1 // Copyright 2013 the V8 project authors. All rights reserved.
2 //
3 // Redistribution and use in source and binary forms, with or without
4 // modification, are permitted provided that the following conditions are
5 // met:
6 //
7 // * Redistributions of source code must retain the above copyright
8 // notice, this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above
10 // copyright notice, this list of conditions and the following
11 // disclaimer in the documentation and/or other materials provided
12 // with the distribution.
13 // * Neither the name of Google Inc. nor the names of its
14 // contributors may be used to endorse or promote products derived
15 // from this software without specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
29 #if V8_TARGET_ARCH_ARM64
30
31 #define ARM64_DEFINE_REG_STATICS
32 #include "src/arm64/assembler-arm64.h"
33
34 #include "src/arm64/assembler-arm64-inl.h"
35 #include "src/arm64/frames-arm64.h"
36 #include "src/base/bits.h"
37 #include "src/base/cpu.h"
38 #include "src/register-configuration.h"
39
40 namespace v8 {
41 namespace internal {
42
43
44 // -----------------------------------------------------------------------------
45 // CpuFeatures implementation.
46
ProbeImpl(bool cross_compile)47 void CpuFeatures::ProbeImpl(bool cross_compile) {
48 // AArch64 has no configuration options, no further probing is required.
49 supported_ = 0;
50
51 // Only use statically determined features for cross compile (snapshot).
52 if (cross_compile) return;
53
54 // Probe for runtime features
55 base::CPU cpu;
56 if (cpu.implementer() == base::CPU::NVIDIA &&
57 cpu.variant() == base::CPU::NVIDIA_DENVER &&
58 cpu.part() <= base::CPU::NVIDIA_DENVER_V10) {
59 supported_ |= 1u << COHERENT_CACHE;
60 }
61 }
62
63
PrintTarget()64 void CpuFeatures::PrintTarget() { }
65
66
PrintFeatures()67 void CpuFeatures::PrintFeatures() {
68 printf("COHERENT_CACHE=%d\n", CpuFeatures::IsSupported(COHERENT_CACHE));
69 }
70
71
72 // -----------------------------------------------------------------------------
73 // CPURegList utilities.
74
PopLowestIndex()75 CPURegister CPURegList::PopLowestIndex() {
76 DCHECK(IsValid());
77 if (IsEmpty()) {
78 return NoCPUReg;
79 }
80 int index = CountTrailingZeros(list_, kRegListSizeInBits);
81 DCHECK((1 << index) & list_);
82 Remove(index);
83 return CPURegister::Create(index, size_, type_);
84 }
85
86
PopHighestIndex()87 CPURegister CPURegList::PopHighestIndex() {
88 DCHECK(IsValid());
89 if (IsEmpty()) {
90 return NoCPUReg;
91 }
92 int index = CountLeadingZeros(list_, kRegListSizeInBits);
93 index = kRegListSizeInBits - 1 - index;
94 DCHECK((1 << index) & list_);
95 Remove(index);
96 return CPURegister::Create(index, size_, type_);
97 }
98
99
RemoveCalleeSaved()100 void CPURegList::RemoveCalleeSaved() {
101 if (type() == CPURegister::kRegister) {
102 Remove(GetCalleeSaved(RegisterSizeInBits()));
103 } else if (type() == CPURegister::kFPRegister) {
104 Remove(GetCalleeSavedFP(RegisterSizeInBits()));
105 } else {
106 DCHECK(type() == CPURegister::kNoRegister);
107 DCHECK(IsEmpty());
108 // The list must already be empty, so do nothing.
109 }
110 }
111
112
GetCalleeSaved(int size)113 CPURegList CPURegList::GetCalleeSaved(int size) {
114 return CPURegList(CPURegister::kRegister, size, 19, 29);
115 }
116
117
GetCalleeSavedFP(int size)118 CPURegList CPURegList::GetCalleeSavedFP(int size) {
119 return CPURegList(CPURegister::kFPRegister, size, 8, 15);
120 }
121
122
GetCallerSaved(int size)123 CPURegList CPURegList::GetCallerSaved(int size) {
124 // Registers x0-x18 and lr (x30) are caller-saved.
125 CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
126 list.Combine(lr);
127 return list;
128 }
129
130
GetCallerSavedFP(int size)131 CPURegList CPURegList::GetCallerSavedFP(int size) {
132 // Registers d0-d7 and d16-d31 are caller-saved.
133 CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7);
134 list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31));
135 return list;
136 }
137
138
139 // This function defines the list of registers which are associated with a
140 // safepoint slot. Safepoint register slots are saved contiguously on the stack.
141 // MacroAssembler::SafepointRegisterStackIndex handles mapping from register
142 // code to index in the safepoint register slots. Any change here can affect
143 // this mapping.
GetSafepointSavedRegisters()144 CPURegList CPURegList::GetSafepointSavedRegisters() {
145 CPURegList list = CPURegList::GetCalleeSaved();
146 list.Combine(
147 CPURegList(CPURegister::kRegister, kXRegSizeInBits, kJSCallerSaved));
148
149 // Note that unfortunately we can't use symbolic names for registers and have
150 // to directly use register codes. This is because this function is used to
151 // initialize some static variables and we can't rely on register variables
152 // to be initialized due to static initialization order issues in C++.
153
154 // Drop ip0 and ip1 (i.e. x16 and x17), as they should not be expected to be
155 // preserved outside of the macro assembler.
156 list.Remove(16);
157 list.Remove(17);
158
159 // Add x18 to the safepoint list, as although it's not in kJSCallerSaved, it
160 // is a caller-saved register according to the procedure call standard.
161 list.Combine(18);
162
163 // Drop jssp as the stack pointer doesn't need to be included.
164 list.Remove(28);
165
166 // Add the link register (x30) to the safepoint list.
167 list.Combine(30);
168
169 return list;
170 }
171
172
173 // -----------------------------------------------------------------------------
174 // Implementation of RelocInfo
175
176 const int RelocInfo::kApplyMask = 1 << RelocInfo::INTERNAL_REFERENCE;
177
178
IsCodedSpecially()179 bool RelocInfo::IsCodedSpecially() {
180 // The deserializer needs to know whether a pointer is specially coded. Being
181 // specially coded on ARM64 means that it is a movz/movk sequence. We don't
182 // generate those for relocatable pointers.
183 return false;
184 }
185
186
IsInConstantPool()187 bool RelocInfo::IsInConstantPool() {
188 Instruction* instr = reinterpret_cast<Instruction*>(pc_);
189 return instr->IsLdrLiteralX();
190 }
191
192
GetAllocatableRegisterThatIsNotOneOf(Register reg1,Register reg2,Register reg3,Register reg4)193 Register GetAllocatableRegisterThatIsNotOneOf(Register reg1, Register reg2,
194 Register reg3, Register reg4) {
195 CPURegList regs(reg1, reg2, reg3, reg4);
196 const RegisterConfiguration* config =
197 RegisterConfiguration::ArchDefault(RegisterConfiguration::CRANKSHAFT);
198 for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
199 int code = config->GetAllocatableDoubleCode(i);
200 Register candidate = Register::from_code(code);
201 if (regs.IncludesAliasOf(candidate)) continue;
202 return candidate;
203 }
204 UNREACHABLE();
205 return NoReg;
206 }
207
208
AreAliased(const CPURegister & reg1,const CPURegister & reg2,const CPURegister & reg3,const CPURegister & reg4,const CPURegister & reg5,const CPURegister & reg6,const CPURegister & reg7,const CPURegister & reg8)209 bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
210 const CPURegister& reg3, const CPURegister& reg4,
211 const CPURegister& reg5, const CPURegister& reg6,
212 const CPURegister& reg7, const CPURegister& reg8) {
213 int number_of_valid_regs = 0;
214 int number_of_valid_fpregs = 0;
215
216 RegList unique_regs = 0;
217 RegList unique_fpregs = 0;
218
219 const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
220
221 for (unsigned i = 0; i < arraysize(regs); i++) {
222 if (regs[i].IsRegister()) {
223 number_of_valid_regs++;
224 unique_regs |= regs[i].Bit();
225 } else if (regs[i].IsFPRegister()) {
226 number_of_valid_fpregs++;
227 unique_fpregs |= regs[i].Bit();
228 } else {
229 DCHECK(!regs[i].IsValid());
230 }
231 }
232
233 int number_of_unique_regs =
234 CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte);
235 int number_of_unique_fpregs =
236 CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte);
237
238 DCHECK(number_of_valid_regs >= number_of_unique_regs);
239 DCHECK(number_of_valid_fpregs >= number_of_unique_fpregs);
240
241 return (number_of_valid_regs != number_of_unique_regs) ||
242 (number_of_valid_fpregs != number_of_unique_fpregs);
243 }
244
245
AreSameSizeAndType(const CPURegister & reg1,const CPURegister & reg2,const CPURegister & reg3,const CPURegister & reg4,const CPURegister & reg5,const CPURegister & reg6,const CPURegister & reg7,const CPURegister & reg8)246 bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
247 const CPURegister& reg3, const CPURegister& reg4,
248 const CPURegister& reg5, const CPURegister& reg6,
249 const CPURegister& reg7, const CPURegister& reg8) {
250 DCHECK(reg1.IsValid());
251 bool match = true;
252 match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
253 match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
254 match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
255 match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
256 match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
257 match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
258 match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
259 return match;
260 }
261
262
InitializeHandle(Handle<Object> handle)263 void Immediate::InitializeHandle(Handle<Object> handle) {
264 AllowDeferredHandleDereference using_raw_address;
265
266 // Verify all Objects referred by code are NOT in new space.
267 Object* obj = *handle;
268 if (obj->IsHeapObject()) {
269 DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
270 value_ = reinterpret_cast<intptr_t>(handle.location());
271 rmode_ = RelocInfo::EMBEDDED_OBJECT;
272 } else {
273 STATIC_ASSERT(sizeof(intptr_t) == sizeof(int64_t));
274 value_ = reinterpret_cast<intptr_t>(obj);
275 rmode_ = RelocInfo::NONE64;
276 }
277 }
278
279
NeedsRelocation(const Assembler * assembler) const280 bool Operand::NeedsRelocation(const Assembler* assembler) const {
281 RelocInfo::Mode rmode = immediate_.rmode();
282
283 if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
284 return assembler->serializer_enabled();
285 }
286
287 return !RelocInfo::IsNone(rmode);
288 }
289
290
291 // Constant Pool.
RecordEntry(intptr_t data,RelocInfo::Mode mode)292 void ConstPool::RecordEntry(intptr_t data,
293 RelocInfo::Mode mode) {
294 DCHECK(mode != RelocInfo::COMMENT &&
295 mode != RelocInfo::POSITION &&
296 mode != RelocInfo::STATEMENT_POSITION &&
297 mode != RelocInfo::CONST_POOL &&
298 mode != RelocInfo::VENEER_POOL &&
299 mode != RelocInfo::CODE_AGE_SEQUENCE &&
300 mode != RelocInfo::DEOPT_REASON);
301 uint64_t raw_data = static_cast<uint64_t>(data);
302 int offset = assm_->pc_offset();
303 if (IsEmpty()) {
304 first_use_ = offset;
305 }
306
307 std::pair<uint64_t, int> entry = std::make_pair(raw_data, offset);
308 if (CanBeShared(mode)) {
309 shared_entries_.insert(entry);
310 if (shared_entries_.count(entry.first) == 1) {
311 shared_entries_count++;
312 }
313 } else {
314 unique_entries_.push_back(entry);
315 }
316
317 if (EntryCount() > Assembler::kApproxMaxPoolEntryCount) {
318 // Request constant pool emission after the next instruction.
319 assm_->SetNextConstPoolCheckIn(1);
320 }
321 }
322
323
DistanceToFirstUse()324 int ConstPool::DistanceToFirstUse() {
325 DCHECK(first_use_ >= 0);
326 return assm_->pc_offset() - first_use_;
327 }
328
329
MaxPcOffset()330 int ConstPool::MaxPcOffset() {
331 // There are no pending entries in the pool so we can never get out of
332 // range.
333 if (IsEmpty()) return kMaxInt;
334
335 // Entries are not necessarily emitted in the order they are added so in the
336 // worst case the first constant pool use will be accessing the last entry.
337 return first_use_ + kMaxLoadLiteralRange - WorstCaseSize();
338 }
339
340
WorstCaseSize()341 int ConstPool::WorstCaseSize() {
342 if (IsEmpty()) return 0;
343
344 // Max size prologue:
345 // b over
346 // ldr xzr, #pool_size
347 // blr xzr
348 // nop
349 // All entries are 64-bit for now.
350 return 4 * kInstructionSize + EntryCount() * kPointerSize;
351 }
352
353
SizeIfEmittedAtCurrentPc(bool require_jump)354 int ConstPool::SizeIfEmittedAtCurrentPc(bool require_jump) {
355 if (IsEmpty()) return 0;
356
357 // Prologue is:
358 // b over ;; if require_jump
359 // ldr xzr, #pool_size
360 // blr xzr
361 // nop ;; if not 64-bit aligned
362 int prologue_size = require_jump ? kInstructionSize : 0;
363 prologue_size += 2 * kInstructionSize;
364 prologue_size += IsAligned(assm_->pc_offset() + prologue_size, 8) ?
365 0 : kInstructionSize;
366
367 // All entries are 64-bit for now.
368 return prologue_size + EntryCount() * kPointerSize;
369 }
370
371
Emit(bool require_jump)372 void ConstPool::Emit(bool require_jump) {
373 DCHECK(!assm_->is_const_pool_blocked());
374 // Prevent recursive pool emission and protect from veneer pools.
375 Assembler::BlockPoolsScope block_pools(assm_);
376
377 int size = SizeIfEmittedAtCurrentPc(require_jump);
378 Label size_check;
379 assm_->bind(&size_check);
380
381 assm_->RecordConstPool(size);
382 // Emit the constant pool. It is preceded by an optional branch if
383 // require_jump and a header which will:
384 // 1) Encode the size of the constant pool, for use by the disassembler.
385 // 2) Terminate the program, to try to prevent execution from accidentally
386 // flowing into the constant pool.
387 // 3) align the pool entries to 64-bit.
388 // The header is therefore made of up to three arm64 instructions:
389 // ldr xzr, #<size of the constant pool in 32-bit words>
390 // blr xzr
391 // nop
392 //
393 // If executed, the header will likely segfault and lr will point to the
394 // instruction following the offending blr.
395 // TODO(all): Make the alignment part less fragile. Currently code is
396 // allocated as a byte array so there are no guarantees the alignment will
397 // be preserved on compaction. Currently it works as allocation seems to be
398 // 64-bit aligned.
399
400 // Emit branch if required
401 Label after_pool;
402 if (require_jump) {
403 assm_->b(&after_pool);
404 }
405
406 // Emit the header.
407 assm_->RecordComment("[ Constant Pool");
408 EmitMarker();
409 EmitGuard();
410 assm_->Align(8);
411
412 // Emit constant pool entries.
