate_;
405 }
406 
407 
408 int64_t Operand::ImmediateValue() const {
409   DCHECK(IsImmediate());
410   return immediate_.value();
411 }
412 
413 
414 Register Operand::reg() const {
415   DCHECK(IsShiftedRegister() || IsExtendedRegister());
416   return reg_;
417 }
418 
419 
420 Shift Operand::shift() const {
421   DCHECK(IsShiftedRegister());
422   return shift_;
423 }
424 
425 
426 Extend Operand::extend() const {
427   DCHECK(IsExtendedRegister());
428   return extend_;
429 }
430 
431 
432 unsigned Operand::shift_amount() const {
433   DCHECK(IsShiftedRegister() || IsExtendedRegister());
434   return shift_amount_;
435 }
436 
437 
438 Operand Operand::UntagSmi(Register smi) {
439   STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
440                                                          kSmiValueSize));
441   DCHECK(smi.Is64Bits());
442   return Operand(smi, ASR, kSmiShift);
443 }
444 
445 
446 Operand Operand::UntagSmiAndScale(Register smi, int scale) {
447   STATIC_ASSERT(kXRegSizeInBits == static_cast<unsigned>(kSmiShift +
448                                                          kSmiValueSize));
449   DCHECK(smi.Is64Bits());
450   DCHECK((scale >= 0) && (scale <= (64 - kSmiValueSize)));
451   if (scale > kSmiShift) {
452     return Operand(smi, LSL, scale - kSmiShift);
453   } else if (scale < kSmiShift) {
454     return Operand(smi, ASR, kSmiShift - scale);
455   }
456   return Operand(smi);
457 }
458 
459 
460 MemOperand::MemOperand()
461   : base_(NoReg), regoffset_(NoReg), offset_(0), addrmode_(Offset),
462     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
463 }
464 
465 
466 MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode)
467   : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode),
468     shift_(NO_SHIFT), extend_(NO_EXTEND), shift_amount_(0) {
469   DCHECK(base.Is64Bits() && !base.IsZero());
470 }
471 
472 
473 MemOperand::MemOperand(Register base,
474                        Register regoffset,
475                        Extend extend,
476                        unsigned shift_amount)
477   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
478     shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) {
479   DCHECK(base.Is64Bits() && !base.IsZero());
480   DCHECK(!regoffset.IsSP());
481   DCHECK((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
482 
483   // SXTX extend mode requires a 64-bit offset register.
484   DCHECK(regoffset.Is64Bits() || (extend != SXTX));
485 }
486 
487 
488 MemOperand::MemOperand(Register base,
489                        Register regoffset,
490                        Shift shift,
491                        unsigned shift_amount)
492   : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset),
493     shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) {
494   DCHECK(base.Is64Bits() && !base.IsZero());
495   DCHECK(regoffset.Is64Bits() && !regoffset.IsSP());
496   DCHECK(shift == LSL);
497 }
498 
499 
500 MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
501   : base_(base), addrmode_(addrmode) {
502   DCHECK(base.Is64Bits() && !base.IsZero());
503 
504   if (offset.IsImmediate()) {
505     offset_ = offset.ImmediateValue();
506 
507     regoffset_ = NoReg;
508   } else if (offset.IsShiftedRegister()) {
509     DCHECK(addrmode == Offset);
510 
511     regoffset_ = offset.reg();
512     shift_ = offset.shift();
513     shift_amount_ = offset.shift_amount();
514 
515     extend_ = NO_EXTEND;
516     offset_ = 0;
517 
518     // These assertions match those in the shifted-register constructor.
519     DCHECK(regoffset_.Is64Bits() && !regoffset_.IsSP());
520     DCHECK(shift_ == LSL);
521   } else {
522     DCHECK(offset.IsExtendedRegister());
523     DCHECK(addrmode == Offset);
524 
525     regoffset_ = offset.reg();
526     extend_ = offset.extend();
527     shift_amount_ = offset.shift_amount();
528 
529     shift_ = NO_SHIFT;
530     offset_ = 0;
531 
532     // These assertions match those in the extended-register constructor.
