1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2011 the V8 project authors. All rights reserved.
34
35 // A light-weight IA32 Assembler.
36
37 #ifndef V8_IA32_ASSEMBLER_IA32_H_
38 #define V8_IA32_ASSEMBLER_IA32_H_
39
40 #include <deque>
41
42 #include "src/assembler.h"
43 #include "src/isolate.h"
44 #include "src/utils.h"
45
46 namespace v8 {
47 namespace internal {
48
49 #define GENERAL_REGISTERS(V) \
50 V(eax) \
51 V(ecx) \
52 V(edx) \
53 V(ebx) \
54 V(esp) \
55 V(ebp) \
56 V(esi) \
57 V(edi)
58
59 #define ALLOCATABLE_GENERAL_REGISTERS(V) \
60 V(eax) \
61 V(ecx) \
62 V(edx) \
63 V(ebx) \
64 V(esi) \
65 V(edi)
66
67 #define DOUBLE_REGISTERS(V) \
68 V(xmm0) \
69 V(xmm1) \
70 V(xmm2) \
71 V(xmm3) \
72 V(xmm4) \
73 V(xmm5) \
74 V(xmm6) \
75 V(xmm7)
76
77 #define ALLOCATABLE_DOUBLE_REGISTERS(V) \
78 V(xmm1) \
79 V(xmm2) \
80 V(xmm3) \
81 V(xmm4) \
82 V(xmm5) \
83 V(xmm6) \
84 V(xmm7)
85
86 // CPU Registers.
87 //
88 // 1) We would prefer to use an enum, but enum values are assignment-
89 // compatible with int, which has caused code-generation bugs.
90 //
91 // 2) We would prefer to use a class instead of a struct but we don't like
92 // the register initialization to depend on the particular initialization
93 // order (which appears to be different on OS X, Linux, and Windows for the
94 // installed versions of C++ we tried). Using a struct permits C-style
95 // "initialization". Also, the Register objects cannot be const as this
96 // forces initialization stubs in MSVC, making us dependent on initialization
97 // order.
98 //
99 // 3) By not using an enum, we are possibly preventing the compiler from
100 // doing certain constant folds, which may significantly reduce the
101 // code generated for some assembly instructions (because they boil down
102 // to a few constants). If this is a problem, we could change the code
103 // such that we use an enum in optimized mode, and the struct in debug
104 // mode. This way we get the compile-time error checking in debug mode
105 // and best performance in optimized code.
106 //
107 struct Register {
108 enum Code {
109 #define REGISTER_CODE(R) kCode_##R,
110 GENERAL_REGISTERS(REGISTER_CODE)
111 #undef REGISTER_CODE
112 kAfterLast,
113 kCode_no_reg = -1
114 };
115
116 static const int kNumRegisters = Code::kAfterLast;
117
from_codeRegister118 static Register from_code(int code) {
119 DCHECK(code >= 0);
120 DCHECK(code < kNumRegisters);
121 Register r = {code};
122 return r;
123 }
124 const char* ToString();
125 bool IsAllocatable() const;
is_validRegister126 bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
isRegister127 bool is(Register reg) const { return reg_code == reg.reg_code; }
codeRegister128 int code() const {
129 DCHECK(is_valid());
130 return reg_code;
131 }
bitRegister132 int bit() const {
133 DCHECK(is_valid());
134 return 1 << reg_code;
135 }
136
is_byte_registerRegister137 bool is_byte_register() const { return reg_code <= 3; }
138
139 // Unfortunately we can't make this private in a struct.
140 int reg_code;
141 };
142
143
144 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
145 GENERAL_REGISTERS(DECLARE_REGISTER)
146 #undef DECLARE_REGISTER
147 const Register no_reg = {Register::kCode_no_reg};
148
149
150 struct DoubleRegister {
151 enum Code {
152 #define REGISTER_CODE(R) kCode_##R,
153 DOUBLE_REGISTERS(REGISTER_CODE)
154 #undef REGISTER_CODE
155 kAfterLast,
156 kCode_no_reg = -1
157 };
158
159 static const int kMaxNumRegisters = Code::kAfterLast;
160
from_codeDoubleRegister161 static DoubleRegister from_code(int code) {
162 DoubleRegister result = {code};
163 return result;
164 }
165
166 bool IsAllocatable() const;
is_validDoubleRegister167 bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
168
codeDoubleRegister169 int code() const {
170 DCHECK(is_valid());
171 return reg_code;
172 }
173
isDoubleRegister174 bool is(DoubleRegister reg) const { return reg_code == reg.reg_code; }
175
176 const char* ToString();
177
178 int reg_code;
179 };
180
181 #define DECLARE_REGISTER(R) \
182 const DoubleRegister R = {DoubleRegister::kCode_##R};
183 DOUBLE_REGISTERS(DECLARE_REGISTER)
184 #undef DECLARE_REGISTER
185 const DoubleRegister no_double_reg = {DoubleRegister::kCode_no_reg};
186
187 typedef DoubleRegister XMMRegister;
188
189 enum Condition {
190 // any value < 0 is considered no_condition
191 no_condition = -1,
192
193 overflow = 0,
194 no_overflow = 1,
195 below = 2,
196 above_equal = 3,
197 equal = 4,
198 not_equal = 5,
199 below_equal = 6,
200 above = 7,
201 negative = 8,
202 positive = 9,
203 parity_even = 10,
204 parity_odd = 11,
205 less = 12,
206 greater_equal = 13,
207 less_equal = 14,
208 greater = 15,
209
210 // aliases
211 carry = below,
212 not_carry = above_equal,
213 zero = equal,
214 not_zero = not_equal,
215 sign = negative,
216 not_sign = positive
217 };
218
219
220 // Returns the equivalent of !cc.