413 // TODO(all): currently each relocated constant is 64 bits, consider adding
414 // support for 32-bit entries.
415 EmitEntries();
416 assm_->RecordComment("]");
417
418 if (after_pool.is_linked()) {
419 assm_->bind(&after_pool);
420 }
421
422 DCHECK(assm_->SizeOfCodeGeneratedSince(&size_check) ==
423 static_cast<unsigned>(size));
424 }
425
426
Clear()427 void ConstPool::Clear() {
428 shared_entries_.clear();
429 shared_entries_count = 0;
430 unique_entries_.clear();
431 first_use_ = -1;
432 }
433
434
CanBeShared(RelocInfo::Mode mode)435 bool ConstPool::CanBeShared(RelocInfo::Mode mode) {
436 // Constant pool currently does not support 32-bit entries.
437 DCHECK(mode != RelocInfo::NONE32);
438
439 return RelocInfo::IsNone(mode) ||
440 (!assm_->serializer_enabled() && (mode >= RelocInfo::CELL));
441 }
442
443
EmitMarker()444 void ConstPool::EmitMarker() {
445 // A constant pool size is expressed in number of 32-bits words.
446 // Currently all entries are 64-bit.
447 // + 1 is for the crash guard.
448 // + 0/1 for alignment.
449 int word_count = EntryCount() * 2 + 1 +
450 (IsAligned(assm_->pc_offset(), 8) ? 0 : 1);
451 assm_->Emit(LDR_x_lit |
452 Assembler::ImmLLiteral(word_count) |
453 Assembler::Rt(xzr));
454 }
455
456
AreConsistentForPair(const MemOperand & operandA,const MemOperand & operandB,int access_size_log2)457 MemOperand::PairResult MemOperand::AreConsistentForPair(
458 const MemOperand& operandA,
459 const MemOperand& operandB,
460 int access_size_log2) {
461 DCHECK(access_size_log2 >= 0);
462 DCHECK(access_size_log2 <= 3);
463 // Step one: check that they share the same base, that the mode is Offset
464 // and that the offset is a multiple of access size.
465 if (!operandA.base().Is(operandB.base()) ||
466 (operandA.addrmode() != Offset) ||
467 (operandB.addrmode() != Offset) ||
468 ((operandA.offset() & ((1 << access_size_log2) - 1)) != 0)) {
469 return kNotPair;
470 }
471 // Step two: check that the offsets are contiguous and that the range
472 // is OK for ldp/stp.
473 if ((operandB.offset() == operandA.offset() + (1 << access_size_log2)) &&
474 is_int7(operandA.offset() >> access_size_log2)) {
475 return kPairAB;
476 }
477 if ((operandA.offset() == operandB.offset() + (1 << access_size_log2)) &&
478 is_int7(operandB.offset() >> access_size_log2)) {
479 return kPairBA;
480 }
481 return kNotPair;
482 }
483
484
EmitGuard()485 void ConstPool::EmitGuard() {
486 #ifdef DEBUG
487 Instruction* instr = reinterpret_cast<Instruction*>(assm_->pc());
488 DCHECK(instr->preceding()->IsLdrLiteralX() &&
489 instr->preceding()->Rt() == xzr.code());
490 #endif
491 assm_->EmitPoolGuard();
492 }
493
494
EmitEntries()495 void ConstPool::EmitEntries() {
496 DCHECK(IsAligned(assm_->pc_offset(), 8));
497
498 typedef std::multimap<uint64_t, int>::const_iterator SharedEntriesIterator;
499 SharedEntriesIterator value_it;
500 // Iterate through the keys (constant pool values).
501 for (value_it = shared_entries_.begin();
502 value_it != shared_entries_.end();
503 value_it = shared_entries_.upper_bound(value_it->first)) {
504 std::pair<SharedEntriesIterator, SharedEntriesIterator> range;
505 uint64_t data = value_it->first;
506 range = shared_entries_.equal_range(data);
507 SharedEntriesIterator offset_it;
508 // Iterate through the offsets of a given key.
509 for (offset_it = range.first; offset_it != range.second; offset_it++) {
510 Instruction* instr = assm_->InstructionAt(offset_it->second);
511
512 // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
513 DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
514 instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
515 }
516 assm_->dc64(data);
517 }
518 shared_entries_.clear();
519 shared_entries_count = 0;
520
521 // Emit unique entries.
522 std::vector<std::pair<uint64_t, int> >::const_iterator unique_it;
523 for (unique_it = unique_entries_.begin();
524 unique_it != unique_entries_.end();
525 unique_it++) {
526 Instruction* instr = assm_->InstructionAt(unique_it->second);
527
528 // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
529 DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
530 instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
531 assm_->dc64(unique_it->first);
532 }
533 unique_entries_.clear();
534 first_use_ = -1;
535 }
536
537
538 // Assembler
Assembler(Isolate * isolate,void * buffer,int buffer_size)539 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
540 : AssemblerBase(isolate, buffer, buffer_size),
541 constpool_(this),
542 recorded_ast_id_(TypeFeedbackId::None()),
543 unresolved_branches_(),
544 positions_recorder_(this) {
545 const_pool_blocked_nesting_ = 0;
546 veneer_pool_blocked_nesting_ = 0;
547 Reset();
548 }
549
550
~Assembler()551 Assembler::~Assembler() {
552 DCHECK(constpool_.IsEmpty());
553 DCHECK(const_pool_blocked_nesting_ == 0);
554 DCHECK(veneer_pool_blocked_nesting_ == 0);
555 }
556
557
Reset()558 void Assembler::Reset() {
559 #ifdef DEBUG
560 DCHECK((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_));
561 DCHECK(const_pool_blocked_nesting_ == 0);
562 DCHECK(veneer_pool_blocked_nesting_ == 0);
563 DCHECK(unresolved_branches_.empty());
564 memset(buffer_, 0, pc_ - buffer_);
565 #endif
566 pc_ = buffer_;
567 reloc_info_writer.Reposition(reinterpret_cast<byte*>(buffer_ + buffer_size_),
568 reinterpret_cast<byte*>(pc_));
569 constpool_.Clear();
570 next_constant_pool_check_ = 0;
571 next_veneer_pool_check_ = kMaxInt;
572 no_const_pool_before_ = 0;
573 ClearRecordedAstId();
574 }
575
576
GetCode(CodeDesc * desc)577 void Assembler::GetCode(CodeDesc* desc) {
578 reloc_info_writer.Finish();
579 // Emit constant pool if necessary.
580 CheckConstPool(true, false);
581 DCHECK(constpool_.IsEmpty());
582
583 // Set up code descriptor.
584 if (desc) {
585 desc->buffer = reinterpret_cast<byte*>(buffer_);
586 desc->buffer_size = buffer_size_;
587 desc->instr_size = pc_offset();
588 desc->reloc_size =
589 static_cast<int>((reinterpret_cast<byte*>(buffer_) + buffer_size_) -
590 reloc_info_writer.pos());
591 desc->origin = this;
592 desc->constant_pool_size = 0;
593 }
594 }
595
596
Align(int m)597 void Assembler::Align(int m) {
598 DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
599 while ((pc_offset() & (m - 1)) != 0) {
600 nop();
601 }
602 }
603
604
CheckLabelLinkChain(Label const * label)605 void Assembler::CheckLabelLinkChain(Label const * label) {
606 #ifdef DEBUG
607 if (label->is_linked()) {
608 static const int kMaxLinksToCheck = 64; // Avoid O(n2) behaviour.
609 int links_checked = 0;
610 int64_t linkoffset = label->pos();
611 bool end_of_chain = false;
612 while (!end_of_chain) {
613 if (++links_checked > kMaxLinksToCheck) break;
614 Instruction * link = InstructionAt(linkoffset);
615 int64_t linkpcoffset = link->ImmPCOffset();
616 int64_t prevlinkoffset = linkoffset + linkpcoffset;
617
618 end_of_chain = (linkoffset == prevlinkoffset);
619 linkoffset = linkoffset + linkpcoffset;
620 }
621 }
622 #endif
623 }
624
625
RemoveBranchFromLabelLinkChain(Instruction * branch,Label * label,Instruction * label_veneer)626 void Assembler::RemoveBranchFromLabelLinkChain(Instruction* branch,
627 Label* label,
628 Instruction* label_veneer) {
629 DCHECK(label->is_linked());
630
631 CheckLabelLinkChain(label);
632
633 Instruction* link = InstructionAt(label->pos());
634 Instruction* prev_link = link;
635 Instruction* next_link;
636 bool end_of_chain = false;
637
638 while (link != branch && !end_of_chain) {
639 next_link = link->ImmPCOffsetTarget();
640 end_of_chain = (link == next_link);
641 prev_link = link;
642 link = next_link;
643 }
644
645 DCHECK(branch == link);
646 next_link = branch->ImmPCOffsetTarget();
647
648 if (branch == prev_link) {
649 // The branch is the first instruction in the chain.
650 if (branch == next_link) {
651 // It is also the last instruction in the chain, so it is the only branch
652 // currently referring to this label.
653 label->Unuse();
654 } else {
655 label->link_to(
656 static_cast<int>(reinterpret_cast<byte*>(next_link) - buffer_));
657 }
658
659 } else if (branch == next_link) {
660 // The branch is the last (but not also the first) instruction in the chain.
661 prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
662
663 } else {
664 // The branch is in the middle of the chain.
665 if (prev_link->IsTargetInImmPCOffsetRange(next_link)) {
666 prev_link->SetImmPCOffsetTarget(isolate(), next_link);
667 } else if (label_veneer != NULL) {
668 // Use the veneer for all previous links in the chain.
669 prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
670
671 end_of_chain = false;
672 link = next_link;
673 while (!end_of_chain) {
674 next_link = link->ImmPCOffsetTarget();
675 end_of_chain = (link == next_link);
676 link->SetImmPCOffsetTarget(isolate(), label_veneer);
677 link = next_link;
678 }
679 } else {
680 // The assert below will fire.
681 // Some other work could be attempted to fix up the chain, but it would be
682 // rather complicated. If we crash here, we may want to consider using an
683 // other mechanism than a chain of branches.
684 //
685 // Note that this situation currently should not happen, as we always call
686 // this function with a veneer to the target label.
687 // However this could happen with a MacroAssembler in the following state:
688 // [previous code]
689 // B(label);
690 // [20KB code]
691 // Tbz(label); // First tbz. Pointing to unconditional branch.
692 // [20KB code]
693 // Tbz(label); // Second tbz. Pointing to the first tbz.
694 // [more code]
695 // and this function is called to remove the first tbz from the label link
696 // chain. Since tbz has a range of +-32KB, the second tbz cannot point to
697 // the unconditional branch.
698 CHECK(prev_link->IsTargetInImmPCOffsetRange(next_link));
699 UNREACHABLE();
700 }
701 }
702
703 CheckLabelLinkChain(label);
704 }
705
706
bind(Label * label)707 void Assembler::bind(Label* label) {
708 // Bind label to the address at pc_. All instructions (most likely branches)
709 // that are linked to this label will be updated to point to the newly-bound
710 // label.
711
712 DCHECK(!label->is_near_linked());
713 DCHECK(!label->is_bound());
714
715 DeleteUnresolvedBranchInfoForLabel(label);
716
717 // If the label is linked, the link chain looks something like this:
718 //
719 // |--I----I-------I-------L
720 // |---------------------->| pc_offset
721 // |-------------->| linkoffset = label->pos()
722 // |<------| link->ImmPCOffset()
723 // |------>| prevlinkoffset = linkoffset + link->ImmPCOffset()
724 //
725 // On each iteration, the last link is updated and then removed from the
726 // chain until only one remains. At that point, the label is bound.
727 //
728 // If the label is not linked, no preparation is required before binding.
729 while (label->is_linked()) {
730 int linkoffset = label->pos();
731 Instruction* link = InstructionAt(linkoffset);
732 int prevlinkoffset = linkoffset + static_cast<int>(link->ImmPCOffset());
733
734 CheckLabelLinkChain(label);
735
736 DCHECK(linkoffset >= 0);
737 DCHECK(linkoffset < pc_offset());
738 DCHECK((linkoffset > prevlinkoffset) ||
739 (linkoffset - prevlinkoffset == kStartOfLabelLinkChain));
740 DCHECK(prevlinkoffset >= 0);
741
742 // Update the link to point to the label.
743 if (link->IsUnresolvedInternalReference()) {
744 // Internal references do not get patched to an instruction but directly
745 // to an address.
746 internal_reference_positions_.push_back(linkoffset);
747 PatchingAssembler patcher(isolate(), link, 2);
748 patcher.dc64(reinterpret_cast<uintptr_t>(pc_));
749 } else {
750 link->SetImmPCOffsetTarget(isolate(),
751 reinterpret_cast<Instruction*>(pc_));
752 }
753
754 // Link the label to the previous link in the chain.
755 if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) {
756 // We hit kStartOfLabelLinkChain, so the chain is fully processed.
757 label->Unuse();
758 } else {
759 // Update the label for the next iteration.
760 label->link_to(prevlinkoffset);
761 }
762 }
763 label->bind_to(pc_offset());
764
765 DCHECK(label->is_bound());
766 DCHECK(!label->is_linked());
767 }
768
769
LinkAndGetByteOffsetTo(Label * label)770 int Assembler::LinkAndGetByteOffsetTo(Label* label) {
771 DCHECK(sizeof(*pc_) == 1);
772 CheckLabelLinkChain(label);
773
774 int offset;
775 if (label->is_bound()) {
776 // The label is bound, so it does not need to be updated. Referring
777 // instructions must link directly to the label as they will not be
778 // updated.
779 //
780 // In this case, label->pos() returns the offset of the label from the
781 // start of the buffer.
782 //
783 // Note that offset can be zero for self-referential instructions. (This
784 // could be useful for ADR, for example.)
785 offset = label->pos() - pc_offset();
786 DCHECK(offset <= 0);
787 } else {
788 if (label->is_linked()) {
789 // The label is linked, so the referring instruction should be added onto
790 // the end of the label's link chain.
791 //
792 // In this case, label->pos() returns the offset of the last linked
793 // instruction from the start of the buffer.
794 offset = label->pos() - pc_offset();
795 DCHECK(offset != kStartOfLabelLinkChain);
796 // Note that the offset here needs to be PC-relative only so that the
797 // first instruction in a buffer can link to an unbound label. Otherwise,
798 // the offset would be 0 for this case, and 0 is reserved for
799 // kStartOfLabelLinkChain.
800 } else {
801 // The label is unused, so it now becomes linked and the referring
802 // instruction is at the start of the new link chain.
803 offset = kStartOfLabelLinkChain;
804 }
805 // The instruction at pc is now the last link in the label's chain.