533     DCHECK(!regoffset_.IsSP());
534     DCHECK((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
535     DCHECK((regoffset_.Is64Bits() || (extend_ != SXTX)));
536   }
537 }
538 
539 bool MemOperand::IsImmediateOffset() const {
540   return (addrmode_ == Offset) && regoffset_.Is(NoReg);
541 }
542 
543 
544 bool MemOperand::IsRegisterOffset() const {
545   return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
546 }
547 
548 
549 bool MemOperand::IsPreIndex() const {
550   return addrmode_ == PreIndex;
551 }
552 
553 
554 bool MemOperand::IsPostIndex() const {
555   return addrmode_ == PostIndex;
556 }
557 
558 Operand MemOperand::OffsetAsOperand() const {
559   if (IsImmediateOffset()) {
560     return offset();
561   } else {
562     DCHECK(IsRegisterOffset());
563     if (extend() == NO_EXTEND) {
564       return Operand(regoffset(), shift(), shift_amount());
565     } else {
566       return Operand(regoffset(), extend(), shift_amount());
567     }
568   }
569 }
570 
571 
572 void Assembler::Unreachable() {
573 #ifdef USE_SIMULATOR
574   debug("UNREACHABLE", __LINE__, BREAK);
575 #else
576   // Crash by branching to 0. lr now points near the fault.
577   Emit(BLR | Rn(xzr));
578 #endif
579 }
580 
581 
582 Address Assembler::target_pointer_address_at(Address pc) {
583   Instruction* instr = reinterpret_cast<Instruction*>(pc);
584   DCHECK(instr->IsLdrLiteralX());
585   return reinterpret_cast<Address>(instr->ImmPCOffsetTarget());
586 }
587 
588 
589 // Read/Modify the code target address in the branch/call instruction at pc.
590 Address Assembler::target_address_at(Address pc, Address constant_pool) {
591   return Memory::Address_at(target_pointer_address_at(pc));
592 }
593 
594 
595 Address Assembler::target_address_at(Address pc, Code* code) {
596   Address constant_pool = code ? code->constant_pool() : NULL;
597   return target_address_at(pc, constant_pool);
598 }
599 
600 
601 Address Assembler::target_address_from_return_address(Address pc) {
602   // Returns the address of the call target from the return address that will
603   // be returned to after a call.
604   // Call sequence on ARM64 is:
605   //  ldr ip0, #... @ load from literal pool
606   //  blr ip0
607   Address candidate = pc - 2 * kInstructionSize;
608   Instruction* instr = reinterpret_cast<Instruction*>(candidate);
609   USE(instr);
610   DCHECK(instr->IsLdrLiteralX());
611   return candidate;
612 }
613 
614 
615 Address Assembler::return_address_from_call_start(Address pc) {
616   // The call, generated by MacroAssembler::Call, is one of two possible
617   // sequences:
618   //
619   // Without relocation:
620   //  movz  temp, #(target & 0x000000000000ffff)
621   //  movk  temp, #(target & 0x00000000ffff0000)
622   //  movk  temp, #(target & 0x0000ffff00000000)
623   //  blr   temp
624   //
625   // With relocation:
626   //  ldr   temp, =target
627   //  blr   temp
628   //
629   // The return address is immediately after the blr instruction in both cases,
630   // so it can be found by adding the call size to the address at the start of
631   // the call sequence.
632   STATIC_ASSERT(Assembler::kCallSizeWithoutRelocation == 4 * kInstructionSize);
633   STATIC_ASSERT(Assembler::kCallSizeWithRelocation == 2 * kInstructionSize);
634 
635   Instruction* instr = reinterpret_cast<Instruction*>(pc);
636   if (instr->IsMovz()) {
637     // Verify the instruction sequence.
638     DCHECK(instr->following(1)->IsMovk());
639     DCHECK(instr->following(2)->IsMovk());
640     DCHECK(instr->following(3)->IsBranchAndLinkToRegister());
641     return pc + Assembler::kCallSizeWithoutRelocation;
642   } else {
643     // Verify the instruction sequence.
