1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/base/adapters.h"
6 #include "src/base/bits.h"
7 #include "src/compiler/instruction-selector-impl.h"
8 #include "src/compiler/node-matchers.h"
9 #include "src/compiler/node-properties.h"
10
11 namespace v8 {
12 namespace internal {
13 namespace compiler {
14
15 #define TRACE_UNIMPL() \
16 PrintF("UNIMPLEMENTED instr_sel: %s at line %d\n", __FUNCTION__, __LINE__)
17
18 #define TRACE() PrintF("instr_sel: %s at line %d\n", __FUNCTION__, __LINE__)
19
20
21 // Adds Mips-specific methods for generating InstructionOperands.
22 class MipsOperandGenerator final : public OperandGenerator {
23 public:
MipsOperandGenerator(InstructionSelector * selector)24 explicit MipsOperandGenerator(InstructionSelector* selector)
25 : OperandGenerator(selector) {}
26
UseOperand(Node * node,InstructionCode opcode)27 InstructionOperand UseOperand(Node* node, InstructionCode opcode) {
28 if (CanBeImmediate(node, opcode)) {
29 return UseImmediate(node);
30 }
31 return UseRegister(node);
32 }
33
CanBeImmediate(Node * node,InstructionCode opcode)34 bool CanBeImmediate(Node* node, InstructionCode opcode) {
35 Int32Matcher m(node);
36 if (!m.HasValue()) return false;
37 int32_t value = m.Value();
38 switch (ArchOpcodeField::decode(opcode)) {
39 case kMipsShl:
40 case kMipsSar:
41 case kMipsShr:
42 return is_uint5(value);
43 case kMipsXor:
44 return is_uint16(value);
45 case kMipsLdc1:
46 case kMipsSdc1:
47 case kCheckedLoadFloat64:
48 case kCheckedStoreFloat64:
49 return std::numeric_limits<int16_t>::min() <= (value + kIntSize) &&
50 std::numeric_limits<int16_t>::max() >= (value + kIntSize);
51 default:
52 return is_int16(value);
53 }
54 }
55
56 private:
ImmediateFitsAddrMode1Instruction(int32_t imm) const57 bool ImmediateFitsAddrMode1Instruction(int32_t imm) const {
58 TRACE_UNIMPL();
59 return false;
60 }
61 };
62
63
VisitRRR(InstructionSelector * selector,ArchOpcode opcode,Node * node)64 static void VisitRRR(InstructionSelector* selector, ArchOpcode opcode,
65 Node* node) {
66 MipsOperandGenerator g(selector);
67 selector->Emit(opcode, g.DefineAsRegister(node),
68 g.UseRegister(node->InputAt(0)),
69 g.UseRegister(node->InputAt(1)));
70 }
71
72
VisitRR(InstructionSelector * selector,ArchOpcode opcode,Node * node)73 static void VisitRR(InstructionSelector* selector, ArchOpcode opcode,
74 Node* node) {
75 MipsOperandGenerator g(selector);
76 selector->Emit(opcode, g.DefineAsRegister(node),
77 g.UseRegister(node->InputAt(0)));
78 }
79
80
VisitRRO(InstructionSelector * selector,ArchOpcode opcode,Node * node)81 static void VisitRRO(InstructionSelector* selector, ArchOpcode opcode,
82 Node* node) {
83 MipsOperandGenerator g(selector);
84 selector->Emit(opcode, g.DefineAsRegister(node),
85 g.UseRegister(node->InputAt(0)),
86 g.UseOperand(node->InputAt(1), opcode));
87 }
88
89
VisitBinop(InstructionSelector * selector,Node * node,InstructionCode opcode,FlagsContinuation * cont)90 static void VisitBinop(InstructionSelector* selector, Node* node,
91 InstructionCode opcode, FlagsContinuation* cont) {
92 MipsOperandGenerator g(selector);
93 Int32BinopMatcher m(node);
94 InstructionOperand inputs[4];
95 size_t input_count = 0;
96 InstructionOperand outputs[2];
97 size_t output_count = 0;
98
99 inputs[input_count++] = g.UseRegister(m.left().node());
100 inputs[input_count++] = g.UseOperand(m.right().node(), opcode);
101
102 if (cont->IsBranch()) {
103 inputs[input_count++] = g.Label(cont->true_block());
104 inputs[input_count++] = g.Label(cont->false_block());
105 }
106
107 outputs[output_count++] = g.DefineAsRegister(node);
108 if (cont->IsSet()) {
109 outputs[output_count++] = g.DefineAsRegister(cont->result());
110 }
111
112 DCHECK_NE(0u, input_count);
113 DCHECK_NE(0u, output_count);
114 DCHECK_GE(arraysize(inputs), input_count);
115 DCHECK_GE(arraysize(outputs), output_count);
116
117 selector->Emit(cont->Encode(opcode), output_count, outputs, input_count,
118 inputs);
119 }
120
121
VisitBinop(InstructionSelector * selector,Node * node,InstructionCode opcode)122 static void VisitBinop(InstructionSelector* selector, Node* node,
123 InstructionCode opcode) {
124 FlagsContinuation cont;
125 VisitBinop(selector, node, opcode, &cont);
126 }
127
128
VisitLoad(Node * node)129 void InstructionSelector::VisitLoad(Node* node) {
130 LoadRepresentation load_rep = LoadRepresentationOf(node->op());
131 MipsOperandGenerator g(this);
132 Node* base = node->InputAt(0);
133 Node* index = node->InputAt(1);
134
135 ArchOpcode opcode = kArchNop;
136 switch (load_rep.representation()) {
137 case MachineRepresentation::kFloat32:
138 opcode = kMipsLwc1;
139 break;
140 case MachineRepresentation::kFloat64:
141 opcode = kMipsLdc1;
142 break;
143 case MachineRepresentation::kBit: // Fall through.
144 case MachineRepresentation::kWord8:
145 opcode = load_rep.IsUnsigned() ? kMipsLbu : kMipsLb;
146 break;
147 case MachineRepresentation::kWord16:
148 opcode = load_rep.IsUnsigned() ? kMipsLhu : kMipsLh;
149 break;
150 case MachineRepresentation::kTagged: // Fall through.
151 case MachineRepresentation::kWord32:
152 opcode = kMipsLw;
153 break;
154 case MachineRepresentation::kWord64: // Fall through.
155 case MachineRepresentation::kNone:
156 UNREACHABLE();
157 return;
158 }
159
160 if (g.CanBeImmediate(index, opcode)) {
161 Emit(opcode | AddressingModeField::encode(kMode_MRI),
162 g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index));
163 } else {
164 InstructionOperand addr_reg = g.TempRegister();
165 Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
166 g.UseRegister(index), g.UseRegister(base));
167 // Emit desired load opcode, using temp addr_reg.