806 label->link_to(pc_offset());
807 }
808
809 return offset;
810 }
811
812
DeleteUnresolvedBranchInfoForLabelTraverse(Label * label)813 void Assembler::DeleteUnresolvedBranchInfoForLabelTraverse(Label* label) {
814 DCHECK(label->is_linked());
815 CheckLabelLinkChain(label);
816
817 int link_offset = label->pos();
818 int link_pcoffset;
819 bool end_of_chain = false;
820
821 while (!end_of_chain) {
822 Instruction * link = InstructionAt(link_offset);
823 link_pcoffset = static_cast<int>(link->ImmPCOffset());
824
825 // ADR instructions are not handled by veneers.
826 if (link->IsImmBranch()) {
827 int max_reachable_pc =
828 static_cast<int>(InstructionOffset(link) +
829 Instruction::ImmBranchRange(link->BranchType()));
830 typedef std::multimap<int, FarBranchInfo>::iterator unresolved_info_it;
831 std::pair<unresolved_info_it, unresolved_info_it> range;
832 range = unresolved_branches_.equal_range(max_reachable_pc);
833 unresolved_info_it it;
834 for (it = range.first; it != range.second; ++it) {
835 if (it->second.pc_offset_ == link_offset) {
836 unresolved_branches_.erase(it);
837 break;
838 }
839 }
840 }
841
842 end_of_chain = (link_pcoffset == 0);
843 link_offset = link_offset + link_pcoffset;
844 }
845 }
846
847
DeleteUnresolvedBranchInfoForLabel(Label * label)848 void Assembler::DeleteUnresolvedBranchInfoForLabel(Label* label) {
849 if (unresolved_branches_.empty()) {
850 DCHECK(next_veneer_pool_check_ == kMaxInt);
851 return;
852 }
853
854 if (label->is_linked()) {
855 // Branches to this label will be resolved when the label is bound, normally
856 // just after all the associated info has been deleted.
857 DeleteUnresolvedBranchInfoForLabelTraverse(label);
858 }
859 if (unresolved_branches_.empty()) {
860 next_veneer_pool_check_ = kMaxInt;
861 } else {
862 next_veneer_pool_check_ =
863 unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
864 }
865 }
866
867
StartBlockConstPool()868 void Assembler::StartBlockConstPool() {
869 if (const_pool_blocked_nesting_++ == 0) {
870 // Prevent constant pool checks happening by setting the next check to
871 // the biggest possible offset.
872 next_constant_pool_check_ = kMaxInt;
873 }
874 }
875
876
EndBlockConstPool()877 void Assembler::EndBlockConstPool() {
878 if (--const_pool_blocked_nesting_ == 0) {
879 // Check the constant pool hasn't been blocked for too long.
880 DCHECK(pc_offset() < constpool_.MaxPcOffset());
881 // Two cases:
882 // * no_const_pool_before_ >= next_constant_pool_check_ and the emission is
883 // still blocked
884 // * no_const_pool_before_ < next_constant_pool_check_ and the next emit
885 // will trigger a check.
886 next_constant_pool_check_ = no_const_pool_before_;
887 }
888 }
889
890
is_const_pool_blocked() const891 bool Assembler::is_const_pool_blocked() const {
892 return (const_pool_blocked_nesting_ > 0) ||
893 (pc_offset() < no_const_pool_before_);
894 }
895
896
IsConstantPoolAt(Instruction * instr)897 bool Assembler::IsConstantPoolAt(Instruction* instr) {
898 // The constant pool marker is made of two instructions. These instructions
899 // will never be emitted by the JIT, so checking for the first one is enough:
900 // 0: ldr xzr, #<size of pool>
901 bool result = instr->IsLdrLiteralX() && (instr->Rt() == kZeroRegCode);
902
903 // It is still worth asserting the marker is complete.
904 // 4: blr xzr
905 DCHECK(!result || (instr->following()->IsBranchAndLinkToRegister() &&
906 instr->following()->Rn() == kZeroRegCode));
907
908 return result;
909 }
910
911
ConstantPoolSizeAt(Instruction * instr)912 int Assembler::ConstantPoolSizeAt(Instruction* instr) {
913 #ifdef USE_SIMULATOR
914 // Assembler::debug() embeds constants directly into the instruction stream.
915 // Although this is not a genuine constant pool, treat it like one to avoid
916 // disassembling the constants.
917 if ((instr->Mask(ExceptionMask) == HLT) &&
918 (instr->ImmException() == kImmExceptionIsDebug)) {
919 const char* message =
920 reinterpret_cast<const char*>(
921 instr->InstructionAtOffset(kDebugMessageOffset));
922 int size = static_cast<int>(kDebugMessageOffset + strlen(message) + 1);
923 return RoundUp(size, kInstructionSize) / kInstructionSize;
924 }
925 // Same for printf support, see MacroAssembler::CallPrintf().
926 if ((instr->Mask(ExceptionMask) == HLT) &&
927 (instr->ImmException() == kImmExceptionIsPrintf)) {
928 return kPrintfLength / kInstructionSize;
929 }
930 #endif
931 if (IsConstantPoolAt(instr)) {
932 return instr->ImmLLiteral();
933 } else {
934 return -1;
935 }
936 }
937
938
EmitPoolGuard()939 void Assembler::EmitPoolGuard() {
940 // We must generate only one instruction as this is used in scopes that
941 // control the size of the code generated.
942 Emit(BLR | Rn(xzr));
943 }
944
945
StartBlockVeneerPool()946 void Assembler::StartBlockVeneerPool() {
947 ++veneer_pool_blocked_nesting_;
948 }
949
950
EndBlockVeneerPool()951 void Assembler::EndBlockVeneerPool() {
952 if (--veneer_pool_blocked_nesting_ == 0) {
953 // Check the veneer pool hasn't been blocked for too long.
954 DCHECK(unresolved_branches_.empty() ||
955 (pc_offset() < unresolved_branches_first_limit()));
956 }
957 }
958
959
br(const Register & xn)960 void Assembler::br(const Register& xn) {
961 positions_recorder()->WriteRecordedPositions();
962 DCHECK(xn.Is64Bits());
963 Emit(BR | Rn(xn));
964 }
965
966
blr(const Register & xn)967 void Assembler::blr(const Register& xn) {
968 positions_recorder()->WriteRecordedPositions();
969 DCHECK(xn.Is64Bits());
970 // The pattern 'blr xzr' is used as a guard to detect when execution falls
971 // through the constant pool. It should not be emitted.
972 DCHECK(!xn.Is(xzr));
973 Emit(BLR | Rn(xn));
974 }
975
976
ret(const Register & xn)977 void Assembler::ret(const Register& xn) {
978 positions_recorder()->WriteRecordedPositions();
979 DCHECK(xn.Is64Bits());
980 Emit(RET | Rn(xn));
981 }
982
983
b(int imm26)984 void Assembler::b(int imm26) {
985 Emit(B | ImmUncondBranch(imm26));
986 }
987
988
b(Label * label)989 void Assembler::b(Label* label) {
990 positions_recorder()->WriteRecordedPositions();
991 b(LinkAndGetInstructionOffsetTo(label));
992 }
993
994
b(int imm19,Condition cond)995 void Assembler::b(int imm19, Condition cond) {
996 Emit(B_cond | ImmCondBranch(imm19) | cond);
997 }
998
999
b(Label * label,Condition cond)1000 void Assembler::b(Label* label, Condition cond) {
1001 positions_recorder()->WriteRecordedPositions();
1002 b(LinkAndGetInstructionOffsetTo(label), cond);
1003 }
1004
1005
bl(int imm26)1006 void Assembler::bl(int imm26) {
1007 positions_recorder()->WriteRecordedPositions();
1008 Emit(BL | ImmUncondBranch(imm26));
1009 }
1010
1011
bl(Label * label)1012 void Assembler::bl(Label* label) {
1013 positions_recorder()->WriteRecordedPositions();
1014 bl(LinkAndGetInstructionOffsetTo(label));
1015 }
1016
1017
cbz(const Register & rt,int imm19)1018 void Assembler::cbz(const Register& rt,
1019 int imm19) {
1020 positions_recorder()->WriteRecordedPositions();
1021 Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
1022 }
1023
1024
cbz(const Register & rt,Label * label)1025 void Assembler::cbz(const Register& rt,
1026 Label* label) {
1027 positions_recorder()->WriteRecordedPositions();
1028 cbz(rt, LinkAndGetInstructionOffsetTo(label));
1029 }
1030
1031
cbnz(const Register & rt,int imm19)1032 void Assembler::cbnz(const Register& rt,
1033 int imm19) {
1034 positions_recorder()->WriteRecordedPositions();
1035 Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
1036 }
1037
1038
cbnz(const Register & rt,Label * label)1039 void Assembler::cbnz(const Register& rt,
1040 Label* label) {
1041 positions_recorder()->WriteRecordedPositions();
1042 cbnz(rt, LinkAndGetInstructionOffsetTo(label));
1043 }
1044
1045
tbz(const Register & rt,unsigned bit_pos,int imm14)1046 void Assembler::tbz(const Register& rt,
1047 unsigned bit_pos,
1048 int imm14) {
1049 positions_recorder()->WriteRecordedPositions();
1050 DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
1051 Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
1052 }
1053
1054
tbz(const Register & rt,unsigned bit_pos,Label * label)1055 void Assembler::tbz(const Register& rt,
1056 unsigned bit_pos,
1057 Label* label) {
1058 positions_recorder()->WriteRecordedPositions();
1059 tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
1060 }
1061
1062
tbnz(const Register & rt,unsigned bit_pos,int imm14)1063 void Assembler::tbnz(const Register& rt,
1064 unsigned bit_pos,
1065 int imm14) {
1066 positions_recorder()->WriteRecordedPositions();
1067 DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
1068 Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
1069 }
1070
1071
tbnz(const Register & rt,unsigned bit_pos,Label * label)1072 void Assembler::tbnz(const Register& rt,
1073 unsigned bit_pos,
1074 Label* label) {
1075 positions_recorder()->WriteRecordedPositions();
1076 tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
1077 }
1078
1079
adr(const Register & rd,int imm21)1080 void Assembler::adr(const Register& rd, int imm21) {
1081 DCHECK(rd.Is64Bits());
1082 Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd));
1083 }
1084
1085
adr(const Register & rd,Label * label)1086 void Assembler::adr(const Register& rd, Label* label) {
1087 adr(rd, LinkAndGetByteOffsetTo(label));
1088 }
1089
1090
add(const Register & rd,const Register & rn,const Operand & operand)1091 void Assembler::add(const Register& rd,
1092 const Register& rn,
1093 const Operand& operand) {
1094 AddSub(rd, rn, operand, LeaveFlags, ADD);
1095 }
1096
1097
adds(const Register & rd,const Register & rn,const Operand & operand)1098 void Assembler::adds(const Register& rd,
1099 const Register& rn,
1100 const Operand& operand) {
1101 AddSub(rd, rn, operand, SetFlags, ADD);
1102 }
1103
1104
cmn(const Register & rn,const Operand & operand)1105 void Assembler::cmn(const Register& rn,
1106 const Operand& operand) {
1107 Register zr = AppropriateZeroRegFor(rn);
1108 adds(zr, rn, operand);
1109 }
1110
1111
sub(const Register & rd,const Register & rn,const Operand & operand)1112 void Assembler::sub(const Register& rd,
1113 const Register& rn,
1114 const Operand& operand) {
1115 AddSub(rd, rn, operand, LeaveFlags, SUB);
1116 }
1117
1118
subs(const Register & rd,const Register & rn,const Operand & operand)1119 void Assembler::subs(const Register& rd,
1120 const Register& rn,
1121 const Operand& operand) {
1122 AddSub(rd, rn, operand, SetFlags, SUB);
1123 }
1124
1125
cmp(const Register & rn,const Operand & operand)1126 void Assembler::cmp(const Register& rn, const Operand& operand) {
1127 Register zr = AppropriateZeroRegFor(rn);
1128 subs(zr, rn, operand);
1129 }
1130
1131
neg(const Register & rd,const Operand & operand)1132 void Assembler::neg(const Register& rd, const Operand& operand) {
1133 Register zr = AppropriateZeroRegFor(rd);
1134 sub(rd, zr, operand);
1135 }
1136
1137
negs(const Register & rd,const Operand & operand)1138 void Assembler::negs(const Register& rd, const Operand& operand) {
1139 Register zr = AppropriateZeroRegFor(rd);
1140 subs(rd, zr, operand);
1141 }
1142
1143
adc(const Register & rd,const Register & rn,const Operand & operand)1144 void Assembler::adc(const Register& rd,
1145 const Register& rn,
1146 const Operand& operand) {
1147 AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
1148 }
1149
1150
adcs(const Register & rd,const Register & rn,const Operand & operand)1151 void Assembler::adcs(const Register& rd,
1152 const Register& rn,
1153 const Operand& operand) {
1154 AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
1155 }
1156
1157
sbc(const Register & rd,const Register & rn,const Operand & operand)1158 void Assembler::sbc(const Register& rd,
1159 const Register& rn,
1160 const Operand& operand) {
1161 AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
1162 }
1163
1164
sbcs(const Register & rd,const Register & rn,const Operand & operand)1165 void Assembler::sbcs(const Register& rd,
1166 const Register& rn,
1167 const Operand& operand) {
1168 AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
1169 }
1170
1171
ngc(const Register & rd,const Operand & operand)1172 void Assembler::ngc(const Register& rd, const Operand& operand) {
1173 Register zr = AppropriateZeroRegFor(rd);
1174 sbc(rd, zr, operand);
1175 }
1176
1177
ngcs(const Register & rd,const Operand & operand)1178 void Assembler::ngcs(const Register& rd, const Operand& operand) {
1179 Register zr = AppropriateZeroRegFor(rd);
1180 sbcs(rd, zr, operand);
1181 }
1182
1183
1184 // Logical instructions.