644     DCHECK(instr->IsLdrLiteralX());
645     DCHECK(instr->following(1)->IsBranchAndLinkToRegister());
646     return pc + Assembler::kCallSizeWithRelocation;
647   }
648 }
649 
650 
651 void Assembler::deserialization_set_special_target_at(
652     Isolate* isolate, Address constant_pool_entry, Code* code, Address target) {
653   Memory::Address_at(constant_pool_entry) = target;
654 }
655 
656 
657 void Assembler::deserialization_set_target_internal_reference_at(
658     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
659   Memory::Address_at(pc) = target;
660 }
661 
662 
663 void Assembler::set_target_address_at(Isolate* isolate, Address pc,
664                                       Address constant_pool, Address target,
665                                       ICacheFlushMode icache_flush_mode) {
666   Memory::Address_at(target_pointer_address_at(pc)) = target;
667   // Intuitively, we would think it is necessary to always flush the
668   // instruction cache after patching a target address in the code as follows:
669   //   Assembler::FlushICache(isolate(), pc, sizeof(target));
670   // However, on ARM, an instruction is actually patched in the case of
671   // embedded constants of the form:
672   // ldr   ip, [pc, #...]
673   // since the instruction accessing this address in the constant pool remains
674   // unchanged, a flush is not required.
675 }
676 
677 
678 void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
679                                       Address target,
680                                       ICacheFlushMode icache_flush_mode) {
681   Address constant_pool = code ? code->constant_pool() : NULL;
682   set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
683 }
684 
685 
686 int RelocInfo::target_address_size() {
687   return kPointerSize;
688 }
689 
690 
691 Address RelocInfo::target_address() {
692   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
693   return Assembler::target_address_at(pc_, host_);
694 }
695 
696 
697 Address RelocInfo::target_address_address() {
698   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
699                               || rmode_ == EMBEDDED_OBJECT
700                               || rmode_ == EXTERNAL_REFERENCE);
701   return Assembler::target_pointer_address_at(pc_);
702 }
703 
704 
705 Address RelocInfo::constant_pool_entry_address() {
706   DCHECK(IsInConstantPool());
707   return Assembler::target_pointer_address_at(pc_);
708 }
709 
710 
711 Object* RelocInfo::target_object() {
712   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
713   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
714 }
715 
716 
717 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
718   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
719   return Handle<Object>(reinterpret_cast<Object**>(
720       Assembler::target_address_at(pc_, host_)));
721 }
722 
723 
724 void RelocInfo::set_target_object(Object* target,
725                                   WriteBarrierMode write_barrier_mode,
726                                   ICacheFlushMode icache_flush_mode) {
727   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
728   Assembler::set_target_address_at(isolate_, pc_, host_,
729                                    reinterpret_cast<Address>(target),
730                                    icache_flush_mode);
731   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
732       host() != NULL &&
733       target->IsHeapObject()) {
734     host()->GetHeap()->incremental_marking()->RecordWrite(
735         host(), &Memory::Object_at(pc_), HeapObject::cast(target));
736   }
737 }
738 
739 
740 Address RelocInfo::target_external_reference() {
741   DCHECK(rmode_ == EXTERNAL_REFERENCE);
742   return Assembler::target_address_at(pc_, host_);
743 }
744 
745 
746 Address RelocInfo::target_internal_reference() {
747   DCHECK(rmode_ == INTERNAL_REFERENCE);
748   return Memory::Address_at(pc_);
749 }
750 
751 
752 Address RelocInfo::target_internal_reference_address() {
753   DCHECK(rmode_ == INTERNAL_REFERENCE);
754   return reinterpret_cast<Address>(pc_);
755 }
756 
757 
758 Address RelocInfo::target_runtime_entry(Assembler* origin) {
759   DCHECK(IsRuntimeEntry(rmode_));
760   return target_address();
761 }
762 
763 
764 void RelocInfo::set_target_runtime_entry(Address target,
765                                          WriteBarrierMode write_barrier_mode,
766                                          ICacheFlushMode icache_flush_mode) {
767   DCHECK(IsRuntimeEntry(rmode_));
768   if (target_address() != target) {
769     set_target_address(target, write_barrier_mode, icache_flush_mode);
770   }
771 }
772 
773 
774 Handle<Cell> RelocInfo::target_cell_handle() {
775   UNIMPLEMENTED();
776   Cell *null_cell = NULL;
777   return Handle<Cell>(null_cell);
778 }
779 
780 
781 Cell* RelocInfo::target_cell() {
782   DCHECK(rmode_ == RelocInfo::CELL);
783   return Cell::FromValueAddress(Memory::Address_at(pc_));
784 }
785 
786 
787 void RelocInfo::set_target_cell(Cell* cell,
788                                 WriteBarrierMode write_barrier_mode,
789                                 ICacheFlushMode icache_flush_mode) {
790   UNIMPLEMENTED();
791 }
792 
793 
794 static const int kNoCodeAgeSequenceLength = 5 * kInstructionSize;
795 static const int kCodeAgeStubEntryOffset = 3 * kInstructionSize;