168 Emit(opcode | AddressingModeField::encode(kMode_MRI),
169 g.DefineAsRegister(node), addr_reg, g.TempImmediate(0));
170 }
171 }
172
173
VisitStore(Node * node)174 void InstructionSelector::VisitStore(Node* node) {
175 MipsOperandGenerator g(this);
176 Node* base = node->InputAt(0);
177 Node* index = node->InputAt(1);
178 Node* value = node->InputAt(2);
179
180 StoreRepresentation store_rep = StoreRepresentationOf(node->op());
181 WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind();
182 MachineRepresentation rep = store_rep.representation();
183
184 // TODO(mips): I guess this could be done in a better way.
185 if (write_barrier_kind != kNoWriteBarrier) {
186 DCHECK_EQ(MachineRepresentation::kTagged, rep);
187 InstructionOperand inputs[3];
188 size_t input_count = 0;
189 inputs[input_count++] = g.UseUniqueRegister(base);
190 inputs[input_count++] = g.UseUniqueRegister(index);
191 inputs[input_count++] = (write_barrier_kind == kMapWriteBarrier)
192 ? g.UseRegister(value)
193 : g.UseUniqueRegister(value);
194 RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny;
195 switch (write_barrier_kind) {
196 case kNoWriteBarrier:
197 UNREACHABLE();
198 break;
199 case kMapWriteBarrier:
200 record_write_mode = RecordWriteMode::kValueIsMap;
201 break;
202 case kPointerWriteBarrier:
203 record_write_mode = RecordWriteMode::kValueIsPointer;
204 break;
205 case kFullWriteBarrier:
206 record_write_mode = RecordWriteMode::kValueIsAny;
207 break;
208 }
209 InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
210 size_t const temp_count = arraysize(temps);
211 InstructionCode code = kArchStoreWithWriteBarrier;
212 code |= MiscField::encode(static_cast<int>(record_write_mode));
213 Emit(code, 0, nullptr, input_count, inputs, temp_count, temps);
214 } else {
215 ArchOpcode opcode = kArchNop;
216 switch (rep) {
217 case MachineRepresentation::kFloat32:
218 opcode = kMipsSwc1;
219 break;
220 case MachineRepresentation::kFloat64:
221 opcode = kMipsSdc1;
222 break;
223 case MachineRepresentation::kBit: // Fall through.
224 case MachineRepresentation::kWord8:
225 opcode = kMipsSb;
226 break;
227 case MachineRepresentation::kWord16:
228 opcode = kMipsSh;
229 break;
230 case MachineRepresentation::kTagged: // Fall through.
231 case MachineRepresentation::kWord32:
232 opcode = kMipsSw;
233 break;
234 case MachineRepresentation::kWord64: // Fall through.
235 case MachineRepresentation::kNone:
236 UNREACHABLE();
237 return;
238 }
239
240 if (g.CanBeImmediate(index, opcode)) {
241 Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
242 g.UseRegister(base), g.UseImmediate(index), g.UseRegister(value));
243 } else {
244 InstructionOperand addr_reg = g.TempRegister();
245 Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
246 g.UseRegister(index), g.UseRegister(base));
247 // Emit desired store opcode, using temp addr_reg.
248 Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
249 addr_reg, g.TempImmediate(0), g.UseRegister(value));
250 }
251 }
252 }
253
254
VisitWord32And(Node * node)255 void InstructionSelector::VisitWord32And(Node* node) {
256 MipsOperandGenerator g(this);
257 Int32BinopMatcher m(node);
258 if (m.left().IsWord32Shr() && CanCover(node, m.left().node()) &&
259 m.right().HasValue()) {
260 uint32_t mask = m.right().Value();
261 uint32_t mask_width = base::bits::CountPopulation32(mask);
262 uint32_t mask_msb = base::bits::CountLeadingZeros32(mask);
263 if ((mask_width != 0) && (mask_msb + mask_width == 32)) {
264 // The mask must be contiguous, and occupy the least-significant bits.
265 DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask));
266
267 // Select Ext for And(Shr(x, imm), mask) where the mask is in the least
268 // significant bits.
269 Int32BinopMatcher mleft(m.left().node());
270 if (mleft.right().HasValue()) {
271 // Any shift value can match; int32 shifts use `value % 32`.
272 uint32_t lsb = mleft.right().Value() & 0x1f;
273
274 // Ext cannot extract bits past the register size, however since
275 // shifting the original value would have introduced some zeros we can
276 // still use Ext with a smaller mask and the remaining bits will be
277 // zeros.
278 if (lsb + mask_width > 32) mask_width = 32 - lsb;
279
280 Emit(kMipsExt, g.DefineAsRegister(node),
281 g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
282 g.TempImmediate(mask_width));
283 return;
284 }
285 // Other cases fall through to the normal And operation.
286 }
287 }
288 if (m.right().HasValue()) {
289 uint32_t mask = m.right().Value();
290 uint32_t shift = base::bits::CountPopulation32(~mask);
291 uint32_t msb = base::bits::CountLeadingZeros32(~mask);
292 if (shift != 0 && shift != 32 && msb + shift == 32) {
293 // Insert zeros for (x >> K) << K => x & ~(2^K - 1) expression reduction
294 // and remove constant loading of invereted mask.
295 Emit(kMipsIns, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
296 g.TempImmediate(0), g.TempImmediate(shift));
297 return;
298 }
299 }
300 VisitBinop(this, node, kMipsAnd);
301 }
302
303
VisitWord32Or(Node * node)304 void InstructionSelector::VisitWord32Or(Node* node) {
305 VisitBinop(this, node, kMipsOr);
306 }
307
308
VisitWord32Xor(Node * node)309 void InstructionSelector::VisitWord32Xor(Node* node) {
310 Int32BinopMatcher m(node);
311 if (m.left().IsWord32Or() && CanCover(node, m.left().node()) &&
312 m.right().Is(-1)) {
313 Int32BinopMatcher mleft(m.left().node());
314 if (!mleft.right().HasValue()) {
315 MipsOperandGenerator g(this);
316 Emit(kMipsNor, g.DefineAsRegister(node),
317 g.UseRegister(mleft.left().node()),
318 g.UseRegister(mleft.right().node()));
319 return;
320 }
321 }
322 if (m.right().Is(-1)) {
323 // Use Nor for bit negation and eliminate constant loading for xori.
324 MipsOperandGenerator g(this);
325 Emit(kMipsNor, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
326 g.TempImmediate(0));
327 return;
328 }
329 VisitBinop(this, node, kMipsXor);
330 }
331
332
VisitWord32Shl(Node * node)333 void InstructionSelector::VisitWord32Shl(Node* node) {
334 Int32BinopMatcher m(node);
335 if (m.left().IsWord32And() && CanCover(node, m.left().node()) &&
336 m.right().IsInRange(1, 31)) {
337 MipsOperandGenerator g(this);
338 Int32BinopMatcher mleft(m.left().node());
339 // Match Word32Shl(Word32And(x, mask), imm) to Shl where the mask is
340 // contiguous, and the shift immediate non-zero.