and_(const Register & rd,const Register & rn,const Operand & operand)1185 void Assembler::and_(const Register& rd,
1186 const Register& rn,
1187 const Operand& operand) {
1188 Logical(rd, rn, operand, AND);
1189 }
1190
1191
ands(const Register & rd,const Register & rn,const Operand & operand)1192 void Assembler::ands(const Register& rd,
1193 const Register& rn,
1194 const Operand& operand) {
1195 Logical(rd, rn, operand, ANDS);
1196 }
1197
1198
tst(const Register & rn,const Operand & operand)1199 void Assembler::tst(const Register& rn,
1200 const Operand& operand) {
1201 ands(AppropriateZeroRegFor(rn), rn, operand);
1202 }
1203
1204
bic(const Register & rd,const Register & rn,const Operand & operand)1205 void Assembler::bic(const Register& rd,
1206 const Register& rn,
1207 const Operand& operand) {
1208 Logical(rd, rn, operand, BIC);
1209 }
1210
1211
bics(const Register & rd,const Register & rn,const Operand & operand)1212 void Assembler::bics(const Register& rd,
1213 const Register& rn,
1214 const Operand& operand) {
1215 Logical(rd, rn, operand, BICS);
1216 }
1217
1218
orr(const Register & rd,const Register & rn,const Operand & operand)1219 void Assembler::orr(const Register& rd,
1220 const Register& rn,
1221 const Operand& operand) {
1222 Logical(rd, rn, operand, ORR);
1223 }
1224
1225
orn(const Register & rd,const Register & rn,const Operand & operand)1226 void Assembler::orn(const Register& rd,
1227 const Register& rn,
1228 const Operand& operand) {
1229 Logical(rd, rn, operand, ORN);
1230 }
1231
1232
eor(const Register & rd,const Register & rn,const Operand & operand)1233 void Assembler::eor(const Register& rd,
1234 const Register& rn,
1235 const Operand& operand) {
1236 Logical(rd, rn, operand, EOR);
1237 }
1238
1239
eon(const Register & rd,const Register & rn,const Operand & operand)1240 void Assembler::eon(const Register& rd,
1241 const Register& rn,
1242 const Operand& operand) {
1243 Logical(rd, rn, operand, EON);
1244 }
1245
1246
lslv(const Register & rd,const Register & rn,const Register & rm)1247 void Assembler::lslv(const Register& rd,
1248 const Register& rn,
1249 const Register& rm) {
1250 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1251 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1252 Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
1253 }
1254
1255
lsrv(const Register & rd,const Register & rn,const Register & rm)1256 void Assembler::lsrv(const Register& rd,
1257 const Register& rn,
1258 const Register& rm) {
1259 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1260 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1261 Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
1262 }
1263
1264
asrv(const Register & rd,const Register & rn,const Register & rm)1265 void Assembler::asrv(const Register& rd,
1266 const Register& rn,
1267 const Register& rm) {
1268 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1269 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1270 Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
1271 }
1272
1273
rorv(const Register & rd,const Register & rn,const Register & rm)1274 void Assembler::rorv(const Register& rd,
1275 const Register& rn,
1276 const Register& rm) {
1277 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1278 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1279 Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
1280 }
1281
1282
1283 // Bitfield operations.
bfm(const Register & rd,const Register & rn,int immr,int imms)1284 void Assembler::bfm(const Register& rd, const Register& rn, int immr,
1285 int imms) {
1286 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1287 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1288 Emit(SF(rd) | BFM | N |
1289 ImmR(immr, rd.SizeInBits()) |
1290 ImmS(imms, rn.SizeInBits()) |
1291 Rn(rn) | Rd(rd));
1292 }
1293
1294
sbfm(const Register & rd,const Register & rn,int immr,int imms)1295 void Assembler::sbfm(const Register& rd, const Register& rn, int immr,
1296 int imms) {
1297 DCHECK(rd.Is64Bits() || rn.Is32Bits());
1298 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1299 Emit(SF(rd) | SBFM | N |
1300 ImmR(immr, rd.SizeInBits()) |
1301 ImmS(imms, rn.SizeInBits()) |
1302 Rn(rn) | Rd(rd));
1303 }
1304
1305
ubfm(const Register & rd,const Register & rn,int immr,int imms)1306 void Assembler::ubfm(const Register& rd, const Register& rn, int immr,
1307 int imms) {
1308 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1309 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1310 Emit(SF(rd) | UBFM | N |
1311 ImmR(immr, rd.SizeInBits()) |
1312 ImmS(imms, rn.SizeInBits()) |
1313 Rn(rn) | Rd(rd));
1314 }
1315
1316
extr(const Register & rd,const Register & rn,const Register & rm,int lsb)1317 void Assembler::extr(const Register& rd, const Register& rn, const Register& rm,
1318 int lsb) {
1319 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1320 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1321 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1322 Emit(SF(rd) | EXTR | N | Rm(rm) |
1323 ImmS(lsb, rn.SizeInBits()) | Rn(rn) | Rd(rd));
1324 }
1325
1326
csel(const Register & rd,const Register & rn,const Register & rm,Condition cond)1327 void Assembler::csel(const Register& rd,
1328 const Register& rn,
1329 const Register& rm,
1330 Condition cond) {
1331 ConditionalSelect(rd, rn, rm, cond, CSEL);
1332 }
1333
1334
csinc(const Register & rd,const Register & rn,const Register & rm,Condition cond)1335 void Assembler::csinc(const Register& rd,
1336 const Register& rn,
1337 const Register& rm,
1338 Condition cond) {
1339 ConditionalSelect(rd, rn, rm, cond, CSINC);
1340 }
1341
1342
csinv(const Register & rd,const Register & rn,const Register & rm,Condition cond)1343 void Assembler::csinv(const Register& rd,
1344 const Register& rn,
1345 const Register& rm,
1346 Condition cond) {
1347 ConditionalSelect(rd, rn, rm, cond, CSINV);
1348 }
1349
1350
csneg(const Register & rd,const Register & rn,const Register & rm,Condition cond)1351 void Assembler::csneg(const Register& rd,
1352 const Register& rn,
1353 const Register& rm,
1354 Condition cond) {
1355 ConditionalSelect(rd, rn, rm, cond, CSNEG);
1356 }
1357
1358
cset(const Register & rd,Condition cond)1359 void Assembler::cset(const Register &rd, Condition cond) {
1360 DCHECK((cond != al) && (cond != nv));
1361 Register zr = AppropriateZeroRegFor(rd);
1362 csinc(rd, zr, zr, NegateCondition(cond));
1363 }
1364
1365
csetm(const Register & rd,Condition cond)1366 void Assembler::csetm(const Register &rd, Condition cond) {
1367 DCHECK((cond != al) && (cond != nv));
1368 Register zr = AppropriateZeroRegFor(rd);
1369 csinv(rd, zr, zr, NegateCondition(cond));
1370 }
1371
1372
cinc(const Register & rd,const Register & rn,Condition cond)1373 void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
1374 DCHECK((cond != al) && (cond != nv));
1375 csinc(rd, rn, rn, NegateCondition(cond));
1376 }
1377
1378
cinv(const Register & rd,const Register & rn,Condition cond)1379 void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
1380 DCHECK((cond != al) && (cond != nv));
1381 csinv(rd, rn, rn, NegateCondition(cond));
1382 }
1383
1384
cneg(const Register & rd,const Register & rn,Condition cond)1385 void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
1386 DCHECK((cond != al) && (cond != nv));
1387 csneg(rd, rn, rn, NegateCondition(cond));
1388 }
1389
1390
ConditionalSelect(const Register & rd,const Register & rn,const Register & rm,Condition cond,ConditionalSelectOp op)1391 void Assembler::ConditionalSelect(const Register& rd,
1392 const Register& rn,
1393 const Register& rm,
1394 Condition cond,
1395 ConditionalSelectOp op) {
1396 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1397 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1398 Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
1399 }
1400
1401
ccmn(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond)1402 void Assembler::ccmn(const Register& rn,
1403 const Operand& operand,
1404 StatusFlags nzcv,
1405 Condition cond) {
1406 ConditionalCompare(rn, operand, nzcv, cond, CCMN);
1407 }
1408
1409
ccmp(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond)1410 void Assembler::ccmp(const Register& rn,
1411 const Operand& operand,
1412 StatusFlags nzcv,
1413 Condition cond) {
1414 ConditionalCompare(rn, operand, nzcv, cond, CCMP);
1415 }
1416
1417
DataProcessing3Source(const Register & rd,const Register & rn,const Register & rm,const Register & ra,DataProcessing3SourceOp op)1418 void Assembler::DataProcessing3Source(const Register& rd,
1419 const Register& rn,
1420 const Register& rm,
1421 const Register& ra,
1422 DataProcessing3SourceOp op) {
1423 Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
1424 }
1425
1426
mul(const Register & rd,const Register & rn,const Register & rm)1427 void Assembler::mul(const Register& rd,
1428 const Register& rn,
1429 const Register& rm) {
1430 DCHECK(AreSameSizeAndType(rd, rn, rm));
1431 Register zr = AppropriateZeroRegFor(rn);
1432 DataProcessing3Source(rd, rn, rm, zr, MADD);
1433 }
1434
1435
madd(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1436 void Assembler::madd(const Register& rd,
1437 const Register& rn,
1438 const Register& rm,
1439 const Register& ra) {
1440 DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
1441 DataProcessing3Source(rd, rn, rm, ra, MADD);
1442 }
1443
1444
mneg(const Register & rd,const Register & rn,const Register & rm)1445 void Assembler::mneg(const Register& rd,
1446 const Register& rn,
1447 const Register& rm) {
1448 DCHECK(AreSameSizeAndType(rd, rn, rm));
1449 Register zr = AppropriateZeroRegFor(rn);
1450 DataProcessing3Source(rd, rn, rm, zr, MSUB);
1451 }
1452
1453
msub(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1454 void Assembler::msub(const Register& rd,
1455 const Register& rn,
1456 const Register& rm,
1457 const Register& ra) {
1458 DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
1459 DataProcessing3Source(rd, rn, rm, ra, MSUB);
1460 }
1461
1462
smaddl(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1463 void Assembler::smaddl(const Register& rd,
1464 const Register& rn,
1465 const Register& rm,
1466 const Register& ra) {
1467 DCHECK(rd.Is64Bits() && ra.Is64Bits());
1468 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1469 DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
1470 }
1471
1472
smsubl(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1473 void Assembler::smsubl(const Register& rd,
1474 const Register& rn,
1475 const Register& rm,
1476 const Register& ra) {
1477 DCHECK(rd.Is64Bits() && ra.Is64Bits());
1478 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1479 DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
1480 }
1481
1482
umaddl(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1483 void Assembler::umaddl(const Register& rd,
1484 const Register& rn,
1485 const Register& rm,
1486 const Register& ra) {
1487 DCHECK(rd.Is64Bits() && ra.Is64Bits());
1488 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1489 DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
1490 }
1491
1492
umsubl(const Register & rd,const Register & rn,const Register & rm,const Register & ra)1493 void Assembler::umsubl(const Register& rd,
1494 const Register& rn,
1495 const Register& rm,
1496 const Register& ra) {
1497 DCHECK(rd.Is64Bits() && ra.Is64Bits());
1498 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1499 DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
1500 }
1501
1502
smull(const Register & rd,const Register & rn,const Register & rm)1503 void Assembler::smull(const Register& rd,
1504 const Register& rn,
1505 const Register& rm) {
1506 DCHECK(rd.Is64Bits());
1507 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1508 DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
1509 }
1510
1511
smulh(const Register & rd,const Register & rn,const Register & rm)1512 void Assembler::smulh(const Register& rd,
1513 const Register& rn,
1514 const Register& rm) {
1515 DCHECK(AreSameSizeAndType(rd, rn, rm));
1516 DataProcessing3Source(rd, rn, rm, xzr, SMULH_x);
1517 }
1518
1519
sdiv(const Register & rd,const Register & rn,const Register & rm)1520 void Assembler::sdiv(const Register& rd,
1521 const Register& rn,
1522 const Register& rm) {
1523 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1524 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1525 Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
1526 }
1527
1528
udiv(const Register & rd,const Register & rn,const Register & rm)1529 void Assembler::udiv(const Register& rd,
1530 const Register& rn,
1531 const Register& rm) {
1532 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1533 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1534 Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
1535 }
1536
1537
rbit(const Register & rd,const Register & rn)1538 void Assembler::rbit(const Register& rd,
1539 const Register& rn) {
1540 DataProcessing1Source(rd, rn, RBIT);
1541 }
1542
1543
rev16(const Register & rd,const Register & rn)1544 void Assembler::rev16(const Register& rd,
1545 const Register& rn) {
1546 DataProcessing1Source(rd, rn, REV16);
1547 }
1548
1549
rev32(const Register & rd,const Register & rn)1550 void Assembler::rev32(const Register& rd,
1551 const Register& rn) {
1552 DCHECK(rd.Is64Bits());
1553 DataProcessing1Source(rd, rn, REV);
1554 }
1555
1556
rev(const Register & rd,const Register & rn)1557 void Assembler::rev(const Register& rd,
1558 const Register& rn) {
1559 DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
1560 }
1561
1562
clz(const Register & rd,const Register & rn)1563 void Assembler::clz(const Register& rd,
1564 const Register& rn) {
1565 DataProcessing1Source(rd, rn, CLZ);
1566 }
1567
1568
cls(const Register & rd,const Register & rn)1569 void Assembler::cls(const Register& rd,
1570 const Register& rn) {
1571 DataProcessing1Source(rd, rn, CLS);
1572 }
1573
1574
ldp(const CPURegister & rt,const CPURegister & rt2,const MemOperand & src)1575 void Assembler::ldp(const CPURegister& rt,
1576 const CPURegister& rt2,
1577 const MemOperand& src) {
1578 LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
1579 }
1580
1581
stp(const CPURegister & rt,const CPURegister & rt2,const MemOperand & dst)1582 void Assembler::stp(const CPURegister& rt,
1583 const CPURegister& rt2,
1584 const MemOperand& dst) {
1585 LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
1586 }
1587
1588
ldpsw(const Register & rt,const Register & rt2,const MemOperand & src)1589 void Assembler::ldpsw(const Register& rt,
1590 const Register& rt2,
1591 const MemOperand& src) {
1592 DCHECK(rt.Is64Bits());
1593 LoadStorePair(rt, rt2, src, LDPSW_x);
1594 }
1595
1596
LoadStorePair(const CPURegister & rt,const CPURegister & rt2,const MemOperand & addr,LoadStorePairOp op)1597 void Assembler::LoadStorePair(const CPURegister& rt,
1598 const CPURegister& rt2,
1599 const MemOperand& addr,
1600 LoadStorePairOp op) {
1601 // 'rt' and 'rt2' can only be aliased for stores.
1602 DCHECK(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
1603 DCHECK(AreSameSizeAndType(rt, rt2));
1604 DCHECK(IsImmLSPair(addr.offset(), CalcLSPairDataSize(op)));
1605 int offset = static_cast<int>(addr.offset());
1606
1607 Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
1608 ImmLSPair(offset, CalcLSPairDataSize(op));
1609
1610 Instr addrmodeop;
1611 if (addr.IsImmediateOffset()) {
1612 addrmodeop = LoadStorePairOffsetFixed;
1613 } else {
1614 // Pre-index and post-index modes.