796 
797 
798 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
799   UNREACHABLE();  // This should never be reached on ARM64.
800   return Handle<Object>();
801 }
802 
803 
804 Code* RelocInfo::code_age_stub() {
805   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
806   // Read the stub entry point from the code age sequence.
807   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
808   return Code::GetCodeFromTargetAddress(Memory::Address_at(stub_entry_address));
809 }
810 
811 
812 void RelocInfo::set_code_age_stub(Code* stub,
813                                   ICacheFlushMode icache_flush_mode) {
814   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
815   DCHECK(!Code::IsYoungSequence(stub->GetIsolate(), pc_));
816   // Overwrite the stub entry point in the code age sequence. This is loaded as
817   // a literal so there is no need to call FlushICache here.
818   Address stub_entry_address = pc_ + kCodeAgeStubEntryOffset;
819   Memory::Address_at(stub_entry_address) = stub->instruction_start();
820 }
821 
822 
823 Address RelocInfo::debug_call_address() {
824   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
825   // For the above sequences the Relocinfo points to the load literal loading
826   // the call address.
827   STATIC_ASSERT(Assembler::kPatchDebugBreakSlotAddressOffset == 0);
828   return Assembler::target_address_at(pc_, host_);
829 }
830 
831 
832 void RelocInfo::set_debug_call_address(Address target) {
833   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
834   STATIC_ASSERT(Assembler::kPatchDebugBreakSlotAddressOffset == 0);
835   Assembler::set_target_address_at(isolate_, pc_, host_, target);
836   if (host() != NULL) {
837     Object* target_code = Code::GetCodeFromTargetAddress(target);
838     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
839         host(), this, HeapObject::cast(target_code));
840   }
841 }
842 
843 
844 void RelocInfo::WipeOut() {
845   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
846          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
847          IsInternalReference(rmode_));
848   if (IsInternalReference(rmode_)) {
849     Memory::Address_at(pc_) = NULL;
850   } else {
851     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
852   }
853 }
854 
855 
856 bool RelocInfo::IsPatchedReturnSequence() {
857   // The sequence must be:
858   //   ldr ip0, [pc, #offset]
859   //   blr ip0
860   // See arm64/debug-arm64.cc DebugCodegen::PatchDebugBreakSlot
861   Instruction* i1 = reinterpret_cast<Instruction*>(pc_);
862   Instruction* i2 = i1->following();
863   return i1->IsLdrLiteralX() && (i1->Rt() == kIp0Code) &&
864          i2->IsBranchAndLinkToRegister() && (i2->Rn() == kIp0Code);
865 }
866 
867 
868 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
869   Instruction* current_instr = reinterpret_cast<Instruction*>(pc_);
870   return !current_instr->IsNop(Assembler::DEBUG_BREAK_NOP);
871 }
872 
873 
874 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
875   RelocInfo::Mode mode = rmode();
876   if (mode == RelocInfo::EMBEDDED_OBJECT) {
877     visitor->VisitEmbeddedPointer(this);
878   } else if (RelocInfo::IsCodeTarget(mode)) {
879     visitor->VisitCodeTarget(this);
880   } else if (mode == RelocInfo::CELL) {
881     visitor->VisitCell(this);
882   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
883     visitor->VisitExternalReference(this);
884   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
885     visitor->VisitInternalReference(this);
886   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
887              IsPatchedDebugBreakSlotSequence()) {
888     visitor->VisitDebugTarget(this);
889   } else if (RelocInfo::IsRuntimeEntry(mode)) {
890     visitor->VisitRuntimeEntry(this);
891   }
892 }
893 
894 
895 template<typename StaticVisitor>
896 void RelocInfo::Visit(Heap* heap) {
897   RelocInfo::Mode mode = rmode();
898   if (mode == RelocInfo::EMBEDDED_OBJECT) {
899     StaticVisitor::VisitEmbeddedPointer(heap, this);
900   } else if (RelocInfo::IsCodeTarget(mode)) {