341 if (mleft.right().HasValue()) {
342 uint32_t mask = mleft.right().Value();
343 uint32_t mask_width = base::bits::CountPopulation32(mask);
344 uint32_t mask_msb = base::bits::CountLeadingZeros32(mask);
345 if ((mask_width != 0) && (mask_msb + mask_width == 32)) {
346 uint32_t shift = m.right().Value();
347 DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask));
348 DCHECK_NE(0u, shift);
349 if ((shift + mask_width) >= 32) {
350 // If the mask is contiguous and reaches or extends beyond the top
351 // bit, only the shift is needed.
352 Emit(kMipsShl, g.DefineAsRegister(node),
353 g.UseRegister(mleft.left().node()),
354 g.UseImmediate(m.right().node()));
355 return;
356 }
357 }
358 }
359 }
360 VisitRRO(this, kMipsShl, node);
361 }
362
363
VisitWord32Shr(Node * node)364 void InstructionSelector::VisitWord32Shr(Node* node) {
365 Int32BinopMatcher m(node);
366 if (m.left().IsWord32And() && m.right().HasValue()) {
367 uint32_t lsb = m.right().Value() & 0x1f;
368 Int32BinopMatcher mleft(m.left().node());
369 if (mleft.right().HasValue()) {
370 // Select Ext for Shr(And(x, mask), imm) where the result of the mask is
371 // shifted into the least-significant bits.
372 uint32_t mask = (mleft.right().Value() >> lsb) << lsb;
373 unsigned mask_width = base::bits::CountPopulation32(mask);
374 unsigned mask_msb = base::bits::CountLeadingZeros32(mask);
375 if ((mask_msb + mask_width + lsb) == 32) {
376 MipsOperandGenerator g(this);
377 DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(mask));
378 Emit(kMipsExt, g.DefineAsRegister(node),
379 g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
380 g.TempImmediate(mask_width));
381 return;
382 }
383 }
384 }
385 VisitRRO(this, kMipsShr, node);
386 }
387
388
VisitWord32Sar(Node * node)389 void InstructionSelector::VisitWord32Sar(Node* node) {
390 VisitRRO(this, kMipsSar, node);
391 }
392
393
VisitWord32Ror(Node * node)394 void InstructionSelector::VisitWord32Ror(Node* node) {
395 VisitRRO(this, kMipsRor, node);
396 }
397
398
VisitWord32Clz(Node * node)399 void InstructionSelector::VisitWord32Clz(Node* node) {
400 VisitRR(this, kMipsClz, node);
401 }
402
403
VisitWord32Ctz(Node * node)404 void InstructionSelector::VisitWord32Ctz(Node* node) { UNREACHABLE(); }
405
406
VisitWord32Popcnt(Node * node)407 void InstructionSelector::VisitWord32Popcnt(Node* node) { UNREACHABLE(); }
408
409
VisitInt32Add(Node * node)410 void InstructionSelector::VisitInt32Add(Node* node) {
411 MipsOperandGenerator g(this);
412
413 // TODO(plind): Consider multiply & add optimization from arm port.
414 VisitBinop(this, node, kMipsAdd);
415 }
416
417
VisitInt32Sub(Node * node)418 void InstructionSelector::VisitInt32Sub(Node* node) {
419 VisitBinop(this, node, kMipsSub);
420 }
421
422
VisitInt32Mul(Node * node)423 void InstructionSelector::VisitInt32Mul(Node* node) {
424 MipsOperandGenerator g(this);
425 Int32BinopMatcher m(node);
426 if (m.right().HasValue() && m.right().Value() > 0) {
427 int32_t value = m.right().Value();
428 if (base::bits::IsPowerOfTwo32(value)) {
429 Emit(kMipsShl | AddressingModeField::encode(kMode_None),
430 g.DefineAsRegister(node), g.UseRegister(m.left().node()),
431 g.TempImmediate(WhichPowerOf2(value)));
432 return;
433 }
434 if (base::bits::IsPowerOfTwo32(value - 1)) {
435 InstructionOperand temp = g.TempRegister();
436 Emit(kMipsShl | AddressingModeField::encode(kMode_None), temp,
437 g.UseRegister(m.left().node()),
438 g.TempImmediate(WhichPowerOf2(value - 1)));
439 Emit(kMipsAdd | AddressingModeField::encode(kMode_None),
440 g.DefineAsRegister(node), g.UseRegister(m.left().node()), temp);
441 return;
442 }
443 if (base::bits::IsPowerOfTwo32(value + 1)) {
444 InstructionOperand temp = g.TempRegister();
445 Emit(kMipsShl | AddressingModeField::encode(kMode_None), temp,
446 g.UseRegister(m.left().node()),
447 g.TempImmediate(WhichPowerOf2(value + 1)));
448 Emit(kMipsSub | AddressingModeField::encode(kMode_None),
449 g.DefineAsRegister(node), temp, g.UseRegister(m.left().node()));
450 return;
451 }
452 }
453 VisitRRR(this, kMipsMul, node);
454 }
455
456
VisitInt32MulHigh(Node * node)457 void InstructionSelector::VisitInt32MulHigh(Node* node) {
458 VisitRRR(this, kMipsMulHigh, node);
459 }
460
461
VisitUint32MulHigh(Node * node)462 void InstructionSelector::VisitUint32MulHigh(Node* node) {
463 MipsOperandGenerator g(this);
464 Emit(kMipsMulHighU, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)),
465 g.UseRegister(node->InputAt(1)));
466 }
467
468
VisitInt32Div(Node * node)469 void InstructionSelector::VisitInt32Div(Node* node) {
470 MipsOperandGenerator g(this);
471 Int32BinopMatcher m(node);
472 Emit(kMipsDiv, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
473 g.UseRegister(m.right().node()));
474 }
475
476
VisitUint32Div(Node * node)477 void InstructionSelector::VisitUint32Div(Node* node) {
478 MipsOperandGenerator g(this);
479 Int32BinopMatcher m(node);
480 Emit(kMipsDivU, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
481 g.UseRegister(m.right().node()));
482 }
483
484
VisitInt32Mod(Node * node)485 void InstructionSelector::VisitInt32Mod(Node* node) {
486 MipsOperandGenerator g(this);
487 Int32BinopMatcher m(node);
488 Emit(kMipsMod, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
489 g.UseRegister(m.right().node()));
490 }
491
492
VisitUint32Mod(Node * node)493 void InstructionSelector::VisitUint32Mod(Node* node) {
494 MipsOperandGenerator g(this);
495 Int32BinopMatcher m(node);
496 Emit(kMipsModU, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
497 g.UseRegister(m.right().node()));
498 }
499
500
VisitChangeFloat32ToFloat64(Node * node)501 void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) {
502 VisitRR(this, kMipsCvtDS, node);
503 }
504
505
VisitChangeInt32ToFloat64(Node * node)506 void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
507 VisitRR(this, kMipsCvtDW, node);
508 }
509
510
VisitChangeUint32ToFloat64(Node * node)511 void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
512 VisitRR(this, kMipsCvtDUw, node);
513 }
514
515
VisitChangeFloat64ToInt32(Node * node)516 void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
517 MipsOperandGenerator g(this);
518 Node* value = node->InputAt(0);
519 // Match ChangeFloat64ToInt32(Float64Round##OP) to corresponding instruction
520 // which does rounding and conversion to integer format.