1615 DCHECK(!rt.Is(addr.base()));
1616 DCHECK(!rt2.Is(addr.base()));
1617 DCHECK(addr.offset() != 0);
1618 if (addr.IsPreIndex()) {
1619 addrmodeop = LoadStorePairPreIndexFixed;
1620 } else {
1621 DCHECK(addr.IsPostIndex());
1622 addrmodeop = LoadStorePairPostIndexFixed;
1623 }
1624 }
1625 Emit(addrmodeop | memop);
1626 }
1627
1628
1629 // Memory instructions.
ldrb(const Register & rt,const MemOperand & src)1630 void Assembler::ldrb(const Register& rt, const MemOperand& src) {
1631 LoadStore(rt, src, LDRB_w);
1632 }
1633
1634
strb(const Register & rt,const MemOperand & dst)1635 void Assembler::strb(const Register& rt, const MemOperand& dst) {
1636 LoadStore(rt, dst, STRB_w);
1637 }
1638
1639
ldrsb(const Register & rt,const MemOperand & src)1640 void Assembler::ldrsb(const Register& rt, const MemOperand& src) {
1641 LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w);
1642 }
1643
1644
ldrh(const Register & rt,const MemOperand & src)1645 void Assembler::ldrh(const Register& rt, const MemOperand& src) {
1646 LoadStore(rt, src, LDRH_w);
1647 }
1648
1649
strh(const Register & rt,const MemOperand & dst)1650 void Assembler::strh(const Register& rt, const MemOperand& dst) {
1651 LoadStore(rt, dst, STRH_w);
1652 }
1653
1654
ldrsh(const Register & rt,const MemOperand & src)1655 void Assembler::ldrsh(const Register& rt, const MemOperand& src) {
1656 LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w);
1657 }
1658
1659
ldr(const CPURegister & rt,const MemOperand & src)1660 void Assembler::ldr(const CPURegister& rt, const MemOperand& src) {
1661 LoadStore(rt, src, LoadOpFor(rt));
1662 }
1663
1664
str(const CPURegister & rt,const MemOperand & src)1665 void Assembler::str(const CPURegister& rt, const MemOperand& src) {
1666 LoadStore(rt, src, StoreOpFor(rt));
1667 }
1668
1669
ldrsw(const Register & rt,const MemOperand & src)1670 void Assembler::ldrsw(const Register& rt, const MemOperand& src) {
1671 DCHECK(rt.Is64Bits());
1672 LoadStore(rt, src, LDRSW_x);
1673 }
1674
1675
ldr_pcrel(const CPURegister & rt,int imm19)1676 void Assembler::ldr_pcrel(const CPURegister& rt, int imm19) {
1677 // The pattern 'ldr xzr, #offset' is used to indicate the beginning of a
1678 // constant pool. It should not be emitted.
1679 DCHECK(!rt.IsZero());
1680 Emit(LoadLiteralOpFor(rt) | ImmLLiteral(imm19) | Rt(rt));
1681 }
1682
1683
ldr(const CPURegister & rt,const Immediate & imm)1684 void Assembler::ldr(const CPURegister& rt, const Immediate& imm) {
1685 // Currently we only support 64-bit literals.
1686 DCHECK(rt.Is64Bits());
1687
1688 RecordRelocInfo(imm.rmode(), imm.value());
1689 BlockConstPoolFor(1);
1690 // The load will be patched when the constpool is emitted, patching code
1691 // expect a load literal with offset 0.
1692 ldr_pcrel(rt, 0);
1693 }
1694
1695
mov(const Register & rd,const Register & rm)1696 void Assembler::mov(const Register& rd, const Register& rm) {
1697 // Moves involving the stack pointer are encoded as add immediate with
1698 // second operand of zero. Otherwise, orr with first operand zr is
1699 // used.
1700 if (rd.IsSP() || rm.IsSP()) {
1701 add(rd, rm, 0);
1702 } else {
1703 orr(rd, AppropriateZeroRegFor(rd), rm);
1704 }
1705 }
1706
1707
mvn(const Register & rd,const Operand & operand)1708 void Assembler::mvn(const Register& rd, const Operand& operand) {
1709 orn(rd, AppropriateZeroRegFor(rd), operand);
1710 }
1711
1712
mrs(const Register & rt,SystemRegister sysreg)1713 void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
1714 DCHECK(rt.Is64Bits());
1715 Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
1716 }
1717
1718
msr(SystemRegister sysreg,const Register & rt)1719 void Assembler::msr(SystemRegister sysreg, const Register& rt) {
1720 DCHECK(rt.Is64Bits());
1721 Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
1722 }
1723
1724
hint(SystemHint code)1725 void Assembler::hint(SystemHint code) {
1726 Emit(HINT | ImmHint(code) | Rt(xzr));
1727 }
1728
1729
dmb(BarrierDomain domain,BarrierType type)1730 void Assembler::dmb(BarrierDomain domain, BarrierType type) {
1731 Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
1732 }
1733
1734
dsb(BarrierDomain domain,BarrierType type)1735 void Assembler::dsb(BarrierDomain domain, BarrierType type) {
1736 Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
1737 }
1738
1739
isb()1740 void Assembler::isb() {
1741 Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
1742 }
1743
1744
fmov(FPRegister fd,double imm)1745 void Assembler::fmov(FPRegister fd, double imm) {
1746 DCHECK(fd.Is64Bits());
1747 DCHECK(IsImmFP64(imm));
1748 Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm));
1749 }
1750
1751
fmov(FPRegister fd,float imm)1752 void Assembler::fmov(FPRegister fd, float imm) {
1753 DCHECK(fd.Is32Bits());
1754 DCHECK(IsImmFP32(imm));
1755 Emit(FMOV_s_imm | Rd(fd) | ImmFP32(imm));
1756 }
1757
1758
fmov(Register rd,FPRegister fn)1759 void Assembler::fmov(Register rd, FPRegister fn) {
1760 DCHECK(rd.SizeInBits() == fn.SizeInBits());
1761 FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
1762 Emit(op | Rd(rd) | Rn(fn));
1763 }
1764
1765
fmov(FPRegister fd,Register rn)1766 void Assembler::fmov(FPRegister fd, Register rn) {
1767 DCHECK(fd.SizeInBits() == rn.SizeInBits());
1768 FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx;
1769 Emit(op | Rd(fd) | Rn(rn));
1770 }
1771
1772
fmov(FPRegister fd,FPRegister fn)1773 void Assembler::fmov(FPRegister fd, FPRegister fn) {
1774 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1775 Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn));
1776 }
1777
1778
fadd(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1779 void Assembler::fadd(const FPRegister& fd,
1780 const FPRegister& fn,
1781 const FPRegister& fm) {
1782 FPDataProcessing2Source(fd, fn, fm, FADD);
1783 }
1784
1785
fsub(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1786 void Assembler::fsub(const FPRegister& fd,
1787 const FPRegister& fn,
1788 const FPRegister& fm) {
1789 FPDataProcessing2Source(fd, fn, fm, FSUB);
1790 }
1791
1792
fmul(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1793 void Assembler::fmul(const FPRegister& fd,
1794 const FPRegister& fn,
1795 const FPRegister& fm) {
1796 FPDataProcessing2Source(fd, fn, fm, FMUL);
1797 }
1798
1799
fmadd(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa)1800 void Assembler::fmadd(const FPRegister& fd,
1801 const FPRegister& fn,
1802 const FPRegister& fm,
1803 const FPRegister& fa) {
1804 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d);
1805 }
1806
1807
fmsub(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa)1808 void Assembler::fmsub(const FPRegister& fd,
1809 const FPRegister& fn,
1810 const FPRegister& fm,
1811 const FPRegister& fa) {
1812 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d);
1813 }
1814
1815
fnmadd(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa)1816 void Assembler::fnmadd(const FPRegister& fd,
1817 const FPRegister& fn,
1818 const FPRegister& fm,
1819 const FPRegister& fa) {
1820 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d);
1821 }
1822
1823
fnmsub(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa)1824 void Assembler::fnmsub(const FPRegister& fd,
1825 const FPRegister& fn,
1826 const FPRegister& fm,
1827 const FPRegister& fa) {
1828 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d);
1829 }
1830
1831
fdiv(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1832 void Assembler::fdiv(const FPRegister& fd,
1833 const FPRegister& fn,
1834 const FPRegister& fm) {
1835 FPDataProcessing2Source(fd, fn, fm, FDIV);
1836 }
1837
1838
fmax(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1839 void Assembler::fmax(const FPRegister& fd,
1840 const FPRegister& fn,
1841 const FPRegister& fm) {
1842 FPDataProcessing2Source(fd, fn, fm, FMAX);
1843 }
1844
1845
fmaxnm(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1846 void Assembler::fmaxnm(const FPRegister& fd,
1847 const FPRegister& fn,
1848 const FPRegister& fm) {
1849 FPDataProcessing2Source(fd, fn, fm, FMAXNM);
1850 }
1851
1852
fmin(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1853 void Assembler::fmin(const FPRegister& fd,
1854 const FPRegister& fn,
1855 const FPRegister& fm) {
1856 FPDataProcessing2Source(fd, fn, fm, FMIN);
1857 }
1858
1859
fminnm(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm)1860 void Assembler::fminnm(const FPRegister& fd,
1861 const FPRegister& fn,
1862 const FPRegister& fm) {
1863 FPDataProcessing2Source(fd, fn, fm, FMINNM);
1864 }
1865
1866
fabs(const FPRegister & fd,const FPRegister & fn)1867 void Assembler::fabs(const FPRegister& fd,
1868 const FPRegister& fn) {
1869 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1870 FPDataProcessing1Source(fd, fn, FABS);
1871 }
1872
1873
fneg(const FPRegister & fd,const FPRegister & fn)1874 void Assembler::fneg(const FPRegister& fd,
1875 const FPRegister& fn) {
1876 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1877 FPDataProcessing1Source(fd, fn, FNEG);
1878 }
1879
1880
fsqrt(const FPRegister & fd,const FPRegister & fn)1881 void Assembler::fsqrt(const FPRegister& fd,
1882 const FPRegister& fn) {
1883 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1884 FPDataProcessing1Source(fd, fn, FSQRT);
1885 }
1886
1887
frinta(const FPRegister & fd,const FPRegister & fn)1888 void Assembler::frinta(const FPRegister& fd,
1889 const FPRegister& fn) {
1890 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1891 FPDataProcessing1Source(fd, fn, FRINTA);
1892 }
1893
1894
frintm(const FPRegister & fd,const FPRegister & fn)1895 void Assembler::frintm(const FPRegister& fd,
1896 const FPRegister& fn) {
1897 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1898 FPDataProcessing1Source(fd, fn, FRINTM);
1899 }
1900
1901
frintn(const FPRegister & fd,const FPRegister & fn)1902 void Assembler::frintn(const FPRegister& fd,
1903 const FPRegister& fn) {
1904 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1905 FPDataProcessing1Source(fd, fn, FRINTN);
1906 }
1907
1908
frintp(const FPRegister & fd,const FPRegister & fn)1909 void Assembler::frintp(const FPRegister& fd, const FPRegister& fn) {
1910 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1911 FPDataProcessing1Source(fd, fn, FRINTP);
1912 }
1913
1914
frintz(const FPRegister & fd,const FPRegister & fn)1915 void Assembler::frintz(const FPRegister& fd,
1916 const FPRegister& fn) {
1917 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1918 FPDataProcessing1Source(fd, fn, FRINTZ);
1919 }
1920
1921
fcmp(const FPRegister & fn,const FPRegister & fm)1922 void Assembler::fcmp(const FPRegister& fn,
1923 const FPRegister& fm) {
1924 DCHECK(fn.SizeInBits() == fm.SizeInBits());
1925 Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn));
1926 }
1927
1928
fcmp(const FPRegister & fn,double value)1929 void Assembler::fcmp(const FPRegister& fn,
1930 double value) {
1931 USE(value);
1932 // Although the fcmp instruction can strictly only take an immediate value of
1933 // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't
1934 // affect the result of the comparison.
1935 DCHECK(value == 0.0);
1936 Emit(FPType(fn) | FCMP_zero | Rn(fn));
1937 }
1938
1939
fccmp(const FPRegister & fn,const FPRegister & fm,StatusFlags nzcv,Condition cond)1940 void Assembler::fccmp(const FPRegister& fn,
1941 const FPRegister& fm,
1942 StatusFlags nzcv,
1943 Condition cond) {
1944 DCHECK(fn.SizeInBits() == fm.SizeInBits());
1945 Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv));
1946 }
1947
1948
fcsel(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,Condition cond)1949 void Assembler::fcsel(const FPRegister& fd,
1950 const FPRegister& fn,
1951 const FPRegister& fm,
1952 Condition cond) {
1953 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1954 DCHECK(fd.SizeInBits() == fm.SizeInBits());
1955 Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd));
1956 }
1957
1958
FPConvertToInt(const Register & rd,const FPRegister & fn,FPIntegerConvertOp op)1959 void Assembler::FPConvertToInt(const Register& rd,
1960 const FPRegister& fn,
1961 FPIntegerConvertOp op) {
1962 Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd));
1963 }
1964
1965
fcvt(const FPRegister & fd,const FPRegister & fn)1966 void Assembler::fcvt(const FPRegister& fd,
1967 const FPRegister& fn) {
1968 if (fd.Is64Bits()) {
1969 // Convert float to double.
1970 DCHECK(fn.Is32Bits());
1971 FPDataProcessing1Source(fd, fn, FCVT_ds);
1972 } else {
1973 // Convert double to float.
1974 DCHECK(fn.Is64Bits());
1975 FPDataProcessing1Source(fd, fn, FCVT_sd);
1976 }
1977 }
1978
1979
fcvtau(const Register & rd,const FPRegister & fn)1980 void Assembler::fcvtau(const Register& rd, const FPRegister& fn) {
1981 FPConvertToInt(rd, fn, FCVTAU);
1982 }
1983
1984
fcvtas(const Register & rd,const FPRegister & fn)1985 void Assembler::fcvtas(const Register& rd, const FPRegister& fn) {
1986 FPConvertToInt(rd, fn, FCVTAS);
1987 }
1988
1989
fcvtmu(const Register & rd,const FPRegister & fn)1990 void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) {
1991 FPConvertToInt(rd, fn, FCVTMU);
1992 }
1993
1994
fcvtms(const Register & rd,const FPRegister & fn)1995 void Assembler::fcvtms(const Register& rd, const FPRegister& fn) {
1996 FPConvertToInt(rd, fn, FCVTMS);
1997 }
1998
1999
fcvtnu(const Register & rd,const FPRegister & fn)2000 void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) {
2001 FPConvertToInt(rd, fn, FCVTNU);
2002 }
2003
2004
fcvtns(const Register & rd,const FPRegister & fn)2005 void Assembler::fcvtns(const Register& rd, const FPRegister& fn) {
2006 FPConvertToInt(rd, fn, FCVTNS);
2007 }
2008
2009
fcvtzu(const Register & rd,const FPRegister & fn)2010 void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) {
2011 FPConvertToInt(rd, fn, FCVTZU);
2012 }
2013
2014
fcvtzs(const Register & rd,const FPRegister & fn)2015 void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) {
2016 FPConvertToInt(rd, fn, FCVTZS);
2017 }
2018
2019
scvtf(const FPRegister & fd,const Register & rn,unsigned fbits)2020 void Assembler::scvtf(const FPRegister& fd,
2021 const Register& rn,
2022 unsigned fbits) {
2023 if (fbits == 0) {
2024 Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd));
2025 } else {
2026 Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
2027 Rd(fd));
2028 }
2029 }
2030
2031
ucvtf(const FPRegister & fd,const Register & rn,unsigned fbits)2032 void Assembler::ucvtf(const FPRegister& fd,
2033 const Register& rn,
2034 unsigned fbits) {
2035 if (fbits == 0) {
2036 Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd));
2037 } else {
2038 Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
2039 Rd(fd));
2040 }
2041 }
2042
2043
dcptr(Label * label)2044 void Assembler::dcptr(Label* label) {
2045 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
2046 if (label->is_bound()) {
2047 // The label is bound, so it does not need to be updated and the internal
2048 // reference should be emitted.