221 // Negation of the default no_condition (-1) results in a non-default
222 // no_condition value (-2). As long as tests for no_condition check
223 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)224 inline Condition NegateCondition(Condition cc) {
225 return static_cast<Condition>(cc ^ 1);
226 }
227
228
229 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cc)230 inline Condition CommuteCondition(Condition cc) {
231 switch (cc) {
232 case below:
233 return above;
234 case above:
235 return below;
236 case above_equal:
237 return below_equal;
238 case below_equal:
239 return above_equal;
240 case less:
241 return greater;
242 case greater:
243 return less;
244 case greater_equal:
245 return less_equal;
246 case less_equal:
247 return greater_equal;
248 default:
249 return cc;
250 }
251 }
252
253
254 enum RoundingMode {
255 kRoundToNearest = 0x0,
256 kRoundDown = 0x1,
257 kRoundUp = 0x2,
258 kRoundToZero = 0x3
259 };
260
261
262 // -----------------------------------------------------------------------------
263 // Machine instruction Immediates
264
265 class Immediate BASE_EMBEDDED {
266 public:
267 inline explicit Immediate(int x);
268 inline explicit Immediate(const ExternalReference& ext);
269 inline explicit Immediate(Handle<Object> handle);
270 inline explicit Immediate(Smi* value);
271 inline explicit Immediate(Address addr);
272
CodeRelativeOffset(Label * label)273 static Immediate CodeRelativeOffset(Label* label) {
274 return Immediate(label);
275 }
276
is_zero()277 bool is_zero() const { return x_ == 0 && RelocInfo::IsNone(rmode_); }
is_int8()278 bool is_int8() const {
279 return -128 <= x_ && x_ < 128 && RelocInfo::IsNone(rmode_);
280 }
is_int16()281 bool is_int16() const {
282 return -32768 <= x_ && x_ < 32768 && RelocInfo::IsNone(rmode_);
283 }
284
285 private:
286 inline explicit Immediate(Label* value);
287
288 int x_;
289 RelocInfo::Mode rmode_;
290
291 friend class Operand;
292 friend class Assembler;
293 friend class MacroAssembler;
294 };
295
296
297 // -----------------------------------------------------------------------------
298 // Machine instruction Operands
299
300 enum ScaleFactor {
301 times_1 = 0,
302 times_2 = 1,
303 times_4 = 2,
304 times_8 = 3,
305 times_int_size = times_4,
306 times_half_pointer_size = times_2,
307 times_pointer_size = times_4,
308 times_twice_pointer_size = times_8
309 };
310
311
312 class Operand BASE_EMBEDDED {
313 public:
314 // reg
315 INLINE(explicit Operand(Register reg));
316
317 // XMM reg
318 INLINE(explicit Operand(XMMRegister xmm_reg));
319
320 // [disp/r]
321 INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
322
323 // [disp/r]
324 INLINE(explicit Operand(Immediate imm));
325
326 // [base + disp/r]
327 explicit Operand(Register base, int32_t disp,
328 RelocInfo::Mode rmode = RelocInfo::NONE32);
329
330 // [base + index*scale + disp/r]
331 explicit Operand(Register base,
332 Register index,
333 ScaleFactor scale,
334 int32_t disp,
335 RelocInfo::Mode rmode = RelocInfo::NONE32);
336
337 // [index*scale + disp/r]
338 explicit Operand(Register index,
339 ScaleFactor scale,
340 int32_t disp,
341 RelocInfo::Mode rmode = RelocInfo::NONE32);
342
JumpTable(Register index,ScaleFactor scale,Label * table)343 static Operand JumpTable(Register index, ScaleFactor scale, Label* table) {
344 return Operand(index, scale, reinterpret_cast<int32_t>(table),
345 RelocInfo::INTERNAL_REFERENCE);
346 }
347
StaticVariable(const ExternalReference & ext)348 static Operand StaticVariable(const ExternalReference& ext) {
349 return Operand(reinterpret_cast<int32_t>(ext.address()),
350 RelocInfo::EXTERNAL_REFERENCE);
351 }
352
StaticArray(Register index,ScaleFactor scale,const ExternalReference & arr)353 static Operand StaticArray(Register index,
354 ScaleFactor scale,
355 const ExternalReference& arr) {
356 return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
357 RelocInfo::EXTERNAL_REFERENCE);
358 }
359
ForCell(Handle<Cell> cell)360 static Operand ForCell(Handle<Cell> cell) {
361 AllowDeferredHandleDereference embedding_raw_address;
362 return Operand(reinterpret_cast<int32_t>(cell.location()),
363 RelocInfo::CELL);
364 }
365
ForRegisterPlusImmediate(Register base,Immediate imm)366 static Operand ForRegisterPlusImmediate(Register base, Immediate imm) {
367 return Operand(base, imm.x_, imm.rmode_);
368 }
369
370 // Returns true if this Operand is a wrapper for the specified register.
371 bool is_reg(Register reg) const;
372
373 // Returns true if this Operand is a wrapper for one register.
374 bool is_reg_only() const;
375
376 // Asserts that this Operand is a wrapper for one register and returns the
377 // register.
378 Register reg() const;
379
380 private:
381 // Set the ModRM byte without an encoded 'reg' register. The
382 // register is encoded later as part of the emit_operand operation.
383 inline void set_modrm(int mod, Register rm);
384
385 inline void set_sib(ScaleFactor scale, Register index, Register base);
386 inline void set_disp8(int8_t disp);
387 inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
388
389 byte buf_[6];
390 // The number of bytes in buf_.
391 unsigned int len_;
392 // Only valid if len_ > 4.
393 RelocInfo::Mode rmode_;
394
395 friend class Assembler;
396 friend class MacroAssembler;
397 };
398
399
400 // -----------------------------------------------------------------------------
401 // A Displacement describes the 32bit immediate field of an instruction which
402 // may be used together with a Label in order to refer to a yet unknown code
403 // position. Displacements stored in the instruction stream are used to describe
404 // the instruction and to chain a list of instructions using the same Label.
405 // A Displacement contains 2 different fields:
406 //
407 // next field: position of next displacement in the chain (0 = end of list)
408 // type field: instruction type
409 //
410 // A next value of null (0) indicates the end of a chain (note that there can
411 // be no displacement at position zero, because there is always at least one
412 // instruction byte before the displacement).
413 //
414 // Displacement _data field layout
415 //
416 // |31.....2|1......0|
417 // [ next | type |
418
419 class Displacement BASE_EMBEDDED {
420 public:
421 enum Type { UNCONDITIONAL_JUMP, CODE_RELATIVE, OTHER, CODE_ABSOLUTE };
422
data()423 int data() const { return data_; }
type()424 Type type() const { return TypeField::decode(data_); }
next(Label * L)425 void next(Label* L) const {
426 int n = NextField::decode(data_);
427 n > 0 ? L->link_to(n) : L->Unuse();
428 }
link_to(Label * L)429 void link_to(Label* L) { init(L, type()); }
430
Displacement(int data)431 explicit Displacement(int data) { data_ = data; }
432
Displacement(Label * L,Type type)433 Displacement(Label* L, Type type) { init(L, type); }
434
print()435 void print() {
436 PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
437 NextField::decode(data_));
438 }
439
440 private:
441 int data_;
442
443 class TypeField: public BitField<Type, 0, 2> {};
444 class NextField: public BitField<int, 2, 32-2> {};
445
446 void init(Label* L, Type type);
447 };
448
449
450 class Assembler : public AssemblerBase {
451 private:
452 // We check before assembling an instruction that there is sufficient
453 // space to write an instruction and its relocation information.
454 // The relocation writer's position must be kGap bytes above the end of
455 // the generated instructions. This leaves enough space for the
456 // longest possible ia32 instruction, 15 bytes, and the longest possible
457 // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
458 // (There is a 15 byte limit on ia32 instruction length that rules out some
459 // otherwise valid instructions.)
460 // This allows for a single, fast space check per instruction.