521 if (CanCover(node, value)) {
522 switch (value->opcode()) {
523 case IrOpcode::kFloat64RoundDown:
524 Emit(kMipsFloorWD, g.DefineAsRegister(node),
525 g.UseRegister(value->InputAt(0)));
526 return;
527 case IrOpcode::kFloat64RoundUp:
528 Emit(kMipsCeilWD, g.DefineAsRegister(node),
529 g.UseRegister(value->InputAt(0)));
530 return;
531 case IrOpcode::kFloat64RoundTiesEven:
532 Emit(kMipsRoundWD, g.DefineAsRegister(node),
533 g.UseRegister(value->InputAt(0)));
534 return;
535 case IrOpcode::kFloat64RoundTruncate:
536 Emit(kMipsTruncWD, g.DefineAsRegister(node),
537 g.UseRegister(value->InputAt(0)));
538 return;
539 default:
540 break;
541 }
542 if (value->opcode() == IrOpcode::kChangeFloat32ToFloat64) {
543 Node* next = value->InputAt(0);
544 if (CanCover(value, next)) {
545 // Match ChangeFloat64ToInt32(ChangeFloat32ToFloat64(Float64Round##OP))
546 switch (next->opcode()) {
547 case IrOpcode::kFloat32RoundDown:
548 Emit(kMipsFloorWS, g.DefineAsRegister(node),
549 g.UseRegister(next->InputAt(0)));
550 return;
551 case IrOpcode::kFloat32RoundUp:
552 Emit(kMipsCeilWS, g.DefineAsRegister(node),
553 g.UseRegister(next->InputAt(0)));
554 return;
555 case IrOpcode::kFloat32RoundTiesEven:
556 Emit(kMipsRoundWS, g.DefineAsRegister(node),
557 g.UseRegister(next->InputAt(0)));
558 return;
559 case IrOpcode::kFloat32RoundTruncate:
560 Emit(kMipsTruncWS, g.DefineAsRegister(node),
561 g.UseRegister(next->InputAt(0)));
562 return;
563 default:
564 Emit(kMipsTruncWS, g.DefineAsRegister(node),
565 g.UseRegister(value->InputAt(0)));
566 return;
567 }
568 } else {
569 // Match float32 -> float64 -> int32 representation change path.
570 Emit(kMipsTruncWS, g.DefineAsRegister(node),
571 g.UseRegister(value->InputAt(0)));
572 return;
573 }
574 }
575 }
576 VisitRR(this, kMipsTruncWD, node);
577 }
578
579
VisitChangeFloat64ToUint32(Node * node)580 void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
581 VisitRR(this, kMipsTruncUwD, node);
582 }
583
584
VisitTruncateFloat64ToFloat32(Node * node)585 void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) {
586 MipsOperandGenerator g(this);
587 Node* value = node->InputAt(0);
588 // Match TruncateFloat64ToFloat32(ChangeInt32ToFloat64) to corresponding
589 // instruction.
590 if (CanCover(node, value) &&
591 value->opcode() == IrOpcode::kChangeInt32ToFloat64) {
592 Emit(kMipsCvtSW, g.DefineAsRegister(node),
593 g.UseRegister(value->InputAt(0)));
594 return;
595 }
596 VisitRR(this, kMipsCvtSD, node);
597 }
598
599
VisitTruncateFloat64ToInt32(Node * node)600 void InstructionSelector::VisitTruncateFloat64ToInt32(Node* node) {
601 switch (TruncationModeOf(node->op())) {
602 case TruncationMode::kJavaScript:
603 return VisitRR(this, kArchTruncateDoubleToI, node);
604 case TruncationMode::kRoundToZero:
605 return VisitRR(this, kMipsTruncWD, node);
606 }
607 UNREACHABLE();
608 }
609
610
VisitBitcastFloat32ToInt32(Node * node)611 void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) {
612 VisitRR(this, kMipsFloat64ExtractLowWord32, node);
613 }
614
615
VisitBitcastInt32ToFloat32(Node * node)616 void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) {
617 MipsOperandGenerator g(this);
618 Emit(kMipsFloat64InsertLowWord32, g.DefineAsRegister(node),
619 ImmediateOperand(ImmediateOperand::INLINE, 0),
620 g.UseRegister(node->InputAt(0)));
621 }
622
623
VisitFloat32Add(Node * node)624 void InstructionSelector::VisitFloat32Add(Node* node) {
625 VisitRRR(this, kMipsAddS, node);
626 }
627
628
VisitFloat64Add(Node * node)629 void InstructionSelector::VisitFloat64Add(Node* node) {
630 VisitRRR(this, kMipsAddD, node);
631 }
632
633
VisitFloat32Sub(Node * node)634 void InstructionSelector::VisitFloat32Sub(Node* node) {
635 VisitRRR(this, kMipsSubS, node);
636 }
637
638
VisitFloat64Sub(Node * node)639 void InstructionSelector::VisitFloat64Sub(Node* node) {
640 MipsOperandGenerator g(this);
641 Float64BinopMatcher m(node);
642 if (m.left().IsMinusZero() && m.right().IsFloat64RoundDown() &&
643 CanCover(m.node(), m.right().node())) {
644 if (m.right().InputAt(0)->opcode() == IrOpcode::kFloat64Sub &&
645 CanCover(m.right().node(), m.right().InputAt(0))) {
646 Float64BinopMatcher mright0(m.right().InputAt(0));
647 if (mright0.left().IsMinusZero()) {
648 Emit(kMipsFloat64RoundUp, g.DefineAsRegister(node),
649 g.UseRegister(mright0.right().node()));
650 return;
651 }
652 }
653 }
654 VisitRRR(this, kMipsSubD, node);
655 }
656
657
VisitFloat32Mul(Node * node)658 void InstructionSelector::VisitFloat32Mul(Node* node) {
659 VisitRRR(this, kMipsMulS, node);
660 }
661
662
VisitFloat64Mul(Node * node)663 void InstructionSelector::VisitFloat64Mul(Node* node) {
664 VisitRRR(this, kMipsMulD, node);
665 }
666
667
VisitFloat32Div(Node * node)668 void InstructionSelector::VisitFloat32Div(Node* node) {
669 VisitRRR(this, kMipsDivS, node);
670 }
671
672
VisitFloat64Div(Node * node)673 void InstructionSelector::VisitFloat64Div(Node* node) {
674 VisitRRR(this, kMipsDivD, node);
675 }
676
677
VisitFloat64Mod(Node * node)678 void InstructionSelector::VisitFloat64Mod(Node* node) {
679 MipsOperandGenerator g(this);
680 Emit(kMipsModD, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f12),
681 g.UseFixed(node->InputAt(1), f14))->MarkAsCall();
682 }
683
684
VisitFloat32Max(Node * node)685 void InstructionSelector::VisitFloat32Max(Node* node) {
686 MipsOperandGenerator g(this);
687 if (IsMipsArchVariant(kMips32r6)) {
688 Emit(kMipsFloat32Max, g.DefineAsRegister(node),
689 g.UseUniqueRegister(node->InputAt(0)),
690 g.UseUniqueRegister(node->InputAt(1)));
691
692 } else {
693 // Reverse operands, and use same reg. for result and right operand.