901     StaticVisitor::VisitCodeTarget(heap, this);
902   } else if (mode == RelocInfo::CELL) {
903     StaticVisitor::VisitCell(heap, this);
904   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
905     StaticVisitor::VisitExternalReference(this);
906   } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
907     StaticVisitor::VisitInternalReference(this);
908   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
909              IsPatchedDebugBreakSlotSequence()) {
910     StaticVisitor::VisitDebugTarget(heap, this);
911   } else if (RelocInfo::IsRuntimeEntry(mode)) {
912     StaticVisitor::VisitRuntimeEntry(this);
913   }
914 }
915 
916 
917 LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) {
918   DCHECK(rt.IsValid());
919   if (rt.IsRegister()) {
920     return rt.Is64Bits() ? LDR_x : LDR_w;
921   } else {
922     DCHECK(rt.IsFPRegister());
923     return rt.Is64Bits() ? LDR_d : LDR_s;
924   }
925 }
926 
927 
928 LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt,
929                                          const CPURegister& rt2) {
930   DCHECK(AreSameSizeAndType(rt, rt2));
931   USE(rt2);
932   if (rt.IsRegister()) {
933     return rt.Is64Bits() ? LDP_x : LDP_w;
934   } else {
935     DCHECK(rt.IsFPRegister());
936     return rt.Is64Bits() ? LDP_d : LDP_s;
937   }
938 }
939 
940 
941 LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) {
942   DCHECK(rt.IsValid());
943   if (rt.IsRegister()) {
944     return rt.Is64Bits() ? STR_x : STR_w;
945   } else {
946     DCHECK(rt.IsFPRegister());
947     return rt.Is64Bits() ? STR_d : STR_s;
948   }
949 }
950 
951 
952 LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt,
953                                           const CPURegister& rt2) {
954   DCHECK(AreSameSizeAndType(rt, rt2));
955   USE(rt2);
956   if (rt.IsRegister()) {
957     return rt.Is64Bits() ? STP_x : STP_w;
958   } else {
959     DCHECK(rt.IsFPRegister());
960     return rt.Is64Bits() ? STP_d : STP_s;
961   }
962 }
963 
964 
965 LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) {
966   if (rt.IsRegister()) {
967     return rt.Is64Bits() ? LDR_x_lit : LDR_w_lit;
968   } else {
969     DCHECK(rt.IsFPRegister());
970     return rt.Is64Bits() ? LDR_d_lit : LDR_s_lit;
971   }
972 }
973 
974 
975 int Assembler::LinkAndGetInstructionOffsetTo(Label* label) {
976   DCHECK(kStartOfLabelLinkChain == 0);
977   int offset = LinkAndGetByteOffsetTo(label);
978   DCHECK(IsAligned(offset, kInstructionSize));
979   return offset >> kInstructionSizeLog2;
980 }
981 
982 
983 Instr Assembler::Flags(FlagsUpdate S) {
984   if (S == SetFlags) {
985     return 1 << FlagsUpdate_offset;
986   } else if (S == LeaveFlags) {
987     return 0 << FlagsUpdate_offset;
988   }
989   UNREACHABLE();
990   return 0;
991 }
992 
993 
994 Instr Assembler::Cond(Condition cond) {
995   return cond << Condition_offset;
996 }
997 
998 
999 Instr Assembler::ImmPCRelAddress(int imm21) {
1000   CHECK(is_int21(imm21));
1001   Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
1002   Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
1003   Instr immlo = imm << ImmPCRelLo_offset;
1004   return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
1005 }
1006 
1007 
1008 Instr Assembler::ImmUncondBranch(int imm26) {
1009   CHECK(is_int26(imm26));
1010   return truncate_to_int26(imm26) << ImmUncondBranch_offset;
1011 }
1012 
1013 
1014 Instr Assembler::ImmCondBranch(int imm19) {
1015   CHECK(is_int19(imm19));
1016   return truncate_to_int19(imm19) << ImmCondBranch_offset;
1017 }
1018 
1019 
1020 Instr Assembler::ImmCmpBranch(int imm19) {
1021   CHECK(is_int19(imm19));
1022   return truncate_to_int19(imm19) << ImmCmpBranch_offset;
1023 }
1024 
1025 
1026 Instr Assembler::ImmTestBranch(int imm14) {
1027   CHECK(is_int14(imm14));
1028   return truncate_to_int14(imm14) << ImmTestBranch_offset;
1029 }
1030 
1031 
1032 Instr Assembler::ImmTestBranchBit(unsigned bit_pos) {
1033   DCHECK(is_uint6(bit_pos));
1034   // Subtract five from the shift offset, as we need bit 5 from bit_pos.