461 static const int kGap = 32;
462
463 public:
464 // Create an assembler. Instructions and relocation information are emitted
465 // into a buffer, with the instructions starting from the beginning and the
466 // relocation information starting from the end of the buffer. See CodeDesc
467 // for a detailed comment on the layout (globals.h).
468 //
469 // If the provided buffer is NULL, the assembler allocates and grows its own
470 // buffer, and buffer_size determines the initial buffer size. The buffer is
471 // owned by the assembler and deallocated upon destruction of the assembler.
472 //
473 // If the provided buffer is not NULL, the assembler uses the provided buffer
474 // for code generation and assumes its size to be buffer_size. If the buffer
475 // is too small, a fatal error occurs. No deallocation of the buffer is done
476 // upon destruction of the assembler.
477 // TODO(vitalyr): the assembler does not need an isolate.
478 Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()479 virtual ~Assembler() { }
480
481 // GetCode emits any pending (non-emitted) code and fills the descriptor
482 // desc. GetCode() is idempotent; it returns the same result if no other
483 // Assembler functions are invoked in between GetCode() calls.
484 void GetCode(CodeDesc* desc);
485
486 // Read/Modify the code target in the branch/call instruction at pc.
487 inline static Address target_address_at(Address pc, Address constant_pool);
488 inline static void set_target_address_at(
489 Isolate* isolate, Address pc, Address constant_pool, Address target,
490 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
target_address_at(Address pc,Code * code)491 static inline Address target_address_at(Address pc, Code* code) {
492 Address constant_pool = code ? code->constant_pool() : NULL;
493 return target_address_at(pc, constant_pool);
494 }
495 static inline void set_target_address_at(
496 Isolate* isolate, Address pc, Code* code, Address target,
497 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) {
498 Address constant_pool = code ? code->constant_pool() : NULL;
499 set_target_address_at(isolate, pc, constant_pool, target);
500 }
501
502 // Return the code target address at a call site from the return address
503 // of that call in the instruction stream.
504 inline static Address target_address_from_return_address(Address pc);
505
506 // This sets the branch destination (which is in the instruction on x86).
507 // This is for calls and branches within generated code.
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)508 inline static void deserialization_set_special_target_at(
509 Isolate* isolate, Address instruction_payload, Code* code,
510 Address target) {
511 set_target_address_at(isolate, instruction_payload, code, target);
512 }
513
514 // This sets the internal reference at the pc.
515 inline static void deserialization_set_target_internal_reference_at(
516 Isolate* isolate, Address pc, Address target,
517 RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
518
519 static const int kSpecialTargetSize = kPointerSize;
520
521 // Distance between the address of the code target in the call instruction
522 // and the return address
523 static const int kCallTargetAddressOffset = kPointerSize;
524
525 static const int kCallInstructionLength = 5;
526
527 // The debug break slot must be able to contain a call instruction.
528 static const int kDebugBreakSlotLength = kCallInstructionLength;
529
530 // Distance between start of patched debug break slot and the emitted address
531 // to jump to.
532 static const int kPatchDebugBreakSlotAddressOffset = 1; // JMP imm32.
533
534 // One byte opcode for test al, 0xXX.
535 static const byte kTestAlByte = 0xA8;
536 // One byte opcode for nop.
537 static const byte kNopByte = 0x90;
538
539 // One byte opcode for a short unconditional jump.
540 static const byte kJmpShortOpcode = 0xEB;
541 // One byte prefix for a short conditional jump.
542 static const byte kJccShortPrefix = 0x70;
543 static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
544 static const byte kJcShortOpcode = kJccShortPrefix | carry;
545 static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
546 static const byte kJzShortOpcode = kJccShortPrefix | zero;
547
548
549 // ---------------------------------------------------------------------------
550 // Code generation
551 //
552 // - function names correspond one-to-one to ia32 instruction mnemonics
553 // - unless specified otherwise, instructions operate on 32bit operands
554 // - instructions on 8bit (byte) operands/registers have a trailing '_b'
555 // - instructions on 16bit (word) operands/registers have a trailing '_w'
556 // - naming conflicts with C++ keywords are resolved via a trailing '_'
557
558 // NOTE ON INTERFACE: Currently, the interface is not very consistent
559 // in the sense that some operations (e.g. mov()) can be called in more
560 // the one way to generate the same instruction: The Register argument
561 // can in some cases be replaced with an Operand(Register) argument.
562 // This should be cleaned up and made more orthogonal. The questions
563 // is: should we always use Operands instead of Registers where an
564 // Operand is possible, or should we have a Register (overloaded) form
565 // instead? We must be careful to make sure that the selected instruction
566 // is obvious from the parameters to avoid hard-to-find code generation
567 // bugs.
568
569 // Insert the smallest number of nop instructions
570 // possible to align the pc offset to a multiple
571 // of m. m must be a power of 2.
572 void Align(int m);
573 // Insert the smallest number of zero bytes possible to align the pc offset
574 // to a mulitple of m. m must be a power of 2 (>= 2).
575 void DataAlign(int m);
576 void Nop(int bytes = 1);
577 // Aligns code to something that's optimal for a jump target for the platform.
578 void CodeTargetAlign();
579
580 // Stack
581 void pushad();
582 void popad();
583
584 void pushfd();
585 void popfd();
586
587 void push(const Immediate& x);
588 void push_imm32(int32_t imm32);
589 void push(Register src);
590 void push(const Operand& src);
591
592 void pop(Register dst);
593 void pop(const Operand& dst);
594
595 void enter(const Immediate& size);
596 void leave();
597
598 // Moves
mov_b(Register dst,Register src)599 void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
600 void mov_b(Register dst, const Operand& src);
mov_b(Register dst,int8_t imm8)601 void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
mov_b(const Operand & dst,int8_t src)602 void mov_b(const Operand& dst, int8_t src) { mov_b(dst, Immediate(src)); }
603 void mov_b(const Operand& dst, const Immediate& src);
604 void mov_b(const Operand& dst, Register src);
605
606 void mov_w(Register dst, const Operand& src);
mov_w(const Operand & dst,int16_t src)607 void mov_w(const Operand& dst, int16_t src) { mov_w(dst, Immediate(src)); }
608 void mov_w(const Operand& dst, const Immediate& src);
609 void mov_w(const Operand& dst, Register src);
610
611 void mov(Register dst, int32_t imm32);
612 void mov(Register dst, const Immediate& x);
613 void mov(Register dst, Handle<Object> handle);
614 void mov(Register dst, const Operand& src);
615 void mov(Register dst, Register src);
616 void mov(const Operand& dst, const Immediate& x);
617 void mov(const Operand& dst, Handle<Object> handle);
618 void mov(const Operand& dst, Register src);
619
movsx_b(Register dst,Register src)620 void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
621 void movsx_b(Register dst, const Operand& src);
622
movsx_w(Register dst,Register src)623 void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
624 void movsx_w(Register dst, const Operand& src);
625
movzx_b(Register dst,Register src)626 void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
627 void movzx_b(Register dst, const Operand& src);
628
movzx_w(Register dst,Register src)629 void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
630 void movzx_w(Register dst, const Operand& src);
631
632 // Conditional moves
cmov(Condition cc,Register dst,Register src)633 void cmov(Condition cc, Register dst, Register src) {
634 cmov(cc, dst, Operand(src));
635 }
636 void cmov(Condition cc, Register dst, const Operand& src);
637
638 // Flag management.