694 Emit(kMipsFloat32Max, g.DefineSameAsFirst(node),
695 g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)));
696 }
697 }
698
699
VisitFloat64Max(Node * node)700 void InstructionSelector::VisitFloat64Max(Node* node) {
701 MipsOperandGenerator g(this);
702 if (IsMipsArchVariant(kMips32r6)) {
703 Emit(kMipsFloat64Max, g.DefineAsRegister(node),
704 g.UseUniqueRegister(node->InputAt(0)),
705 g.UseUniqueRegister(node->InputAt(1)));
706
707 } else {
708 // Reverse operands, and use same reg. for result and right operand.
709 Emit(kMipsFloat64Max, g.DefineSameAsFirst(node),
710 g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)));
711 }
712 }
713
714
VisitFloat32Min(Node * node)715 void InstructionSelector::VisitFloat32Min(Node* node) {
716 MipsOperandGenerator g(this);
717 if (IsMipsArchVariant(kMips32r6)) {
718 Emit(kMipsFloat32Min, g.DefineAsRegister(node),
719 g.UseUniqueRegister(node->InputAt(0)),
720 g.UseUniqueRegister(node->InputAt(1)));
721
722 } else {
723 // Reverse operands, and use same reg. for result and right operand.
724 Emit(kMipsFloat32Min, g.DefineSameAsFirst(node),
725 g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)));
726 }
727 }
728
729
VisitFloat64Min(Node * node)730 void InstructionSelector::VisitFloat64Min(Node* node) {
731 MipsOperandGenerator g(this);
732 if (IsMipsArchVariant(kMips32r6)) {
733 Emit(kMipsFloat64Min, g.DefineAsRegister(node),
734 g.UseUniqueRegister(node->InputAt(0)),
735 g.UseUniqueRegister(node->InputAt(1)));
736
737 } else {
738 // Reverse operands, and use same reg. for result and right operand.
739 Emit(kMipsFloat64Min, g.DefineSameAsFirst(node),
740 g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)));
741 }
742 }
743
744
VisitFloat32Abs(Node * node)745 void InstructionSelector::VisitFloat32Abs(Node* node) {
746 VisitRR(this, kMipsAbsS, node);
747 }
748
749
VisitFloat64Abs(Node * node)750 void InstructionSelector::VisitFloat64Abs(Node* node) {
751 VisitRR(this, kMipsAbsD, node);
752 }
753
754
VisitFloat32Sqrt(Node * node)755 void InstructionSelector::VisitFloat32Sqrt(Node* node) {
756 VisitRR(this, kMipsSqrtS, node);
757 }
758
759
VisitFloat64Sqrt(Node * node)760 void InstructionSelector::VisitFloat64Sqrt(Node* node) {
761 VisitRR(this, kMipsSqrtD, node);
762 }
763
764
VisitFloat32RoundDown(Node * node)765 void InstructionSelector::VisitFloat32RoundDown(Node* node) {
766 VisitRR(this, kMipsFloat32RoundDown, node);
767 }
768
769
VisitFloat64RoundDown(Node * node)770 void InstructionSelector::VisitFloat64RoundDown(Node* node) {
771 VisitRR(this, kMipsFloat64RoundDown, node);
772 }
773
774
VisitFloat32RoundUp(Node * node)775 void InstructionSelector::VisitFloat32RoundUp(Node* node) {
776 VisitRR(this, kMipsFloat32RoundUp, node);
777 }
778
779
VisitFloat64RoundUp(Node * node)780 void InstructionSelector::VisitFloat64RoundUp(Node* node) {
781 VisitRR(this, kMipsFloat64RoundUp, node);
782 }
783
784
VisitFloat32RoundTruncate(Node * node)785 void InstructionSelector::VisitFloat32RoundTruncate(Node* node) {
786 VisitRR(this, kMipsFloat32RoundTruncate, node);
787 }
788
789
VisitFloat64RoundTruncate(Node * node)790 void InstructionSelector::VisitFloat64RoundTruncate(Node* node) {
791 VisitRR(this, kMipsFloat64RoundTruncate, node);
792 }
793
794
VisitFloat64RoundTiesAway(Node * node)795 void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) {
796 UNREACHABLE();
797 }
798
799
VisitFloat32RoundTiesEven(Node * node)800 void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) {
801 VisitRR(this, kMipsFloat32RoundTiesEven, node);
802 }
803
804
VisitFloat64RoundTiesEven(Node * node)805 void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) {
806 VisitRR(this, kMipsFloat64RoundTiesEven, node);
807 }
808
809
EmitPrepareArguments(ZoneVector<PushParameter> * arguments,const CallDescriptor * descriptor,Node * node)810 void InstructionSelector::EmitPrepareArguments(
811 ZoneVector<PushParameter>* arguments, const CallDescriptor* descriptor,
812 Node* node) {
813 MipsOperandGenerator g(this);
814
815 // Prepare for C function call.
816 if (descriptor->IsCFunctionCall()) {
817 Emit(kArchPrepareCallCFunction |
818 MiscField::encode(static_cast<int>(descriptor->CParameterCount())),
819 0, nullptr, 0, nullptr);
820
821 // Poke any stack arguments.
822 int slot = kCArgSlotCount;
823 for (PushParameter input : (*arguments)) {
824 Emit(kMipsStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node()),
825 g.TempImmediate(slot << kPointerSizeLog2));
826 ++slot;
827 }
828 } else {
829 // Possibly align stack here for functions.
830 int push_count = static_cast<int>(descriptor->StackParameterCount());
831 if (push_count > 0) {
832 Emit(kMipsStackClaim, g.NoOutput(),
833 g.TempImmediate(push_count << kPointerSizeLog2));
834 }
835 for (size_t n = 0; n < arguments->size(); ++n) {
836 PushParameter input = (*arguments)[n];
837 if (input.node()) {
838 Emit(kMipsStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node()),
839 g.TempImmediate(n << kPointerSizeLog2));
840 }
841 }
842 }
843 }
844
845
IsTailCallAddressImmediate()846 bool InstructionSelector::IsTailCallAddressImmediate() { return false; }
847
848
VisitCheckedLoad(Node * node)849 void InstructionSelector::VisitCheckedLoad(Node* node) {
850 CheckedLoadRepresentation load_rep = CheckedLoadRepresentationOf(node->op());
851 MipsOperandGenerator g(this);
852 Node* const buffer = node->InputAt(0);
853 Node* const offset = node->InputAt(1);
854 Node* const length = node->InputAt(2);
855 ArchOpcode opcode = kArchNop;
856 switch (load_rep.representation()) {
857 case MachineRepresentation::kWord8:
858 opcode = load_rep.IsSigned() ? kCheckedLoadInt8 : kCheckedLoadUint8;
859 break;
860 case MachineRepresentation::kWord16:
861 opcode = load_rep.IsSigned() ? kCheckedLoadInt16 : kCheckedLoadUint16;
862 break;
863 case MachineRepresentation::kWord32:
864 opcode = kCheckedLoadWord32;
865 break;
866 case MachineRepresentation::kFloat32:
867 opcode = kCheckedLoadFloat32;
868 break;
869 case MachineRepresentation::kFloat64:
870 opcode = kCheckedLoadFloat64;
871 break;
872 case MachineRepresentation::kBit: // Fall through.