1035   unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
1036   unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
1037   b5 &= ImmTestBranchBit5_mask;
1038   b40 &= ImmTestBranchBit40_mask;
1039   return b5 | b40;
1040 }
1041 
1042 
1043 Instr Assembler::SF(Register rd) {
1044     return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
1045 }
1046 
1047 
1048 Instr Assembler::ImmAddSub(int imm) {
1049   DCHECK(IsImmAddSub(imm));
1050   if (is_uint12(imm)) {  // No shift required.
1051     imm <<= ImmAddSub_offset;
1052   } else {
1053     imm = ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
1054   }
1055   return imm;
1056 }
1057 
1058 
1059 Instr Assembler::ImmS(unsigned imms, unsigned reg_size) {
1060   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(imms)) ||
1061          ((reg_size == kWRegSizeInBits) && is_uint5(imms)));
1062   USE(reg_size);
1063   return imms << ImmS_offset;
1064 }
1065 
1066 
1067 Instr Assembler::ImmR(unsigned immr, unsigned reg_size) {
1068   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
1069          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
1070   USE(reg_size);
1071   DCHECK(is_uint6(immr));
1072   return immr << ImmR_offset;
1073 }
1074 
1075 
1076 Instr Assembler::ImmSetBits(unsigned imms, unsigned reg_size) {
1077   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
1078   DCHECK(is_uint6(imms));
1079   DCHECK((reg_size == kXRegSizeInBits) || is_uint6(imms + 3));
1080   USE(reg_size);
1081   return imms << ImmSetBits_offset;
1082 }
1083 
1084 
1085 Instr Assembler::ImmRotate(unsigned immr, unsigned reg_size) {
1086   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
1087   DCHECK(((reg_size == kXRegSizeInBits) && is_uint6(immr)) ||
1088          ((reg_size == kWRegSizeInBits) && is_uint5(immr)));
1089   USE(reg_size);
1090   return immr << ImmRotate_offset;
1091 }
1092 
1093 
1094 Instr Assembler::ImmLLiteral(int imm19) {
1095   CHECK(is_int19(imm19));
1096   return truncate_to_int19(imm19) << ImmLLiteral_offset;
1097 }
1098 
1099 
1100 Instr Assembler::BitN(unsigned bitn, unsigned reg_size) {
1101   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
1102   DCHECK((reg_size == kXRegSizeInBits) || (bitn == 0));
1103   USE(reg_size);
1104   return bitn << BitN_offset;
1105 }
1106 
1107 
1108 Instr Assembler::ShiftDP(Shift shift) {
1109   DCHECK(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
1110   return shift << ShiftDP_offset;
1111 }
1112 
1113 
1114 Instr Assembler::ImmDPShift(unsigned amount) {
1115   DCHECK(is_uint6(amount));
1116   return amount << ImmDPShift_offset;
1117 }
1118 
1119 
1120 Instr Assembler::ExtendMode(Extend extend) {
1121   return extend << ExtendMode_offset;
1122 }
1123 
1124 
1125 Instr Assembler::ImmExtendShift(unsigned left_shift) {
1126   DCHECK(left_shift <= 4);
1127   return left_shift << ImmExtendShift_offset;
1128 }
1129 
1130 
1131 Instr Assembler::ImmCondCmp(unsigned imm) {
1132   DCHECK(is_uint5(imm));
1133   return imm << ImmCondCmp_offset;
1134 }
1135 
1136 
1137 Instr Assembler::Nzcv(StatusFlags nzcv) {
1138   return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
1139 }
1140 