639 void cld();
640
641 // Repetitive string instructions.
642 void rep_movs();
643 void rep_stos();
644 void stos();
645
646 // Exchange
647 void xchg(Register dst, Register src);
648 void xchg(Register dst, const Operand& src);
649
650 // Arithmetics
651 void adc(Register dst, int32_t imm32);
652 void adc(Register dst, const Operand& src);
653
add(Register dst,Register src)654 void add(Register dst, Register src) { add(dst, Operand(src)); }
655 void add(Register dst, const Operand& src);
656 void add(const Operand& dst, Register src);
add(Register dst,const Immediate & imm)657 void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
658 void add(const Operand& dst, const Immediate& x);
659
660 void and_(Register dst, int32_t imm32);
661 void and_(Register dst, const Immediate& x);
and_(Register dst,Register src)662 void and_(Register dst, Register src) { and_(dst, Operand(src)); }
663 void and_(Register dst, const Operand& src);
664 void and_(const Operand& dst, Register src);
665 void and_(const Operand& dst, const Immediate& x);
666
cmpb(Register reg,int8_t imm8)667 void cmpb(Register reg, int8_t imm8) { cmpb(Operand(reg), imm8); }
668 void cmpb(const Operand& op, int8_t imm8);
669 void cmpb(Register reg, const Operand& op);
670 void cmpb(const Operand& op, Register reg);
671 void cmpb_al(const Operand& op);
672 void cmpw_ax(const Operand& op);
673 void cmpw(const Operand& op, Immediate imm16);
674 void cmp(Register reg, int32_t imm32);
675 void cmp(Register reg, Handle<Object> handle);
cmp(Register reg0,Register reg1)676 void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
677 void cmp(Register reg, const Operand& op);
cmp(Register reg,const Immediate & imm)678 void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
679 void cmp(const Operand& op, const Immediate& imm);
680 void cmp(const Operand& op, Handle<Object> handle);
681
682 void dec_b(Register dst);
683 void dec_b(const Operand& dst);
684
685 void dec(Register dst);
686 void dec(const Operand& dst);
687
688 void cdq();
689
idiv(Register src)690 void idiv(Register src) { idiv(Operand(src)); }
691 void idiv(const Operand& src);
div(Register src)692 void div(Register src) { div(Operand(src)); }
693 void div(const Operand& src);
694
695 // Signed multiply instructions.
696 void imul(Register src); // edx:eax = eax * src.
imul(Register dst,Register src)697 void imul(Register dst, Register src) { imul(dst, Operand(src)); }
698 void imul(Register dst, const Operand& src); // dst = dst * src.
699 void imul(Register dst, Register src, int32_t imm32); // dst = src * imm32.
700 void imul(Register dst, const Operand& src, int32_t imm32);
701
702 void inc(Register dst);
703 void inc(const Operand& dst);
704
705 void lea(Register dst, const Operand& src);
706
707 // Unsigned multiply instruction.
708 void mul(Register src); // edx:eax = eax * reg.
709
710 void neg(Register dst);
711 void neg(const Operand& dst);
712
713 void not_(Register dst);
714 void not_(const Operand& dst);
715
716 void or_(Register dst, int32_t imm32);
or_(Register dst,Register src)717 void or_(Register dst, Register src) { or_(dst, Operand(src)); }
718 void or_(Register dst, const Operand& src);
719 void or_(const Operand& dst, Register src);
or_(Register dst,const Immediate & imm)720 void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
721 void or_(const Operand& dst, const Immediate& x);
722
723 void rcl(Register dst, uint8_t imm8);
724 void rcr(Register dst, uint8_t imm8);
725
ror(Register dst,uint8_t imm8)726 void ror(Register dst, uint8_t imm8) { ror(Operand(dst), imm8); }
727 void ror(const Operand& dst, uint8_t imm8);
ror_cl(Register dst)728 void ror_cl(Register dst) { ror_cl(Operand(dst)); }
729 void ror_cl(const Operand& dst);
730
sar(Register dst,uint8_t imm8)731 void sar(Register dst, uint8_t imm8) { sar(Operand(dst), imm8); }
732 void sar(const Operand& dst, uint8_t imm8);
sar_cl(Register dst)733 void sar_cl(Register dst) { sar_cl(Operand(dst)); }
734 void sar_cl(const Operand& dst);
735
736 void sbb(Register dst, const Operand& src);
737
shld(Register dst,Register src)738 void shld(Register dst, Register src) { shld(dst, Operand(src)); }
739 void shld(Register dst, const Operand& src);
740
shl(Register dst,uint8_t imm8)741 void shl(Register dst, uint8_t imm8) { shl(Operand(dst), imm8); }
742 void shl(const Operand& dst, uint8_t imm8);
shl_cl(Register dst)743 void shl_cl(Register dst) { shl_cl(Operand(dst)); }
744 void shl_cl(const Operand& dst);
745
shrd(Register dst,Register src)746 void shrd(Register dst, Register src) { shrd(dst, Operand(src)); }
747 void shrd(Register dst, const Operand& src);
748
shr(Register dst,uint8_t imm8)749 void shr(Register dst, uint8_t imm8) { shr(Operand(dst), imm8); }
750 void shr(const Operand& dst, uint8_t imm8);
shr_cl(Register dst)751 void shr_cl(Register dst) { shr_cl(Operand(dst)); }
752 void shr_cl(const Operand& dst);
753
sub(Register dst,const Immediate & imm)754 void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
755 void sub(const Operand& dst, const Immediate& x);
sub(Register dst,Register src)756 void sub(Register dst, Register src) { sub(dst, Operand(src)); }
757 void sub(Register dst, const Operand& src);
758 void sub(const Operand& dst, Register src);
759
760 void test(Register reg, const Immediate& imm);
test(Register reg0,Register reg1)761 void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
762 void test(Register reg, const Operand& op);
763 void test_b(Register reg, const Operand& op);
764 void test(const Operand& op, const Immediate& imm);
765 void test_b(Register reg, uint8_t imm8);
766 void test_b(const Operand& op, uint8_t imm8);
767
768 void xor_(Register dst, int32_t imm32);
xor_(Register dst,Register src)769 void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
770 void xor_(Register dst, const Operand& src);
771 void xor_(const Operand& dst, Register src);
xor_(Register dst,const Immediate & imm)772 void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
773 void xor_(const Operand& dst, const Immediate& x);
774
775 // Bit operations.