873 case MachineRepresentation::kTagged: // Fall through.
874 case MachineRepresentation::kWord64: // Fall through.
875 case MachineRepresentation::kNone:
876 UNREACHABLE();
877 return;
878 }
879 InstructionOperand offset_operand = g.CanBeImmediate(offset, opcode)
880 ? g.UseImmediate(offset)
881 : g.UseRegister(offset);
882
883 InstructionOperand length_operand = (!g.CanBeImmediate(offset, opcode))
884 ? g.CanBeImmediate(length, opcode)
885 ? g.UseImmediate(length)
886 : g.UseRegister(length)
887 : g.UseRegister(length);
888
889 Emit(opcode | AddressingModeField::encode(kMode_MRI),
890 g.DefineAsRegister(node), offset_operand, length_operand,
891 g.UseRegister(buffer));
892 }
893
894
VisitCheckedStore(Node * node)895 void InstructionSelector::VisitCheckedStore(Node* node) {
896 MachineRepresentation rep = CheckedStoreRepresentationOf(node->op());
897 MipsOperandGenerator g(this);
898 Node* const buffer = node->InputAt(0);
899 Node* const offset = node->InputAt(1);
900 Node* const length = node->InputAt(2);
901 Node* const value = node->InputAt(3);
902 ArchOpcode opcode = kArchNop;
903 switch (rep) {
904 case MachineRepresentation::kWord8:
905 opcode = kCheckedStoreWord8;
906 break;
907 case MachineRepresentation::kWord16:
908 opcode = kCheckedStoreWord16;
909 break;
910 case MachineRepresentation::kWord32:
911 opcode = kCheckedStoreWord32;
912 break;
913 case MachineRepresentation::kFloat32:
914 opcode = kCheckedStoreFloat32;
915 break;
916 case MachineRepresentation::kFloat64:
917 opcode = kCheckedStoreFloat64;
918 break;
919 default:
920 UNREACHABLE();
921 return;
922 }
923 InstructionOperand offset_operand = g.CanBeImmediate(offset, opcode)
924 ? g.UseImmediate(offset)
925 : g.UseRegister(offset);
926
927 InstructionOperand length_operand = (!g.CanBeImmediate(offset, opcode))
928 ? g.CanBeImmediate(length, opcode)
929 ? g.UseImmediate(length)
930 : g.UseRegister(length)
931 : g.UseRegister(length);
932
933 Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
934 offset_operand, length_operand, g.UseRegister(value),
935 g.UseRegister(buffer));
936 }
937
938
939 namespace {
940
941 // Shared routine for multiple compare operations.
VisitCompare(InstructionSelector * selector,InstructionCode opcode,InstructionOperand left,InstructionOperand right,FlagsContinuation * cont)942 static void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
943 InstructionOperand left, InstructionOperand right,
944 FlagsContinuation* cont) {
945 MipsOperandGenerator g(selector);
946 opcode = cont->Encode(opcode);
947 if (cont->IsBranch()) {
948 selector->Emit(opcode, g.NoOutput(), left, right,
949 g.Label(cont->true_block()), g.Label(cont->false_block()));
950 } else {
951 DCHECK(cont->IsSet());
952 selector->Emit(opcode, g.DefineAsRegister(cont->result()), left, right);
953 }
954 }
955
956
957 // Shared routine for multiple float32 compare operations.
VisitFloat32Compare(InstructionSelector * selector,Node * node,FlagsContinuation * cont)958 void VisitFloat32Compare(InstructionSelector* selector, Node* node,
959 FlagsContinuation* cont) {
960 MipsOperandGenerator g(selector);
961 Float32BinopMatcher m(node);
962 InstructionOperand lhs, rhs;
963
964 lhs = m.left().IsZero() ? g.UseImmediate(m.left().node())
965 : g.UseRegister(m.left().node());
966 rhs = m.right().IsZero() ? g.UseImmediate(m.right().node())
967 : g.UseRegister(m.right().node());
968 VisitCompare(selector, kMipsCmpS, lhs, rhs, cont);
969 }
970
971
972 // Shared routine for multiple float64 compare operations.
VisitFloat64Compare(InstructionSelector * selector,Node * node,FlagsContinuation * cont)973 void VisitFloat64Compare(InstructionSelector* selector, Node* node,
974 FlagsContinuation* cont) {
975 MipsOperandGenerator g(selector);
976 Float64BinopMatcher m(node);
977 InstructionOperand lhs, rhs;
978
979 lhs = m.left().IsZero() ? g.UseImmediate(m.left().node())
980 : g.UseRegister(m.left().node());
981 rhs = m.right().IsZero() ? g.UseImmediate(m.right().node())
982 : g.UseRegister(m.right().node());
983 VisitCompare(selector, kMipsCmpD, lhs, rhs, cont);
984 }
985
986
987 // Shared routine for multiple word compare operations.
VisitWordCompare(InstructionSelector * selector,Node * node,InstructionCode opcode,FlagsContinuation * cont,bool commutative)988 void VisitWordCompare(InstructionSelector* selector, Node* node,
989 InstructionCode opcode, FlagsContinuation* cont,
990 bool commutative) {
991 MipsOperandGenerator g(selector);
992 Node* left = node->InputAt(0);
993 Node* right = node->InputAt(1);
994
995 // Match immediates on left or right side of comparison.