2049 //
2050 // In this case, label->pos() returns the offset of the label from the
2051 // start of the buffer.
2052 internal_reference_positions_.push_back(pc_offset());
2053 dc64(reinterpret_cast<uintptr_t>(buffer_ + label->pos()));
2054 } else {
2055 int32_t offset;
2056 if (label->is_linked()) {
2057 // The label is linked, so the internal reference should be added
2058 // onto the end of the label's link chain.
2059 //
2060 // In this case, label->pos() returns the offset of the last linked
2061 // instruction from the start of the buffer.
2062 offset = label->pos() - pc_offset();
2063 DCHECK(offset != kStartOfLabelLinkChain);
2064 } else {
2065 // The label is unused, so it now becomes linked and the internal
2066 // reference is at the start of the new link chain.
2067 offset = kStartOfLabelLinkChain;
2068 }
2069 // The instruction at pc is now the last link in the label's chain.
2070 label->link_to(pc_offset());
2071
2072 // Traditionally the offset to the previous instruction in the chain is
2073 // encoded in the instruction payload (e.g. branch range) but internal
2074 // references are not instructions so while unbound they are encoded as
2075 // two consecutive brk instructions. The two 16-bit immediates are used
2076 // to encode the offset.
2077 offset >>= kInstructionSizeLog2;
2078 DCHECK(is_int32(offset));
2079 uint32_t high16 = unsigned_bitextract_32(31, 16, offset);
2080 uint32_t low16 = unsigned_bitextract_32(15, 0, offset);
2081
2082 brk(high16);
2083 brk(low16);
2084 }
2085 }
2086
2087
2088 // Note:
2089 // Below, a difference in case for the same letter indicates a
2090 // negated bit.
2091 // If b is 1, then B is 0.
ImmFP32(float imm)2092 Instr Assembler::ImmFP32(float imm) {
2093 DCHECK(IsImmFP32(imm));
2094 // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
2095 uint32_t bits = float_to_rawbits(imm);
2096 // bit7: a000.0000
2097 uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
2098 // bit6: 0b00.0000
2099 uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
2100 // bit5_to_0: 00cd.efgh
2101 uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
2102
2103 return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
2104 }
2105
2106
ImmFP64(double imm)2107 Instr Assembler::ImmFP64(double imm) {
2108 DCHECK(IsImmFP64(imm));
2109 // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
2110 // 0000.0000.0000.0000.0000.0000.0000.0000
2111 uint64_t bits = double_to_rawbits(imm);
2112 // bit7: a000.0000
2113 uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
2114 // bit6: 0b00.0000
2115 uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
2116 // bit5_to_0: 00cd.efgh
2117 uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
2118
2119 return static_cast<Instr>((bit7 | bit6 | bit5_to_0) << ImmFP_offset);
2120 }
2121
2122
2123 // Code generation helpers.
MoveWide(const Register & rd,uint64_t imm,int shift,MoveWideImmediateOp mov_op)2124 void Assembler::MoveWide(const Register& rd,
2125 uint64_t imm,
2126 int shift,
2127 MoveWideImmediateOp mov_op) {
2128 // Ignore the top 32 bits of an immediate if we're moving to a W register.
2129 if (rd.Is32Bits()) {
2130 // Check that the top 32 bits are zero (a positive 32-bit number) or top
2131 // 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
2132 DCHECK(((imm >> kWRegSizeInBits) == 0) ||
2133 ((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff));
2134 imm &= kWRegMask;
2135 }
2136
2137 if (shift >= 0) {
2138 // Explicit shift specified.
2139 DCHECK((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48));
2140 DCHECK(rd.Is64Bits() || (shift == 0) || (shift == 16));
2141 shift /= 16;
2142 } else {
2143 // Calculate a new immediate and shift combination to encode the immediate
2144 // argument.
2145 shift = 0;
2146 if ((imm & ~0xffffUL) == 0) {
2147 // Nothing to do.
2148 } else if ((imm & ~(0xffffUL << 16)) == 0) {
2149 imm >>= 16;
2150 shift = 1;
2151 } else if ((imm & ~(0xffffUL << 32)) == 0) {
2152 DCHECK(rd.Is64Bits());
2153 imm >>= 32;
2154 shift = 2;
2155 } else if ((imm & ~(0xffffUL << 48)) == 0) {
2156 DCHECK(rd.Is64Bits());
2157 imm >>= 48;
2158 shift = 3;
2159 }
2160 }
2161
2162 DCHECK(is_uint16(imm));
2163
2164 Emit(SF(rd) | MoveWideImmediateFixed | mov_op | Rd(rd) |
2165 ImmMoveWide(static_cast<int>(imm)) | ShiftMoveWide(shift));
2166 }
2167
2168
AddSub(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubOp op)2169 void Assembler::AddSub(const Register& rd,
2170 const Register& rn,
2171 const Operand& operand,
2172 FlagsUpdate S,
2173 AddSubOp op) {
2174 DCHECK(rd.SizeInBits() == rn.SizeInBits());
2175 DCHECK(!operand.NeedsRelocation(this));
2176 if (operand.IsImmediate()) {
2177 int64_t immediate = operand.ImmediateValue();
2178 DCHECK(IsImmAddSub(immediate));
2179 Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
2180 Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
2181 ImmAddSub(static_cast<int>(immediate)) | dest_reg | RnSP(rn));
2182 } else if (operand.IsShiftedRegister()) {
2183 DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
2184 DCHECK(operand.shift() != ROR);
2185
2186 // For instructions of the form:
2187 // add/sub wsp, <Wn>, <Wm> [, LSL #0-3 ]
2188 // add/sub <Wd>, wsp, <Wm> [, LSL #0-3 ]
2189 // add/sub wsp, wsp, <Wm> [, LSL #0-3 ]
2190 // adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
2191 // or their 64-bit register equivalents, convert the operand from shifted to
2192 // extended register mode, and emit an add/sub extended instruction.
2193 if (rn.IsSP() || rd.IsSP()) {
2194 DCHECK(!(rd.IsSP() && (S == SetFlags)));
2195 DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S,
2196 AddSubExtendedFixed | op);
2197 } else {
2198 DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
2199 }
2200 } else {
2201 DCHECK(operand.IsExtendedRegister());
2202 DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
2203 }
2204 }
2205
2206
AddSubWithCarry(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubWithCarryOp op)2207 void Assembler::AddSubWithCarry(const Register& rd,
2208 const Register& rn,
2209 const Operand& operand,
2210 FlagsUpdate S,
2211 AddSubWithCarryOp op) {
2212 DCHECK(rd.SizeInBits() == rn.SizeInBits());
2213 DCHECK(rd.SizeInBits() == operand.reg().SizeInBits());
2214 DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
2215 DCHECK(!operand.NeedsRelocation(this));
2216 Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
2217 }
2218
2219
hlt(int code)2220 void Assembler::hlt(int code) {
2221 DCHECK(is_uint16(code));
2222 Emit(HLT | ImmException(code));
2223 }
2224
2225
brk(int code)2226 void Assembler::brk(int code) {
2227 DCHECK(is_uint16(code));
2228 Emit(BRK | ImmException(code));
2229 }
2230
2231
EmitStringData(const char * string)2232 void Assembler::EmitStringData(const char* string) {
2233 size_t len = strlen(string) + 1;
2234 DCHECK(RoundUp(len, kInstructionSize) <= static_cast<size_t>(kGap));
2235 EmitData(string, static_cast<int>(len));
2236 // Pad with NULL characters until pc_ is aligned.
2237 const char pad[] = {'\0', '\0', '\0', '\0'};
2238 STATIC_ASSERT(sizeof(pad) == kInstructionSize);
2239 EmitData(pad, RoundUp(pc_offset(), kInstructionSize) - pc_offset());
2240 }
2241
2242
debug(const char * message,uint32_t code,Instr params)2243 void Assembler::debug(const char* message, uint32_t code, Instr params) {
2244 #ifdef USE_SIMULATOR
2245 // Don't generate simulator specific code if we are building a snapshot, which
2246 // might be run on real hardware.
2247 if (!serializer_enabled()) {
2248 // The arguments to the debug marker need to be contiguous in memory, so
2249 // make sure we don't try to emit pools.
2250 BlockPoolsScope scope(this);
2251
2252 Label start;
2253 bind(&start);
2254
2255 // Refer to instructions-arm64.h for a description of the marker and its
2256 // arguments.
2257 hlt(kImmExceptionIsDebug);
2258 DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugCodeOffset);
2259 dc32(code);
2260 DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugParamsOffset);
2261 dc32(params);
2262 DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugMessageOffset);
2263 EmitStringData(message);
2264 hlt(kImmExceptionIsUnreachable);
2265
2266 return;
2267 }
2268 // Fall through if Serializer is enabled.
2269 #endif
2270
2271 if (params & BREAK) {
2272 hlt(kImmExceptionIsDebug);
2273 }
2274 }
2275
2276
Logical(const Register & rd,const Register & rn,const Operand & operand,LogicalOp op)2277 void Assembler::Logical(const Register& rd,
2278 const Register& rn,
2279 const Operand& operand,
2280 LogicalOp op) {
2281 DCHECK(rd.SizeInBits() == rn.SizeInBits());
2282 DCHECK(!operand.NeedsRelocation(this));
2283 if (operand.IsImmediate()) {
2284 int64_t immediate = operand.ImmediateValue();
2285 unsigned reg_size = rd.SizeInBits();
2286
2287 DCHECK(immediate != 0);
2288 DCHECK(immediate != -1);
2289 DCHECK(rd.Is64Bits() || is_uint32(immediate));
2290
2291 // If the operation is NOT, invert the operation and immediate.
2292 if ((op & NOT) == NOT) {
2293 op = static_cast<LogicalOp>(op & ~NOT);
2294 immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
2295 }
2296
2297 unsigned n, imm_s, imm_r;
2298 if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
2299 // Immediate can be encoded in the instruction.
2300 LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
2301 } else {
2302 // This case is handled in the macro assembler.
2303 UNREACHABLE();
2304 }
2305 } else {
2306 DCHECK(operand.IsShiftedRegister());
2307 DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
2308 Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
2309 DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
2310 }
2311 }
2312
2313
LogicalImmediate(const Register & rd,const Register & rn,unsigned n,unsigned imm_s,unsigned imm_r,LogicalOp op)2314 void Assembler::LogicalImmediate(const Register& rd,
2315 const Register& rn,
2316 unsigned n,
2317 unsigned imm_s,
2318 unsigned imm_r,
2319 LogicalOp op) {
2320 unsigned reg_size = rd.SizeInBits();
2321 Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
2322 Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
2323 ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg |
2324 Rn(rn));
2325 }
2326
2327
ConditionalCompare(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond,ConditionalCompareOp op)2328 void Assembler::ConditionalCompare(const Register& rn,
2329 const Operand& operand,
2330 StatusFlags nzcv,
2331 Condition cond,
2332 ConditionalCompareOp op) {
2333 Instr ccmpop;
2334 DCHECK(!operand.NeedsRelocation(this));
2335 if (operand.IsImmediate()) {
2336 int64_t immediate = operand.ImmediateValue();
2337 DCHECK(IsImmConditionalCompare(immediate));
2338 ccmpop = ConditionalCompareImmediateFixed | op |
2339 ImmCondCmp(static_cast<unsigned>(immediate));
2340 } else {
2341 DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
2342 ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg());
2343 }
2344 Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
2345 }
2346
2347
DataProcessing1Source(const Register & rd,const Register & rn,DataProcessing1SourceOp op)2348 void Assembler::DataProcessing1Source(const Register& rd,
2349 const Register& rn,
2350 DataProcessing1SourceOp op) {
2351 DCHECK(rd.SizeInBits() == rn.SizeInBits());
2352 Emit(SF(rn) | op | Rn(rn) | Rd(rd));
2353 }
2354
2355
FPDataProcessing1Source(const FPRegister & fd,const FPRegister & fn,FPDataProcessing1SourceOp op)2356 void Assembler::FPDataProcessing1Source(const FPRegister& fd,
2357 const FPRegister& fn,
2358 FPDataProcessing1SourceOp op) {
2359 Emit(FPType(fn) | op | Rn(fn) | Rd(fd));
2360 }
2361
2362
FPDataProcessing2Source(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,FPDataProcessing2SourceOp op)2363 void Assembler::FPDataProcessing2Source(const FPRegister& fd,
2364 const FPRegister& fn,
2365 const FPRegister& fm,
2366 FPDataProcessing2SourceOp op) {
2367 DCHECK(fd.SizeInBits() == fn.SizeInBits());
2368 DCHECK(fd.SizeInBits() == fm.SizeInBits());
2369 Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd));
2370 }
2371
2372
FPDataProcessing3Source(const FPRegister & fd,const FPRegister & fn,const FPRegister & fm,const FPRegister & fa,FPDataProcessing3SourceOp op)2373 void Assembler::FPDataProcessing3Source(const FPRegister& fd,
2374 const FPRegister& fn,
2375 const FPRegister& fm,
2376 const FPRegister& fa,
2377 FPDataProcessing3SourceOp op) {
2378 DCHECK(AreSameSizeAndType(fd, fn, fm, fa));
2379 Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa));
2380 }
2381
2382
EmitShift(const Register & rd,const Register & rn,Shift shift,unsigned shift_amount)2383 void Assembler::EmitShift(const Register& rd,
2384 const Register& rn,
2385 Shift shift,
2386 unsigned shift_amount) {
2387 switch (shift) {
2388 case LSL:
2389 lsl(rd, rn, shift_amount);
2390 break;
2391 case LSR:
2392 lsr(rd, rn, shift_amount);
2393 break;
2394 case ASR:
2395 asr(rd, rn, shift_amount);
2396 break;
2397 case ROR:
2398 ror(rd, rn, shift_amount);
2399 break;
2400 default:
2401 UNREACHABLE();
2402 }
2403 }
2404
2405
EmitExtendShift(const Register & rd,const Register & rn,Extend extend,unsigned left_shift)2406 void Assembler::EmitExtendShift(const Register& rd,
2407 const Register& rn,
2408 Extend extend,
2409 unsigned left_shift) {
2410 DCHECK(rd.SizeInBits() >= rn.SizeInBits());
2411 unsigned reg_size = rd.SizeInBits();
2412 // Use the correct size of register.
2413 Register rn_ = Register::Create(rn.code(), rd.SizeInBits());
2414 // Bits extracted are high_bit:0.
2415 unsigned high_bit = (8 << (extend & 0x3)) - 1;
2416 // Number of bits left in the result that are not introduced by the shift.