776 void bt(const Operand& dst, Register src);
bts(Register dst,Register src)777 void bts(Register dst, Register src) { bts(Operand(dst), src); }
778 void bts(const Operand& dst, Register src);
bsr(Register dst,Register src)779 void bsr(Register dst, Register src) { bsr(dst, Operand(src)); }
780 void bsr(Register dst, const Operand& src);
bsf(Register dst,Register src)781 void bsf(Register dst, Register src) { bsf(dst, Operand(src)); }
782 void bsf(Register dst, const Operand& src);
783
784 // Miscellaneous
785 void hlt();
786 void int3();
787 void nop();
788 void ret(int imm16);
789 void ud2();
790
791 // Label operations & relative jumps (PPUM Appendix D)
792 //
793 // Takes a branch opcode (cc) and a label (L) and generates
794 // either a backward branch or a forward branch and links it
795 // to the label fixup chain. Usage:
796 //
797 // Label L; // unbound label
798 // j(cc, &L); // forward branch to unbound label
799 // bind(&L); // bind label to the current pc
800 // j(cc, &L); // backward branch to bound label
801 // bind(&L); // illegal: a label may be bound only once
802 //
803 // Note: The same Label can be used for forward and backward branches
804 // but it may be bound only once.
805
806 void bind(Label* L); // binds an unbound label L to the current code position
807
808 // Calls
809 void call(Label* L);
810 void call(byte* entry, RelocInfo::Mode rmode);
811 int CallSize(const Operand& adr);
call(Register reg)812 void call(Register reg) { call(Operand(reg)); }
813 void call(const Operand& adr);
814 int CallSize(Handle<Code> code, RelocInfo::Mode mode);
815 void call(Handle<Code> code,
816 RelocInfo::Mode rmode,
817 TypeFeedbackId id = TypeFeedbackId::None());
818
819 // Jumps
820 // unconditional jump to L
821 void jmp(Label* L, Label::Distance distance = Label::kFar);
822 void jmp(byte* entry, RelocInfo::Mode rmode);
jmp(Register reg)823 void jmp(Register reg) { jmp(Operand(reg)); }
824 void jmp(const Operand& adr);
825 void jmp(Handle<Code> code, RelocInfo::Mode rmode);
826
827 // Conditional jumps
828 void j(Condition cc,
829 Label* L,
830 Label::Distance distance = Label::kFar);
831 void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
832 void j(Condition cc, Handle<Code> code,
833 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
834
835 // Floating-point operations
836 void fld(int i);
837 void fstp(int i);
838
839 void fld1();
840 void fldz();
841 void fldpi();
842 void fldln2();
843
844 void fld_s(const Operand& adr);
845 void fld_d(const Operand& adr);
846
847 void fstp_s(const Operand& adr);
848 void fst_s(const Operand& adr);
849 void fstp_d(const Operand& adr);
850 void fst_d(const Operand& adr);
851
852 void fild_s(const Operand& adr);
853 void fild_d(const Operand& adr);
854
855 void fist_s(const Operand& adr);
856
857 void fistp_s(const Operand& adr);
858 void fistp_d(const Operand& adr);
859
860 // The fisttp instructions require SSE3.
861 void fisttp_s(const Operand& adr);
862 void fisttp_d(const Operand& adr);
863
864 void fabs();
865 void fchs();
866 void fcos();
867 void fsin();
868 void fptan();
869 void fyl2x();
870 void f2xm1();
871 void fscale();
872 void fninit();
873
874 void fadd(int i);
875 void fadd_i(int i);
876 void fsub(int i);
877 void fsub_i(int i);
878 void fmul(int i);
879 void fmul_i(int i);
880 void fdiv(int i);
881 void fdiv_i(int i);
882
883 void fisub_s(const Operand& adr);
884
885 void faddp(int i = 1);
886 void fsubp(int i = 1);
887 void fsubrp(int i = 1);
888 void fmulp(int i = 1);
889 void fdivp(int i = 1);
890 void fprem();
891 void fprem1();
892
893 void fxch(int i = 1);
894 void fincstp();
895 void ffree(int i = 0);
896
897 void ftst();
898 void fucomp(int i);
899 void fucompp();
900 void fucomi(int i);
901 void fucomip();
902 void fcompp();
903 void fnstsw_ax();
904 void fwait();
905 void fnclex();
906
907 void frndint();
908
909 void sahf();
910 void setcc(Condition cc, Register reg);
911
912 void cpuid();
913
914 // SSE instructions
addss(XMMRegister dst,XMMRegister src)915 void addss(XMMRegister dst, XMMRegister src) { addss(dst, Operand(src)); }
916 void addss(XMMRegister dst, const Operand& src);
subss(XMMRegister dst,XMMRegister src)917 void subss(XMMRegister dst, XMMRegister src) { subss(dst, Operand(src)); }
918 void subss(XMMRegister dst, const Operand& src);
mulss(XMMRegister dst,XMMRegister src)919 void mulss(XMMRegister dst, XMMRegister src) { mulss(dst, Operand(src)); }
920 void mulss(XMMRegister dst, const Operand& src);
divss(XMMRegister dst,XMMRegister src)921 void divss(XMMRegister dst, XMMRegister src) { divss(dst, Operand(src)); }
922 void divss(XMMRegister dst, const Operand& src);
sqrtss(XMMRegister dst,XMMRegister src)923 void sqrtss(XMMRegister dst, XMMRegister src) { sqrtss(dst, Operand(src)); }
924 void sqrtss(XMMRegister dst, const Operand& src);
925
ucomiss(XMMRegister dst,XMMRegister src)926 void ucomiss(XMMRegister dst, XMMRegister src) { ucomiss(dst, Operand(src)); }
927 void ucomiss(XMMRegister dst, const Operand& src);
928 void movaps(XMMRegister dst, XMMRegister src);
929 void shufps(XMMRegister dst, XMMRegister src, byte imm8);
930
maxss(XMMRegister dst,XMMRegister src)931 void maxss(XMMRegister dst, XMMRegister src) { maxss(dst, Operand(src)); }
932 void maxss(XMMRegister dst, const Operand& src);
minss(XMMRegister dst,XMMRegister src)933 void minss(XMMRegister dst, XMMRegister src) { minss(dst, Operand(src)); }
934 void minss(XMMRegister dst, const Operand& src);
935
936 void andps(XMMRegister dst, const Operand& src);
andps(XMMRegister dst,XMMRegister src)937 void andps(XMMRegister dst, XMMRegister src) { andps(dst, Operand(src)); }
938 void xorps(XMMRegister dst, const Operand& src);
xorps(XMMRegister dst,XMMRegister src)939 void xorps(XMMRegister dst, XMMRegister src) { xorps(dst, Operand(src)); }
940 void orps(XMMRegister dst, const Operand& src);
orps(XMMRegister dst,XMMRegister src)941 void orps(XMMRegister dst, XMMRegister src) { orps(dst, Operand(src)); }
942
943 void addps(XMMRegister dst, const Operand& src);
addps(XMMRegister dst,XMMRegister src)944 void addps(XMMRegister dst, XMMRegister src) { addps(dst, Operand(src)); }
945 void subps(XMMRegister dst, const Operand& src);
subps(XMMRegister dst,XMMRegister src)946 void subps(XMMRegister dst, XMMRegister src) { subps(dst, Operand(src)); }
947 void mulps(XMMRegister dst, const Operand& src);
mulps(XMMRegister dst,XMMRegister src)948 void mulps(XMMRegister dst, XMMRegister src) { mulps(dst, Operand(src)); }
949 void divps(XMMRegister dst, const Operand& src);
divps(XMMRegister dst,XMMRegister src)950 void divps(XMMRegister dst, XMMRegister src) { divps(dst, Operand(src)); }
951
952 // SSE2 instructions
953 void cvttss2si(Register dst, const Operand& src);
cvttss2si(Register dst,XMMRegister src)954 void cvttss2si(Register dst, XMMRegister src) {
955 cvttss2si(dst, Operand(src));
956 }
957 void cvttsd2si(Register dst, const Operand& src);
cvttsd2si(Register dst,XMMRegister src)958 void cvttsd2si(Register dst, XMMRegister src) {
959 cvttsd2si(dst, Operand(src));
960 }
961 void cvtsd2si(Register dst, XMMRegister src);
962