996 if (g.CanBeImmediate(right, opcode)) {
997 switch (cont->condition()) {
998 case kEqual:
999 case kNotEqual:
1000 if (cont->IsSet()) {
1001 VisitCompare(selector, opcode, g.UseRegister(left),
1002 g.UseImmediate(right), cont);
1003 } else {
1004 VisitCompare(selector, opcode, g.UseRegister(left),
1005 g.UseRegister(right), cont);
1006 }
1007 break;
1008 case kSignedLessThan:
1009 case kSignedGreaterThanOrEqual:
1010 case kUnsignedLessThan:
1011 case kUnsignedGreaterThanOrEqual:
1012 VisitCompare(selector, opcode, g.UseRegister(left),
1013 g.UseImmediate(right), cont);
1014 break;
1015 default:
1016 VisitCompare(selector, opcode, g.UseRegister(left),
1017 g.UseRegister(right), cont);
1018 }
1019 } else if (g.CanBeImmediate(left, opcode)) {
1020 if (!commutative) cont->Commute();
1021 switch (cont->condition()) {
1022 case kEqual:
1023 case kNotEqual:
1024 if (cont->IsSet()) {
1025 VisitCompare(selector, opcode, g.UseRegister(right),
1026 g.UseImmediate(left), cont);
1027 } else {
1028 VisitCompare(selector, opcode, g.UseRegister(right),
1029 g.UseRegister(left), cont);
1030 }
1031 break;
1032 case kSignedLessThan:
1033 case kSignedGreaterThanOrEqual:
1034 case kUnsignedLessThan:
1035 case kUnsignedGreaterThanOrEqual:
1036 VisitCompare(selector, opcode, g.UseRegister(right),
1037 g.UseImmediate(left), cont);
1038 break;
1039 default:
1040 VisitCompare(selector, opcode, g.UseRegister(right),
1041 g.UseRegister(left), cont);
1042 }
1043 } else {
1044 VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right),
1045 cont);
1046 }
1047 }
1048
1049
VisitWordCompare(InstructionSelector * selector,Node * node,FlagsContinuation * cont)1050 void VisitWordCompare(InstructionSelector* selector, Node* node,
1051 FlagsContinuation* cont) {
1052 VisitWordCompare(selector, node, kMipsCmp, cont, false);
1053 }
1054
1055 } // namespace
1056
1057
1058 // Shared routine for word comparisons against zero.
VisitWordCompareZero(InstructionSelector * selector,Node * user,Node * value,FlagsContinuation * cont)1059 void VisitWordCompareZero(InstructionSelector* selector, Node* user,
1060 Node* value, FlagsContinuation* cont) {
1061 while (selector->CanCover(user, value)) {
1062 switch (value->opcode()) {
1063 case IrOpcode::kWord32Equal: {
1064 // Combine with comparisons against 0 by simply inverting the
1065 // continuation.
1066 Int32BinopMatcher m(value);
1067 if (m.right().Is(0)) {
1068 user = value;
1069 value = m.left().node();
1070 cont->Negate();
1071 continue;
1072 }
1073 cont->OverwriteAndNegateIfEqual(kEqual);
1074 return VisitWordCompare(selector, value, cont);
1075 }
1076 case IrOpcode::kInt32LessThan:
1077 cont->OverwriteAndNegateIfEqual(kSignedLessThan);
1078 return VisitWordCompare(selector, value, cont);
1079 case IrOpcode::kInt32LessThanOrEqual:
1080 cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
1081 return VisitWordCompare(selector, value, cont);
1082 case IrOpcode::kUint32LessThan:
1083 cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
1084 return VisitWordCompare(selector, value, cont);
1085 case IrOpcode::kUint32LessThanOrEqual:
1086 cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
1087 return VisitWordCompare(selector, value, cont);
1088 case IrOpcode::kFloat32Equal:
1089 cont->OverwriteAndNegateIfEqual(kEqual);
1090 return VisitFloat32Compare(selector, value, cont);
1091 case IrOpcode::kFloat32LessThan:
1092 cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
1093 return VisitFloat32Compare(selector, value, cont);
1094 case IrOpcode::kFloat32LessThanOrEqual:
1095 cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
1096 return VisitFloat32Compare(selector, value, cont);
1097 case IrOpcode::kFloat64Equal:
1098 cont->OverwriteAndNegateIfEqual(kEqual);
1099 return VisitFloat64Compare(selector, value, cont);
1100 case IrOpcode::kFloat64LessThan:
1101 cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
1102 return VisitFloat64Compare(selector, value, cont);
1103 case IrOpcode::kFloat64LessThanOrEqual:
1104 cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
1105 return VisitFloat64Compare(selector, value, cont);
1106 case IrOpcode::kProjection:
1107 // Check if this is the overflow output projection of an
1108 // <Operation>WithOverflow node.
1109 if (ProjectionIndexOf(value->op()) == 1u) {
1110 // We cannot combine the <Operation>WithOverflow with this branch
1111 // unless the 0th projection (the use of the actual value of the
1112 // <Operation> is either nullptr, which means there's no use of the
1113 // actual value, or was already defined, which means it is scheduled
1114 // *AFTER* this branch).
1115 Node* const node = value->InputAt(0);
1116 Node* const result = NodeProperties::FindProjection(node, 0);
1117 if (!result || selector->IsDefined(result)) {
1118 switch (node->opcode()) {
1119 case IrOpcode::kInt32AddWithOverflow:
1120 cont->OverwriteAndNegateIfEqual(kOverflow);
1121 return VisitBinop(selector, node, kMipsAddOvf, cont);
1122 case IrOpcode::kInt32SubWithOverflow:
1123 cont->OverwriteAndNegateIfEqual(kOverflow);
1124 return VisitBinop(selector, node, kMipsSubOvf, cont);
1125 default:
1126 break;
1127 }
1128 }
1129 }
1130 break;
1131 case IrOpcode::kWord32And:
1132 return VisitWordCompare(selector, value, kMipsTst, cont, true);
1133 default:
1134 break;
1135 }
1136 break;
1137 }
1138
1139 // Continuation could not be combined with a compare, emit compare against 0.
1140 MipsOperandGenerator g(selector);
1141 InstructionCode const opcode = cont->Encode(kMipsCmp);
1142 InstructionOperand const value_operand = g.UseRegister(value);
1143 if (cont->IsBranch()) {
1144 selector->Emit(opcode, g.NoOutput(), value_operand, g.TempImmediate(0),
1145 g.Label(cont->true_block()), g.Label(cont->false_block()));
1146 } else {
1147 selector->Emit(opcode, g.DefineAsRegister(cont->result()), value_operand,
1148 g.TempImmediate(0));
1149 }
1150 }
1151
1152
VisitBranch(Node * branch,BasicBlock * tbranch,BasicBlock * fbranch)1153 void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch,
1154 BasicBlock* fbranch) {
1155 FlagsContinuation cont(kNotEqual, tbranch, fbranch);
1156 VisitWordCompareZero(this, branch, branch->InputAt(0), &cont);
1157 }
1158
1159
VisitSwitch(Node * node,const SwitchInfo & sw)1160 void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) {
1161 MipsOperandGenerator g(this);
1162 InstructionOperand value_operand = g.UseRegister(node->InputAt(0));
1163
1164 // Emit either ArchTableSwitch or ArchLookupSwitch.
1165 size_t table_space_cost = 9 + sw.value_range;
1166 size_t table_time_cost = 3;
1167 size_t lookup_space_cost = 2 + 2 * sw.case_count;
1168 size_t lookup_time_cost = sw.case_count;
1169 if (sw.case_count > 0 &&
1170 table_space_cost + 3 * table_time_cost <=
1171 lookup_space_cost + 3 * lookup_time_cost &&
1172 sw.min_value > std::numeric_limits<int32_t>::min()) {
1173 InstructionOperand index_operand = value_operand;
1174 if (sw.min_value) {
1175 index_operand = g.TempRegister();
1176 Emit(kMipsSub, index_operand, value_operand,
1177 g.TempImmediate(sw.min_value));
1178 }
1179 // Generate a table lookup.