2417 unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
2418
2419 if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
2420 switch (extend) {
2421 case UXTB:
2422 case UXTH:
2423 case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break;
2424 case SXTB:
2425 case SXTH:
2426 case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break;
2427 case UXTX:
2428 case SXTX: {
2429 DCHECK(rn.SizeInBits() == kXRegSizeInBits);
2430 // Nothing to extend. Just shift.
2431 lsl(rd, rn_, left_shift);
2432 break;
2433 }
2434 default: UNREACHABLE();
2435 }
2436 } else {
2437 // No need to extend as the extended bits would be shifted away.
2438 lsl(rd, rn_, left_shift);
2439 }
2440 }
2441
2442
DataProcShiftedRegister(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,Instr op)2443 void Assembler::DataProcShiftedRegister(const Register& rd,
2444 const Register& rn,
2445 const Operand& operand,
2446 FlagsUpdate S,
2447 Instr op) {
2448 DCHECK(operand.IsShiftedRegister());
2449 DCHECK(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount())));
2450 DCHECK(!operand.NeedsRelocation(this));
2451 Emit(SF(rd) | op | Flags(S) |
2452 ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) |
2453 Rm(operand.reg()) | Rn(rn) | Rd(rd));
2454 }
2455
2456
DataProcExtendedRegister(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,Instr op)2457 void Assembler::DataProcExtendedRegister(const Register& rd,
2458 const Register& rn,
2459 const Operand& operand,
2460 FlagsUpdate S,
2461 Instr op) {
2462 DCHECK(!operand.NeedsRelocation(this));
2463 Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
2464 Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) |
2465 ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) |
2466 dest_reg | RnSP(rn));
2467 }
2468
2469
IsImmAddSub(int64_t immediate)2470 bool Assembler::IsImmAddSub(int64_t immediate) {
2471 return is_uint12(immediate) ||
2472 (is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0));
2473 }
2474
LoadStore(const CPURegister & rt,const MemOperand & addr,LoadStoreOp op)2475 void Assembler::LoadStore(const CPURegister& rt,
2476 const MemOperand& addr,
2477 LoadStoreOp op) {
2478 Instr memop = op | Rt(rt) | RnSP(addr.base());
2479
2480 if (addr.IsImmediateOffset()) {
2481 LSDataSize size = CalcLSDataSize(op);
2482 if (IsImmLSScaled(addr.offset(), size)) {
2483 int offset = static_cast<int>(addr.offset());
2484 // Use the scaled addressing mode.
2485 Emit(LoadStoreUnsignedOffsetFixed | memop |
2486 ImmLSUnsigned(offset >> size));
2487 } else if (IsImmLSUnscaled(addr.offset())) {
2488 int offset = static_cast<int>(addr.offset());
2489 // Use the unscaled addressing mode.
2490 Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset));
2491 } else {
2492 // This case is handled in the macro assembler.
2493 UNREACHABLE();
2494 }
2495 } else if (addr.IsRegisterOffset()) {
2496 Extend ext = addr.extend();
2497 Shift shift = addr.shift();
2498 unsigned shift_amount = addr.shift_amount();
2499
2500 // LSL is encoded in the option field as UXTX.
2501 if (shift == LSL) {
2502 ext = UXTX;
2503 }
2504
2505 // Shifts are encoded in one bit, indicating a left shift by the memory
2506 // access size.
2507 DCHECK((shift_amount == 0) ||
2508 (shift_amount == static_cast<unsigned>(CalcLSDataSize(op))));
2509 Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) |
2510 ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0));
2511 } else {
2512 // Pre-index and post-index modes.
2513 DCHECK(!rt.Is(addr.base()));
2514 if (IsImmLSUnscaled(addr.offset())) {
2515 int offset = static_cast<int>(addr.offset());
2516 if (addr.IsPreIndex()) {
2517 Emit(LoadStorePreIndexFixed | memop | ImmLS(offset));
2518 } else {
2519 DCHECK(addr.IsPostIndex());
2520 Emit(LoadStorePostIndexFixed | memop | ImmLS(offset));
2521 }
2522 } else {
2523 // This case is handled in the macro assembler.
2524 UNREACHABLE();
2525 }
2526 }
2527 }
2528
2529
IsImmLSUnscaled(int64_t offset)2530 bool Assembler::IsImmLSUnscaled(int64_t offset) {
2531 return is_int9(offset);
2532 }
2533
2534
IsImmLSScaled(int64_t offset,LSDataSize size)2535 bool Assembler::IsImmLSScaled(int64_t offset, LSDataSize size) {
2536 bool offset_is_size_multiple = (((offset >> size) << size) == offset);
2537 return offset_is_size_multiple && is_uint12(offset >> size);
2538 }
2539
2540
IsImmLSPair(int64_t offset,LSDataSize size)2541 bool Assembler::IsImmLSPair(int64_t offset, LSDataSize size) {
2542 bool offset_is_size_multiple = (((offset >> size) << size) == offset);
2543 return offset_is_size_multiple && is_int7(offset >> size);
2544 }
2545
2546
IsImmLLiteral(int64_t offset)2547 bool Assembler::IsImmLLiteral(int64_t offset) {
2548 int inst_size = static_cast<int>(kInstructionSizeLog2);
2549 bool offset_is_inst_multiple =
2550 (((offset >> inst_size) << inst_size) == offset);
2551 return offset_is_inst_multiple && is_intn(offset, ImmLLiteral_width);
2552 }
2553
2554
2555 // Test if a given value can be encoded in the immediate field of a logical
2556 // instruction.
2557 // If it can be encoded, the function returns true, and values pointed to by n,
2558 // imm_s and imm_r are updated with immediates encoded in the format required
2559 // by the corresponding fields in the logical instruction.
2560 // If it can not be encoded, the function returns false, and the values pointed
2561 // to by n, imm_s and imm_r are undefined.
IsImmLogical(uint64_t value,unsigned width,unsigned * n,unsigned * imm_s,unsigned * imm_r)2562 bool Assembler::IsImmLogical(uint64_t value,
2563 unsigned width,
2564 unsigned* n,
2565 unsigned* imm_s,
2566 unsigned* imm_r) {
2567 DCHECK((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
2568 DCHECK((width == kWRegSizeInBits) || (width == kXRegSizeInBits));
2569
2570 bool negate = false;
2571
2572 // Logical immediates are encoded using parameters n, imm_s and imm_r using
2573 // the following table:
2574 //
2575 // N imms immr size S R
2576 // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
2577 // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
2578 // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
2579 // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
2580 // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
2581 // 0 11110s xxxxxr 2 UInt(s) UInt(r)
2582 // (s bits must not be all set)
2583 //
2584 // A pattern is constructed of size bits, where the least significant S+1 bits
2585 // are set. The pattern is rotated right by R, and repeated across a 32 or
2586 // 64-bit value, depending on destination register width.
2587 //
2588 // Put another way: the basic format of a logical immediate is a single
2589 // contiguous stretch of 1 bits, repeated across the whole word at intervals
2590 // given by a power of 2. To identify them quickly, we first locate the
2591 // lowest stretch of 1 bits, then the next 1 bit above that; that combination
2592 // is different for every logical immediate, so it gives us all the
2593 // information we need to identify the only logical immediate that our input
2594 // could be, and then we simply check if that's the value we actually have.
2595 //
2596 // (The rotation parameter does give the possibility of the stretch of 1 bits
2597 // going 'round the end' of the word. To deal with that, we observe that in
2598 // any situation where that happens the bitwise NOT of the value is also a
2599 // valid logical immediate. So we simply invert the input whenever its low bit
2600 // is set, and then we know that the rotated case can't arise.)
2601
2602 if (value & 1) {
2603 // If the low bit is 1, negate the value, and set a flag to remember that we
2604 // did (so that we can adjust the return values appropriately).
2605 negate = true;
2606 value = ~value;
2607 }
2608
2609 if (width == kWRegSizeInBits) {
2610 // To handle 32-bit logical immediates, the very easiest thing is to repeat
2611 // the input value twice to make a 64-bit word. The correct encoding of that
2612 // as a logical immediate will also be the correct encoding of the 32-bit
2613 // value.
2614
2615 // The most-significant 32 bits may not be zero (ie. negate is true) so
2616 // shift the value left before duplicating it.
2617 value <<= kWRegSizeInBits;
2618 value |= value >> kWRegSizeInBits;
2619 }
2620
2621 // The basic analysis idea: imagine our input word looks like this.
2622 //
2623 // 0011111000111110001111100011111000111110001111100011111000111110
2624 // c b a
2625 // |<--d-->|
2626 //
2627 // We find the lowest set bit (as an actual power-of-2 value, not its index)
2628 // and call it a. Then we add a to our original number, which wipes out the
2629 // bottommost stretch of set bits and replaces it with a 1 carried into the
2630 // next zero bit. Then we look for the new lowest set bit, which is in
2631 // position b, and subtract it, so now our number is just like the original
2632 // but with the lowest stretch of set bits completely gone. Now we find the
2633 // lowest set bit again, which is position c in the diagram above. Then we'll
2634 // measure the distance d between bit positions a and c (using CLZ), and that
2635 // tells us that the only valid logical immediate that could possibly be equal
2636 // to this number is the one in which a stretch of bits running from a to just
2637 // below b is replicated every d bits.
2638 uint64_t a = LargestPowerOf2Divisor(value);
2639 uint64_t value_plus_a = value + a;
2640 uint64_t b = LargestPowerOf2Divisor(value_plus_a);
2641 uint64_t value_plus_a_minus_b = value_plus_a - b;
2642 uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b);
2643
2644 int d, clz_a, out_n;
2645 uint64_t mask;
2646
2647 if (c != 0) {
2648 // The general case, in which there is more than one stretch of set bits.
2649 // Compute the repeat distance d, and set up a bitmask covering the basic
2650 // unit of repetition (i.e. a word with the bottom d bits set). Also, in all
2651 // of these cases the N bit of the output will be zero.
2652 clz_a = CountLeadingZeros(a, kXRegSizeInBits);
2653 int clz_c = CountLeadingZeros(c, kXRegSizeInBits);
2654 d = clz_a - clz_c;
2655 mask = ((V8_UINT64_C(1) << d) - 1);
2656 out_n = 0;
2657 } else {
2658 // Handle degenerate cases.
2659 //
2660 // If any of those 'find lowest set bit' operations didn't find a set bit at
2661 // all, then the word will have been zero thereafter, so in particular the
2662 // last lowest_set_bit operation will have returned zero. So we can test for
2663 // all the special case conditions in one go by seeing if c is zero.
2664 if (a == 0) {
2665 // The input was zero (or all 1 bits, which will come to here too after we
2666 // inverted it at the start of the function), for which we just return
2667 // false.
2668 return false;
2669 } else {
2670 // Otherwise, if c was zero but a was not, then there's just one stretch
2671 // of set bits in our word, meaning that we have the trivial case of
2672 // d == 64 and only one 'repetition'. Set up all the same variables as in
2673 // the general case above, and set the N bit in the output.
2674 clz_a = CountLeadingZeros(a, kXRegSizeInBits);
2675 d = 64;
2676 mask = ~V8_UINT64_C(0);
2677 out_n = 1;
2678 }
2679 }
2680
2681 // If the repeat period d is not a power of two, it can't be encoded.
2682 if (!IS_POWER_OF_TWO(d)) {
2683 return false;
2684 }
2685
2686 if (((b - a) & ~mask) != 0) {
2687 // If the bit stretch (b - a) does not fit within the mask derived from the
2688 // repeat period, then fail.
2689 return false;
2690 }
2691
2692 // The only possible option is b - a repeated every d bits. Now we're going to
2693 // actually construct the valid logical immediate derived from that
2694 // specification, and see if it equals our original input.
2695 //
2696 // To repeat a value every d bits, we multiply it by a number of the form
2697 // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
2698 // be derived using a table lookup on CLZ(d).
2699 static const uint64_t multipliers[] = {
2700 0x0000000000000001UL,
2701 0x0000000100000001UL,
2702 0x0001000100010001UL,
2703 0x0101010101010101UL,
2704 0x1111111111111111UL,
2705 0x5555555555555555UL,
2706 };
2707 int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57;
2708 // Ensure that the index to the multipliers array is within bounds.
2709 DCHECK((multiplier_idx >= 0) &&
2710 (static_cast<size_t>(multiplier_idx) < arraysize(multipliers)));
2711 uint64_t multiplier = multipliers[multiplier_idx];
2712 uint64_t candidate = (b - a) * multiplier;
2713
2714 if (value != candidate) {
2715 // The candidate pattern doesn't match our input value, so fail.
2716 return false;
2717 }
2718
2719 // We have a match! This is a valid logical immediate, so now we have to
2720 // construct the bits and pieces of the instruction encoding that generates
2721 // it.
2722
2723 // Count the set bits in our basic stretch. The special case of clz(0) == -1
2724 // makes the answer come out right for stretches that reach the very top of
2725 // the word (e.g. numbers like 0xffffc00000000000).
2726 int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits);
2727 int s = clz_a - clz_b;
2728
2729 // Decide how many bits to rotate right by, to put the low bit of that basic
2730 // stretch in position a.
2731 int r;
2732 if (negate) {
2733 // If we inverted the input right at the start of this function, here's
2734 // where we compensate: the number of set bits becomes the number of clear
2735 // bits, and the rotation count is based on position b rather than position
2736 // a (since b is the location of the 'lowest' 1 bit after inversion).
2737 s = d - s;
2738 r = (clz_b + 1) & (d - 1);
2739 } else {
2740 r = (clz_a + 1) & (d - 1);
2741 }
2742
2743 // Now we're done, except for having to encode the S output in such a way that
2744 // it gives both the number of set bits and the length of the repeated
2745 // segment. The s field is encoded like this:
2746 //
2747 // imms size S
2748 // ssssss 64 UInt(ssssss)
2749 // 0sssss 32 UInt(sssss)
2750 // 10ssss 16 UInt(ssss)
2751 // 110sss 8 UInt(sss)
2752 // 1110ss 4 UInt(ss)
2753 // 11110s 2 UInt(s)
2754 //
2755 // So we 'or' (-d << 1) with our computed s to form imms.
2756 *n = out_n;
2757 *imm_s = ((-d << 1) | (s - 1)) & 0x3f;
2758 *imm_r = r;
2759
2760 return true;
2761 }
2762
2763
IsImmConditionalCompare(int64_t immediate)2764 bool Assembler::IsImmConditionalCompare(int64_t immediate) {
2765 return is_uint5(immediate);
2766 }
2767
2768
IsImmFP32(float imm)2769 bool Assembler::IsImmFP32(float imm) {
2770 // Valid values will have the form:
2771 // aBbb.bbbc.defg.h000.0000.0000.0000.0000
2772 uint32_t bits = float_to_rawbits(imm);
2773 // bits[19..0] are cleared.
2774 if ((bits & 0x7ffff) != 0) {
2775 return false;
2776 }
2777
2778 // bits[29..25] are all set or all cleared.
2779 uint32_t b_pattern = (bits >> 16) & 0x3e00;
2780 if (b_pattern != 0 && b_pattern != 0x3e00) {
2781 return false;
2782 }
2783
2784 // bit[30] and bit[29] are opposite.