cvtsi2sd(XMMRegister dst,Register src)963 void cvtsi2sd(XMMRegister dst, Register src) { cvtsi2sd(dst, Operand(src)); }
964 void cvtsi2sd(XMMRegister dst, const Operand& src);
965 void cvtss2sd(XMMRegister dst, const Operand& src);
cvtss2sd(XMMRegister dst,XMMRegister src)966 void cvtss2sd(XMMRegister dst, XMMRegister src) {
967 cvtss2sd(dst, Operand(src));
968 }
969 void cvtsd2ss(XMMRegister dst, const Operand& src);
cvtsd2ss(XMMRegister dst,XMMRegister src)970 void cvtsd2ss(XMMRegister dst, XMMRegister src) {
971 cvtsd2ss(dst, Operand(src));
972 }
addsd(XMMRegister dst,XMMRegister src)973 void addsd(XMMRegister dst, XMMRegister src) { addsd(dst, Operand(src)); }
974 void addsd(XMMRegister dst, const Operand& src);
subsd(XMMRegister dst,XMMRegister src)975 void subsd(XMMRegister dst, XMMRegister src) { subsd(dst, Operand(src)); }
976 void subsd(XMMRegister dst, const Operand& src);
mulsd(XMMRegister dst,XMMRegister src)977 void mulsd(XMMRegister dst, XMMRegister src) { mulsd(dst, Operand(src)); }
978 void mulsd(XMMRegister dst, const Operand& src);
divsd(XMMRegister dst,XMMRegister src)979 void divsd(XMMRegister dst, XMMRegister src) { divsd(dst, Operand(src)); }
980 void divsd(XMMRegister dst, const Operand& src);
981 void xorpd(XMMRegister dst, XMMRegister src);
sqrtsd(XMMRegister dst,XMMRegister src)982 void sqrtsd(XMMRegister dst, XMMRegister src) { sqrtsd(dst, Operand(src)); }
983 void sqrtsd(XMMRegister dst, const Operand& src);
984
985 void andpd(XMMRegister dst, XMMRegister src);
986 void orpd(XMMRegister dst, XMMRegister src);
987
ucomisd(XMMRegister dst,XMMRegister src)988 void ucomisd(XMMRegister dst, XMMRegister src) { ucomisd(dst, Operand(src)); }
989 void ucomisd(XMMRegister dst, const Operand& src);
990
991 void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
992 void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
993
994 void movmskpd(Register dst, XMMRegister src);
995 void movmskps(Register dst, XMMRegister src);
996
997 void cmpltsd(XMMRegister dst, XMMRegister src);
998 void pcmpeqd(XMMRegister dst, XMMRegister src);
999
1000 void punpckldq(XMMRegister dst, XMMRegister src);
1001 void punpckhdq(XMMRegister dst, XMMRegister src);
1002
maxsd(XMMRegister dst,XMMRegister src)1003 void maxsd(XMMRegister dst, XMMRegister src) { maxsd(dst, Operand(src)); }
1004 void maxsd(XMMRegister dst, const Operand& src);
minsd(XMMRegister dst,XMMRegister src)1005 void minsd(XMMRegister dst, XMMRegister src) { minsd(dst, Operand(src)); }
1006 void minsd(XMMRegister dst, const Operand& src);
1007
1008 void movdqa(XMMRegister dst, const Operand& src);
1009 void movdqa(const Operand& dst, XMMRegister src);
1010 void movdqu(XMMRegister dst, const Operand& src);
1011 void movdqu(const Operand& dst, XMMRegister src);
movdq(bool aligned,XMMRegister dst,const Operand & src)1012 void movdq(bool aligned, XMMRegister dst, const Operand& src) {
1013 if (aligned) {
1014 movdqa(dst, src);
1015 } else {
1016 movdqu(dst, src);
1017 }
1018 }
1019
movd(XMMRegister dst,Register src)1020 void movd(XMMRegister dst, Register src) { movd(dst, Operand(src)); }
1021 void movd(XMMRegister dst, const Operand& src);
movd(Register dst,XMMRegister src)1022 void movd(Register dst, XMMRegister src) { movd(Operand(dst), src); }
1023 void movd(const Operand& dst, XMMRegister src);
movsd(XMMRegister dst,XMMRegister src)1024 void movsd(XMMRegister dst, XMMRegister src) { movsd(dst, Operand(src)); }
1025 void movsd(XMMRegister dst, const Operand& src);
1026 void movsd(const Operand& dst, XMMRegister src);
1027
1028
1029 void movss(XMMRegister dst, const Operand& src);
1030 void movss(const Operand& dst, XMMRegister src);
movss(XMMRegister dst,XMMRegister src)1031 void movss(XMMRegister dst, XMMRegister src) { movss(dst, Operand(src)); }
1032 void extractps(Register dst, XMMRegister src, byte imm8);
1033
1034 void pand(XMMRegister dst, XMMRegister src);
1035 void pxor(XMMRegister dst, XMMRegister src);
1036 void por(XMMRegister dst, XMMRegister src);
1037 void ptest(XMMRegister dst, XMMRegister src);
1038
1039 void pslld(XMMRegister reg, int8_t shift);
1040 void psrld(XMMRegister reg, int8_t shift);
1041 void psllq(XMMRegister reg, int8_t shift);
1042 void psllq(XMMRegister dst, XMMRegister src);
1043 void psrlq(XMMRegister reg, int8_t shift);
1044 void psrlq(XMMRegister dst, XMMRegister src);
1045 void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle);
pextrd(Register dst,XMMRegister src,int8_t offset)1046 void pextrd(Register dst, XMMRegister src, int8_t offset) {
1047 pextrd(Operand(dst), src, offset);
1048 }
1049 void pextrd(const Operand& dst, XMMRegister src, int8_t offset);
pinsrd(XMMRegister dst,Register src,int8_t offset)1050 void pinsrd(XMMRegister dst, Register src, int8_t offset) {
1051 pinsrd(dst, Operand(src), offset);
1052 }
1053 void pinsrd(XMMRegister dst, const Operand& src, int8_t offset);
1054
1055 // AVX instructions
vfmadd132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1056 void vfmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1057 vfmadd132sd(dst, src1, Operand(src2));
1058 }
vfmadd213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1059 void vfmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1060 vfmadd213sd(dst, src1, Operand(src2));
1061 }
vfmadd231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1062 void vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1063 vfmadd231sd(dst, src1, Operand(src2));
1064 }
vfmadd132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1065 void vfmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1066 vfmasd(0x99, dst, src1, src2);
1067 }
vfmadd213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1068 void vfmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1069 vfmasd(0xa9, dst, src1, src2);
1070 }
vfmadd231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1071 void vfmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1072 vfmasd(0xb9, dst, src1, src2);
1073 }
vfmsub132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1074 void vfmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1075 vfmsub132sd(dst, src1, Operand(src2));
1076 }
vfmsub213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1077 void vfmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1078 vfmsub213sd(dst, src1, Operand(src2));
1079 }
vfmsub231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1080 void vfmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1081 vfmsub231sd(dst, src1, Operand(src2));
1082 }
vfmsub132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1083 void vfmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1084 vfmasd(0x9b, dst, src1, src2);
1085 }
vfmsub213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1086 void vfmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1087 vfmasd(0xab, dst, src1, src2);
1088 }
vfmsub231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1089 void vfmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1090 vfmasd(0xbb, dst, src1, src2);
1091 }
vfnmadd132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1092 void vfnmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1093 vfnmadd132sd(dst, src1, Operand(src2));
1094 }