1141 
1142 Instr Assembler::ImmLSUnsigned(int imm12) {
1143   DCHECK(is_uint12(imm12));
1144   return imm12 << ImmLSUnsigned_offset;
1145 }
1146 
1147 
1148 Instr Assembler::ImmLS(int imm9) {
1149   DCHECK(is_int9(imm9));
1150   return truncate_to_int9(imm9) << ImmLS_offset;
1151 }
1152 
1153 
1154 Instr Assembler::ImmLSPair(int imm7, LSDataSize size) {
1155   DCHECK(((imm7 >> size) << size) == imm7);
1156   int scaled_imm7 = imm7 >> size;
1157   DCHECK(is_int7(scaled_imm7));
1158   return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
1159 }
1160 
1161 
1162 Instr Assembler::ImmShiftLS(unsigned shift_amount) {
1163   DCHECK(is_uint1(shift_amount));
1164   return shift_amount << ImmShiftLS_offset;
1165 }
1166 
1167 
1168 Instr Assembler::ImmException(int imm16) {
1169   DCHECK(is_uint16(imm16));
1170   return imm16 << ImmException_offset;
1171 }
1172 
1173 
1174 Instr Assembler::ImmSystemRegister(int imm15) {
1175   DCHECK(is_uint15(imm15));
1176   return imm15 << ImmSystemRegister_offset;
1177 }
1178 
1179 
1180 Instr Assembler::ImmHint(int imm7) {
1181   DCHECK(is_uint7(imm7));
1182   return imm7 << ImmHint_offset;
1183 }
1184 
1185 
1186 Instr Assembler::ImmBarrierDomain(int imm2) {
1187   DCHECK(is_uint2(imm2));
1188   return imm2 << ImmBarrierDomain_offset;
1189 }
1190 
1191 
1192 Instr Assembler::ImmBarrierType(int imm2) {
1193   DCHECK(is_uint2(imm2));
1194   return imm2 << ImmBarrierType_offset;
1195 }
1196 
1197 
1198 LSDataSize Assembler::CalcLSDataSize(LoadStoreOp op) {
1199   DCHECK((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
1200   return static_cast<LSDataSize>(op >> SizeLS_offset);
1201 }
1202 
1203 
1204 Instr Assembler::ImmMoveWide(int imm) {
1205   DCHECK(is_uint16(imm));
1206   return imm << ImmMoveWide_offset;
1207 }
1208 
1209 
1210 Instr Assembler::ShiftMoveWide(int shift) {
1211   DCHECK(is_uint2(shift));
1212   return shift << ShiftMoveWide_offset;
1213 }
1214 
1215 
1216 Instr Assembler::FPType(FPRegister fd) {
1217   return fd.Is64Bits() ? FP64 : FP32;
1218 }
1219 
1220 
1221 Instr Assembler::FPScale(unsigned scale) {
1222   DCHECK(is_uint6(scale));
1223   return scale << FPScale_offset;
1224 }
1225 
1226 
1227 const Register& Assembler::AppropriateZeroRegFor(const CPURegister& reg) const {
1228   return reg.Is64Bits() ? xzr : wzr;
1229 }
1230 
1231 
1232 inline void Assembler::CheckBufferSpace() {
1233   DCHECK(pc_ < (buffer_ + buffer_size_));
1234   if (buffer_space() < kGap) {
1235     GrowBuffer();
1236   }
1237 }
1238 
1239 
1240 inline void Assembler::CheckBuffer() {
1241   CheckBufferSpace();
1242   if (pc_offset() >= next_veneer_pool_check_) {
1243     CheckVeneerPool(false, true);
1244   }
1245   if (pc_offset() >= next_constant_pool_check_) {
1246     CheckConstPool(false, true);
1247   }
1248 }
1249 
1250 
1251 TypeFeedbackId Assembler::RecordedAstId() {
1252   DCHECK(!recorded_ast_id_.IsNone());
1253   return recorded_ast_id_;
1254 }
1255 
1256 
1257 void Assembler::ClearRecordedAstId() {
1258   recorded_ast_id_ = TypeFeedbackId::None();
1259 }
1260 
1261 
1262 }  // namespace internal
1263 }  // namespace v8
1264 
1265 #endif  // V8_ARM64_ASSEMBLER_ARM64_INL_H_
1266