2785 if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
2786 return false;
2787 }
2788
2789 return true;
2790 }
2791
2792
IsImmFP64(double imm)2793 bool Assembler::IsImmFP64(double imm) {
2794 // Valid values will have the form:
2795 // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
2796 // 0000.0000.0000.0000.0000.0000.0000.0000
2797 uint64_t bits = double_to_rawbits(imm);
2798 // bits[47..0] are cleared.
2799 if ((bits & 0xffffffffffffL) != 0) {
2800 return false;
2801 }
2802
2803 // bits[61..54] are all set or all cleared.
2804 uint32_t b_pattern = (bits >> 48) & 0x3fc0;
2805 if (b_pattern != 0 && b_pattern != 0x3fc0) {
2806 return false;
2807 }
2808
2809 // bit[62] and bit[61] are opposite.
2810 if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) {
2811 return false;
2812 }
2813
2814 return true;
2815 }
2816
2817
GrowBuffer()2818 void Assembler::GrowBuffer() {
2819 if (!own_buffer_) FATAL("external code buffer is too small");
2820
2821 // Compute new buffer size.
2822 CodeDesc desc; // the new buffer
2823 if (buffer_size_ < 1 * MB) {
2824 desc.buffer_size = 2 * buffer_size_;
2825 } else {
2826 desc.buffer_size = buffer_size_ + 1 * MB;
2827 }
2828 CHECK_GT(desc.buffer_size, 0); // No overflow.
2829
2830 byte* buffer = reinterpret_cast<byte*>(buffer_);
2831
2832 // Set up new buffer.
2833 desc.buffer = NewArray<byte>(desc.buffer_size);
2834 desc.origin = this;
2835
2836 desc.instr_size = pc_offset();
2837 desc.reloc_size =
2838 static_cast<int>((buffer + buffer_size_) - reloc_info_writer.pos());
2839
2840 // Copy the data.
2841 intptr_t pc_delta = desc.buffer - buffer;
2842 intptr_t rc_delta = (desc.buffer + desc.buffer_size) -
2843 (buffer + buffer_size_);
2844 memmove(desc.buffer, buffer, desc.instr_size);
2845 memmove(reloc_info_writer.pos() + rc_delta,
2846 reloc_info_writer.pos(), desc.reloc_size);
2847
2848 // Switch buffers.
2849 DeleteArray(buffer_);
2850 buffer_ = desc.buffer;
2851 buffer_size_ = desc.buffer_size;
2852 pc_ = reinterpret_cast<byte*>(pc_) + pc_delta;
2853 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2854 reloc_info_writer.last_pc() + pc_delta);
2855
2856 // None of our relocation types are pc relative pointing outside the code
2857 // buffer nor pc absolute pointing inside the code buffer, so there is no need
2858 // to relocate any emitted relocation entries.
2859
2860 // Relocate internal references.
2861 for (auto pos : internal_reference_positions_) {
2862 intptr_t* p = reinterpret_cast<intptr_t*>(buffer_ + pos);
2863 *p += pc_delta;
2864 }
2865
2866 // Pending relocation entries are also relative, no need to relocate.
2867 }
2868
2869
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)2870 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2871 // We do not try to reuse pool constants.
2872 RelocInfo rinfo(isolate(), reinterpret_cast<byte*>(pc_), rmode, data, NULL);
2873 if (((rmode >= RelocInfo::COMMENT) &&
2874 (rmode <= RelocInfo::DEBUG_BREAK_SLOT_AT_CALL)) ||
2875 (rmode == RelocInfo::INTERNAL_REFERENCE) ||
2876 (rmode == RelocInfo::CONST_POOL) || (rmode == RelocInfo::VENEER_POOL) ||
2877 (rmode == RelocInfo::DEOPT_REASON) ||
2878 (rmode == RelocInfo::GENERATOR_CONTINUATION)) {
2879 // Adjust code for new modes.
2880 DCHECK(RelocInfo::IsDebugBreakSlot(rmode) || RelocInfo::IsComment(rmode) ||
2881 RelocInfo::IsDeoptReason(rmode) || RelocInfo::IsPosition(rmode) ||
2882 RelocInfo::IsInternalReference(rmode) ||
2883 RelocInfo::IsConstPool(rmode) || RelocInfo::IsVeneerPool(rmode) ||
2884 RelocInfo::IsGeneratorContinuation(rmode));
2885 // These modes do not need an entry in the constant pool.
2886 } else {
2887 constpool_.RecordEntry(data, rmode);
2888 // Make sure the constant pool is not emitted in place of the next
2889 // instruction for which we just recorded relocation info.
2890 BlockConstPoolFor(1);
2891 }
2892
2893 if (!RelocInfo::IsNone(rmode)) {
2894 // Don't record external references unless the heap will be serialized.
2895 if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
2896 !serializer_enabled() && !emit_debug_code()) {
2897 return;
2898 }
2899 DCHECK(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
2900 if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
2901 RelocInfo reloc_info_with_ast_id(isolate(), reinterpret_cast<byte*>(pc_),
2902 rmode, RecordedAstId().ToInt(), NULL);
2903 ClearRecordedAstId();
2904 reloc_info_writer.Write(&reloc_info_with_ast_id);
2905 } else {
2906 reloc_info_writer.Write(&rinfo);
2907 }
2908 }
2909 }
2910
2911
BlockConstPoolFor(int instructions)2912 void Assembler::BlockConstPoolFor(int instructions) {
2913 int pc_limit = pc_offset() + instructions * kInstructionSize;
2914 if (no_const_pool_before_ < pc_limit) {
2915 no_const_pool_before_ = pc_limit;
2916 // Make sure the pool won't be blocked for too long.
2917 DCHECK(pc_limit < constpool_.MaxPcOffset());
2918 }
2919
2920 if (next_constant_pool_check_ < no_const_pool_before_) {
2921 next_constant_pool_check_ = no_const_pool_before_;
2922 }
2923 }
2924
2925
CheckConstPool(bool force_emit,bool require_jump)2926 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
2927 // Some short sequence of instruction mustn't be broken up by constant pool
2928 // emission, such sequences are protected by calls to BlockConstPoolFor and
2929 // BlockConstPoolScope.
2930 if (is_const_pool_blocked()) {
2931 // Something is wrong if emission is forced and blocked at the same time.
2932 DCHECK(!force_emit);
2933 return;
2934 }
2935
2936 // There is nothing to do if there are no pending constant pool entries.
2937 if (constpool_.IsEmpty()) {
2938 // Calculate the offset of the next check.
2939 SetNextConstPoolCheckIn(kCheckConstPoolInterval);
2940 return;
2941 }
2942
2943 // We emit a constant pool when:
2944 // * requested to do so by parameter force_emit (e.g. after each function).
2945 // * the distance to the first instruction accessing the constant pool is
2946 // kApproxMaxDistToConstPool or more.
2947 // * the number of entries in the pool is kApproxMaxPoolEntryCount or more.
2948 int dist = constpool_.DistanceToFirstUse();
2949 int count = constpool_.EntryCount();
2950 if (!force_emit &&
2951 (dist < kApproxMaxDistToConstPool) &&
2952 (count < kApproxMaxPoolEntryCount)) {
2953 return;
2954 }
2955
2956
2957 // Emit veneers for branches that would go out of range during emission of the
2958 // constant pool.
2959 int worst_case_size = constpool_.WorstCaseSize();
2960 CheckVeneerPool(false, require_jump,
2961 kVeneerDistanceMargin + worst_case_size);
2962
2963 // Check that the code buffer is large enough before emitting the constant
2964 // pool (this includes the gap to the relocation information).
2965 int needed_space = worst_case_size + kGap + 1 * kInstructionSize;
2966 while (buffer_space() <= needed_space) {
2967 GrowBuffer();
2968 }
2969
2970 Label size_check;
2971 bind(&size_check);
2972 constpool_.Emit(require_jump);
2973 DCHECK(SizeOfCodeGeneratedSince(&size_check) <=
2974 static_cast<unsigned>(worst_case_size));
2975
2976 // Since a constant pool was just emitted, move the check offset forward by
2977 // the standard interval.
2978 SetNextConstPoolCheckIn(kCheckConstPoolInterval);
2979 }
2980
2981
ShouldEmitVeneer(int max_reachable_pc,int margin)2982 bool Assembler::ShouldEmitVeneer(int max_reachable_pc, int margin) {
2983 // Account for the branch around the veneers and the guard.
2984 int protection_offset = 2 * kInstructionSize;
2985 return pc_offset() > max_reachable_pc - margin - protection_offset -
2986 static_cast<int>(unresolved_branches_.size() * kMaxVeneerCodeSize);
2987 }
2988
2989
RecordVeneerPool(int location_offset,int size)2990 void Assembler::RecordVeneerPool(int location_offset, int size) {
2991 RelocInfo rinfo(isolate(), buffer_ + location_offset, RelocInfo::VENEER_POOL,
2992 static_cast<intptr_t>(size), NULL);
2993 reloc_info_writer.Write(&rinfo);
2994 }
2995
2996
EmitVeneers(bool force_emit,bool need_protection,int margin)2997 void Assembler::EmitVeneers(bool force_emit, bool need_protection, int margin) {
2998 BlockPoolsScope scope(this);
2999 RecordComment("[ Veneers");
3000
3001 // The exact size of the veneer pool must be recorded (see the comment at the
3002 // declaration site of RecordConstPool()), but computing the number of
3003 // veneers that will be generated is not obvious. So instead we remember the
3004 // current position and will record the size after the pool has been
3005 // generated.
3006 Label size_check;
3007 bind(&size_check);
3008 int veneer_pool_relocinfo_loc = pc_offset();
3009
3010 Label end;
3011 if (need_protection) {
3012 b(&end);
3013 }
3014
3015 EmitVeneersGuard();
3016
3017 Label veneer_size_check;
3018
3019 std::multimap<int, FarBranchInfo>::iterator it, it_to_delete;
3020
3021 it = unresolved_branches_.begin();
3022 while (it != unresolved_branches_.end()) {
3023 if (force_emit || ShouldEmitVeneer(it->first, margin)) {
3024 Instruction* branch = InstructionAt(it->second.pc_offset_);
3025 Label* label = it->second.label_;
3026
3027 #ifdef DEBUG
3028 bind(&veneer_size_check);
3029 #endif
3030 // Patch the branch to point to the current position, and emit a branch
3031 // to the label.
3032 Instruction* veneer = reinterpret_cast<Instruction*>(pc_);
3033 RemoveBranchFromLabelLinkChain(branch, label, veneer);
3034 branch->SetImmPCOffsetTarget(isolate(), veneer);
3035 b(label);
3036 #ifdef DEBUG
3037 DCHECK(SizeOfCodeGeneratedSince(&veneer_size_check) <=
3038 static_cast<uint64_t>(kMaxVeneerCodeSize));
3039 veneer_size_check.Unuse();
3040 #endif
3041
3042 it_to_delete = it++;
3043 unresolved_branches_.erase(it_to_delete);
3044 } else {
3045 ++it;
3046 }
3047 }
3048
3049 // Record the veneer pool size.
3050 int pool_size = static_cast<int>(SizeOfCodeGeneratedSince(&size_check));
3051 RecordVeneerPool(veneer_pool_relocinfo_loc, pool_size);
3052
3053 if (unresolved_branches_.empty()) {
3054 next_veneer_pool_check_ = kMaxInt;
3055 } else {
3056 next_veneer_pool_check_ =
3057 unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
3058 }
3059
3060 bind(&end);
3061
3062 RecordComment("]");
3063 }
3064
3065
CheckVeneerPool(bool force_emit,bool require_jump,int margin)3066 void Assembler::CheckVeneerPool(bool force_emit, bool require_jump,
3067 int margin) {
3068 // There is nothing to do if there are no pending veneer pool entries.
3069 if (unresolved_branches_.empty()) {
3070 DCHECK(next_veneer_pool_check_ == kMaxInt);
3071 return;
3072 }
3073
3074 DCHECK(pc_offset() < unresolved_branches_first_limit());
3075
3076 // Some short sequence of instruction mustn't be broken up by veneer pool
3077 // emission, such sequences are protected by calls to BlockVeneerPoolFor and
3078 // BlockVeneerPoolScope.
3079 if (is_veneer_pool_blocked()) {
3080 DCHECK(!force_emit);
3081 return;
3082 }
3083
3084 if (!require_jump) {
3085 // Prefer emitting veneers protected by an existing instruction.
3086 margin *= kVeneerNoProtectionFactor;
3087 }
3088 if (force_emit || ShouldEmitVeneers(margin)) {
3089 EmitVeneers(force_emit, require_jump, margin);
3090 } else {
3091 next_veneer_pool_check_ =
3092 unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
3093 }
3094 }
3095
3096
buffer_space() const3097 int Assembler::buffer_space() const {
3098 return static_cast<int>(reloc_info_writer.pos() -
3099 reinterpret_cast<byte*>(pc_));
3100 }
3101
3102
RecordConstPool(int size)3103 void Assembler::RecordConstPool(int size) {
3104 // We only need this for debugger support, to correctly compute offsets in the
3105 // code.
3106 RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
3107 }
3108
3109
PatchAdrFar(int64_t target_offset)3110 void PatchingAssembler::PatchAdrFar(int64_t target_offset) {
3111 // The code at the current instruction should be:
3112 // adr rd, 0
3113 // nop (adr_far)
3114 // nop (adr_far)
3115 // movz scratch, 0
3116
3117 // Verify the expected code.
3118 Instruction* expected_adr = InstructionAt(0);
3119 CHECK(expected_adr->IsAdr() && (expected_adr->ImmPCRel() == 0));
3120 int rd_code = expected_adr->Rd();
3121 for (int i = 0; i < kAdrFarPatchableNNops; ++i) {
3122 CHECK(InstructionAt((i + 1) * kInstructionSize)->IsNop(ADR_FAR_NOP));
3123 }
3124 Instruction* expected_movz =
3125 InstructionAt((kAdrFarPatchableNInstrs - 1) * kInstructionSize);
3126 CHECK(expected_movz->IsMovz() &&
3127 (expected_movz->ImmMoveWide() == 0) &&
3128 (expected_movz->ShiftMoveWide() == 0));
3129 int scratch_code = expected_movz->Rd();
3130
3131 // Patch to load the correct address.
3132 Register rd = Register::XRegFromCode(rd_code);
3133 Register scratch = Register::XRegFromCode(scratch_code);
3134 // Addresses are only 48 bits.
3135 adr(rd, target_offset & 0xFFFF);
3136 movz(scratch, (target_offset >> 16) & 0xFFFF, 16);
3137 movk(scratch, (target_offset >> 32) & 0xFFFF, 32);
3138 DCHECK((target_offset >> 48) == 0);
3139 add(rd, rd, scratch);
3140 }
3141
3142
3143 } // namespace internal
3144 } // namespace v8
3145
3146 #endif // V8_TARGET_ARCH_ARM64
3147