1180 return EmitTableSwitch(sw, index_operand);
1181 }
1182
1183 // Generate a sequence of conditional jumps.
1184 return EmitLookupSwitch(sw, value_operand);
1185 }
1186
1187
VisitWord32Equal(Node * const node)1188 void InstructionSelector::VisitWord32Equal(Node* const node) {
1189 FlagsContinuation cont(kEqual, node);
1190 Int32BinopMatcher m(node);
1191 if (m.right().Is(0)) {
1192 return VisitWordCompareZero(this, m.node(), m.left().node(), &cont);
1193 }
1194 VisitWordCompare(this, node, &cont);
1195 }
1196
1197
VisitInt32LessThan(Node * node)1198 void InstructionSelector::VisitInt32LessThan(Node* node) {
1199 FlagsContinuation cont(kSignedLessThan, node);
1200 VisitWordCompare(this, node, &cont);
1201 }
1202
1203
VisitInt32LessThanOrEqual(Node * node)1204 void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) {
1205 FlagsContinuation cont(kSignedLessThanOrEqual, node);
1206 VisitWordCompare(this, node, &cont);
1207 }
1208
1209
VisitUint32LessThan(Node * node)1210 void InstructionSelector::VisitUint32LessThan(Node* node) {
1211 FlagsContinuation cont(kUnsignedLessThan, node);
1212 VisitWordCompare(this, node, &cont);
1213 }
1214
1215
VisitUint32LessThanOrEqual(Node * node)1216 void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) {
1217 FlagsContinuation cont(kUnsignedLessThanOrEqual, node);
1218 VisitWordCompare(this, node, &cont);
1219 }
1220
1221
VisitInt32AddWithOverflow(Node * node)1222 void InstructionSelector::VisitInt32AddWithOverflow(Node* node) {
1223 if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
1224 FlagsContinuation cont(kOverflow, ovf);
1225 return VisitBinop(this, node, kMipsAddOvf, &cont);
1226 }
1227 FlagsContinuation cont;
1228 VisitBinop(this, node, kMipsAddOvf, &cont);
1229 }
1230
1231
VisitInt32SubWithOverflow(Node * node)1232 void InstructionSelector::VisitInt32SubWithOverflow(Node* node) {
1233 if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
1234 FlagsContinuation cont(kOverflow, ovf);
1235 return VisitBinop(this, node, kMipsSubOvf, &cont);
1236 }
1237 FlagsContinuation cont;
1238 VisitBinop(this, node, kMipsSubOvf, &cont);
1239 }
1240
1241
VisitFloat32Equal(Node * node)1242 void InstructionSelector::VisitFloat32Equal(Node* node) {
1243 FlagsContinuation cont(kEqual, node);
1244 VisitFloat32Compare(this, node, &cont);
1245 }
1246
1247
VisitFloat32LessThan(Node * node)1248 void InstructionSelector::VisitFloat32LessThan(Node* node) {
1249 FlagsContinuation cont(kUnsignedLessThan, node);
1250 VisitFloat32Compare(this, node, &cont);
1251 }
1252
1253
VisitFloat32LessThanOrEqual(Node * node)1254 void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) {
1255 FlagsContinuation cont(kUnsignedLessThanOrEqual, node);
1256 VisitFloat32Compare(this, node, &cont);
1257 }
1258
1259
VisitFloat64Equal(Node * node)1260 void InstructionSelector::VisitFloat64Equal(Node* node) {
1261 FlagsContinuation cont(kEqual, node);
1262 VisitFloat64Compare(this, node, &cont);
1263 }
1264
1265
VisitFloat64LessThan(Node * node)1266 void InstructionSelector::VisitFloat64LessThan(Node* node) {
1267 FlagsContinuation cont(kUnsignedLessThan, node);
1268 VisitFloat64Compare(this, node, &cont);
1269 }
1270
1271
VisitFloat64LessThanOrEqual(Node * node)1272 void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
1273 FlagsContinuation cont(kUnsignedLessThanOrEqual, node);
1274 VisitFloat64Compare(this, node, &cont);
1275 }
1276
1277
VisitFloat64ExtractLowWord32(Node * node)1278 void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) {
1279 MipsOperandGenerator g(this);
1280 Emit(kMipsFloat64ExtractLowWord32, g.DefineAsRegister(node),
1281 g.UseRegister(node->InputAt(0)));
1282 }
1283
1284
VisitFloat64ExtractHighWord32(Node * node)1285 void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) {
1286 MipsOperandGenerator g(this);
1287 Emit(kMipsFloat64ExtractHighWord32, g.DefineAsRegister(node),
1288 g.UseRegister(node->InputAt(0)));
1289 }
1290
1291
VisitFloat64InsertLowWord32(Node * node)1292 void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) {
1293 MipsOperandGenerator g(this);
1294 Node* left = node->InputAt(0);
1295 Node* right = node->InputAt(1);
1296 Emit(kMipsFloat64InsertLowWord32, g.DefineSameAsFirst(node),
1297 g.UseRegister(left), g.UseRegister(right));
1298 }
1299
1300
VisitFloat64InsertHighWord32(Node * node)1301 void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) {
1302 MipsOperandGenerator g(this);
1303 Node* left = node->InputAt(0);
1304 Node* right = node->InputAt(1);
1305 Emit(kMipsFloat64InsertHighWord32, g.DefineSameAsFirst(node),
1306 g.UseRegister(left), g.UseRegister(right));
1307 }
1308
1309
1310 // static
1311 MachineOperatorBuilder::Flags
SupportedMachineOperatorFlags()1312 InstructionSelector::SupportedMachineOperatorFlags() {
1313 MachineOperatorBuilder::Flags flags = MachineOperatorBuilder::kNoFlags;
1314 if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
1315 IsFp64Mode()) {
1316 flags |= MachineOperatorBuilder::kFloat64RoundDown |
1317 MachineOperatorBuilder::kFloat64RoundUp |
1318 MachineOperatorBuilder::kFloat64RoundTruncate |
1319 MachineOperatorBuilder::kFloat64RoundTiesEven;
1320 }
1321 return flags | MachineOperatorBuilder::kInt32DivIsSafe |
1322 MachineOperatorBuilder::kUint32DivIsSafe |
1323 MachineOperatorBuilder::kWord32ShiftIsSafe |
1324 MachineOperatorBuilder::kFloat64Min |
1325 MachineOperatorBuilder::kFloat64Max |
1326 MachineOperatorBuilder::kFloat32Min |
1327 MachineOperatorBuilder::kFloat32Max |
1328 MachineOperatorBuilder::kFloat32RoundDown |
1329 MachineOperatorBuilder::kFloat32RoundUp |
1330 MachineOperatorBuilder::kFloat32RoundTruncate |
1331 MachineOperatorBuilder::kFloat32RoundTiesEven;
1332 }
1333
1334 } // namespace compiler
1335 } // namespace internal
1336 } // namespace v8
1337