vfnmadd213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1095 void vfnmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1096 vfnmadd213sd(dst, src1, Operand(src2));
1097 }
vfnmadd231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1098 void vfnmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1099 vfnmadd231sd(dst, src1, Operand(src2));
1100 }
vfnmadd132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1101 void vfnmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1102 vfmasd(0x9d, dst, src1, src2);
1103 }
vfnmadd213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1104 void vfnmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1105 vfmasd(0xad, dst, src1, src2);
1106 }
vfnmadd231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1107 void vfnmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1108 vfmasd(0xbd, dst, src1, src2);
1109 }
vfnmsub132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1110 void vfnmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1111 vfnmsub132sd(dst, src1, Operand(src2));
1112 }
vfnmsub213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1113 void vfnmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1114 vfnmsub213sd(dst, src1, Operand(src2));
1115 }
vfnmsub231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1116 void vfnmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1117 vfnmsub231sd(dst, src1, Operand(src2));
1118 }
vfnmsub132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1119 void vfnmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1120 vfmasd(0x9f, dst, src1, src2);
1121 }
vfnmsub213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1122 void vfnmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1123 vfmasd(0xaf, dst, src1, src2);
1124 }
vfnmsub231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1125 void vfnmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1126 vfmasd(0xbf, dst, src1, src2);
1127 }
1128 void vfmasd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1129
vfmadd132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1130 void vfmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1131 vfmadd132ss(dst, src1, Operand(src2));
1132 }
vfmadd213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1133 void vfmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1134 vfmadd213ss(dst, src1, Operand(src2));
1135 }
vfmadd231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1136 void vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1137 vfmadd231ss(dst, src1, Operand(src2));
1138 }
vfmadd132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1139 void vfmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1140 vfmass(0x99, dst, src1, src2);
1141 }
vfmadd213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1142 void vfmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1143 vfmass(0xa9, dst, src1, src2);
1144 }
vfmadd231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1145 void vfmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1146 vfmass(0xb9, dst, src1, src2);
1147 }
vfmsub132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1148 void vfmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1149 vfmsub132ss(dst, src1, Operand(src2));
1150 }
vfmsub213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1151 void vfmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1152 vfmsub213ss(dst, src1, Operand(src2));
1153 }
vfmsub231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1154 void vfmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1155 vfmsub231ss(dst, src1, Operand(src2));
1156 }
vfmsub132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1157 void vfmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1158 vfmass(0x9b, dst, src1, src2);
1159 }
vfmsub213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1160 void vfmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1161 vfmass(0xab, dst, src1, src2);
1162 }
vfmsub231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1163 void vfmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1164 vfmass(0xbb, dst, src1, src2);
1165 }
vfnmadd132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1166 void vfnmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1167 vfnmadd132ss(dst, src1, Operand(src2));
1168 }
vfnmadd213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1169 void vfnmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1170 vfnmadd213ss(dst, src1, Operand(src2));
1171 }
vfnmadd231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1172 void vfnmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1173 vfnmadd231ss(dst, src1, Operand(src2));
1174 }
vfnmadd132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1175 void vfnmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1176 vfmass(0x9d, dst, src1, src2);
1177 }
vfnmadd213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1178 void vfnmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1179 vfmass(0xad, dst, src1, src2);
1180 }
vfnmadd231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1181 void vfnmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1182 vfmass(0xbd, dst, src1, src2);
1183 }
vfnmsub132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1184 void vfnmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1185 vfnmsub132ss(dst, src1, Operand(src2));
1186 }
vfnmsub213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1187 void vfnmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1188 vfnmsub213ss(dst, src1, Operand(src2));
1189 }
vfnmsub231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1190 void vfnmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1191 vfnmsub231ss(dst, src1, Operand(src2));
1192 }
vfnmsub132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1193 void vfnmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1194 vfmass(0x9f, dst, src1, src2);
1195 }
vfnmsub213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1196 void vfnmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1197 vfmass(0xaf, dst, src1, src2);
1198 }
vfnmsub231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1199 void vfnmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1200 vfmass(0xbf, dst, src1, src2);
1201 }
1202 void vfmass(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1203
vaddsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1204 void vaddsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1205 vaddsd(dst, src1, Operand(src2));
1206 }
vaddsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1207 void vaddsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1208 vsd(0x58, dst, src1, src2);
1209 }
vsubsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1210 void vsubsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1211 vsubsd(dst, src1, Operand(src2));
1212 }
vsubsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1213 void vsubsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1214 vsd(0x5c, dst, src1, src2);
1215 }
vmulsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1216 void vmulsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1217 vmulsd(dst, src1, Operand(src2));
1218 }
vmulsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1219 void vmulsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1220 vsd(0x59, dst, src1, src2);
1221 }
vdivsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1222 void vdivsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1223 vdivsd(dst, src1, Operand(src2));
1224 }
vdivsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1225 void vdivsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1226 vsd(0x5e, dst, src1, src2);
1227 }
vmaxsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1228 void vmaxsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1229 vmaxsd(dst, src1, Operand(src2));
1230 }
vmaxsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1231 void vmaxsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1232 vsd(0x5f, dst, src1, src2);
1233 }
vminsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1234 void vminsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1235 vminsd(dst, src1, Operand(src2));
1236 }
vminsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1237 void vminsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1238 vsd(0x5d, dst, src1, src2);
1239 }
1240 void vsd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1241
vaddss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1242 void vaddss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1243 vaddss(dst, src1, Operand(src2));
1244 }
vaddss(XMMRegister dst,XMMRegister src1,const Operand & src2)1245 void vaddss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1246 vss(0x58, dst, src1, src2);
1247 }
vsubss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1248 void vsubss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1249 vsubss(dst, src1, Operand(src2));
1250 }
vsubss(XMMRegister dst,XMMRegister src1,const Operand & src2)1251 void vsubss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1252 vss(0x5c, dst, src1, src2);
1253 }
vmulss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1254 void vmulss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1255 vmulss(dst, src1, Operand(src2));
1256 }
vmulss(XMMRegister dst,XMMRegister src1,const Operand & src2)1257 void vmulss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1258 vss(0x59, dst, src1, src2);
1259 }
vdivss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1260 void vdivss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1261 vdivss(dst, src1, Operand(src2));
1262 }
vdivss(XMMRegister dst,XMMRegister src1,const Operand & src2)1263 void vdivss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1264 vss(0x5e, dst, src1, src2);
1265 }
vmaxss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1266 void vmaxss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1267 vmaxss(dst, src1, Operand(src2));
1268 }
vmaxss(XMMRegister dst,XMMRegister src1,const Operand & src2)1269 void vmaxss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1270 vss(0x5f, dst, src1, src2);
1271 }
vminss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1272 void vminss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1273 vminss(dst, src1, Operand(src2));
1274 }
vminss(XMMRegister dst,XMMRegister src1,const Operand & src2)1275 void vminss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1276 vss(0x5d, dst, src1, src2);
1277 }
1278 void vss(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1279
1280 // BMI instruction
andn(Register dst,Register src1,Register src2)1281 void andn(Register dst, Register src1, Register src2) {
1282 andn(dst, src1, Operand(src2));
1283 }
andn(Register dst,Register src1,const Operand & src2)1284 void andn(Register dst, Register src1, const Operand& src2) {
1285 bmi1(0xf2, dst, src1, src2);
1286 }
bextr(Register dst,Register src1,Register src2)1287 void bextr(Register dst, Register src1, Register src2) {
1288 bextr(dst, Operand(src1), src2);
1289 }
bextr(Register dst,const Operand & src1,Register src2)1290 void bextr(Register dst, const Operand& src1, Register src2) {
1291 bmi1(0xf7, dst, src2, src1);
1292 }
blsi(Register dst,Register src)1293 void blsi(Register dst, Register src) { blsi(dst, Operand(src)); }
blsi(Register dst,const Operand & src)1294 void blsi(Register dst, const Operand& src) {
1295 Register ireg = {3};
1296 bmi1(0xf3, ireg, dst, src);
1297 }
blsmsk(Register dst,Register src)1298 void blsmsk(Register dst, Register src) { blsmsk(dst, Operand(src)); }
blsmsk(Register dst,const Operand & src)1299 void blsmsk(Register dst, const Operand& src) {
1300 Register ireg = {2};
1301 bmi1(0xf3, ireg, dst, src);
1302 }
blsr(Register dst,Register src)1303 void blsr(Register dst, Register src) { blsr(dst, Operand(src)); }
blsr(Register dst,const Operand & src)1304 void blsr(Register dst, const Operand& src) {
1305 Register ireg = {1};
1306 bmi1(0xf3, ireg, dst, src);
1307 }
tzcnt(Register dst,Register src)1308 void tzcnt(Register dst, Register src) { tzcnt(dst, Operand(src)); }
1309 void tzcnt(Register dst, const Operand& src);
1310
lzcnt(Register dst,Register src)1311 void lzcnt(Register dst, Register src) { lzcnt(dst, Operand(src)); }
1312 void lzcnt(Register dst, const Operand& src);
1313
popcnt(Register dst,Register src)1314 void popcnt(Register dst, Register src) { popcnt(dst, Operand(src)); }
1315 void popcnt(Register dst, const Operand& src);
1316
bzhi(Register dst,Register src1,Register src2)1317 void bzhi(Register dst, Register src1, Register src2) {
1318 bzhi(dst, Operand(src1), src2);
1319 }
bzhi(Register dst,const Operand & src1,Register src2)1320 void bzhi(Register dst, const Operand& src1, Register src2) {
1321 bmi2(kNone, 0xf5, dst, src2, src1);
1322 }
mulx(Register dst1,Register dst2,Register src)1323 void mulx(Register dst1, Register dst2, Register src) {
1324 mulx(dst1, dst2, Operand(src));
1325 }
mulx(Register dst1,Register dst2,const Operand & src)1326 void mulx(Register dst1, Register dst2, const Operand& src) {
1327 bmi2(kF2, 0xf6, dst1, dst2, src);
1328 }
pdep(Register dst,Register src1,Register src2)1329 void pdep(Register dst, Register src1, Register src2) {
1330 pdep(dst, src1, Operand(src2));
1331 }
pdep(Register dst,Register src1,const Operand & src2)1332 void pdep(Register dst, Register src1, const Operand& src2) {
1333 bmi2(kF2, 0xf5, dst, src1, src2);
1334 }
pext(Register dst,Register src1,Register src2)1335 void pext(Register dst, Register src1, Register src2) {
1336 pext(dst, src1, Operand(src2));
1337 }
pext(Register dst,Register src1,const Operand & src2)1338 void pext(Register dst, Register src1, const Operand& src2) {
1339 bmi2(kF3, 0xf5, dst, src1, src2);
1340 }
sarx(Register dst,Register src1,Register src2)1341 void sarx(Register dst, Register src1, Register src2) {
1342 sarx(dst, Operand(src1), src2);
1343 }
sarx(Register dst,const Operand & src1,Register src2)1344 void sarx(Register dst, const Operand& src1, Register src2) {
1345 bmi2(kF3, 0xf7, dst, src2, src1);
1346 }
shlx(Register dst,Register src1,Register src2)1347 void shlx(Register dst, Register src1, Register src2) {
1348 shlx(dst, Operand(src1), src2);
1349 }
shlx(Register dst,const Operand & src1,Register src2)1350 void shlx(Register dst, const Operand& src1, Register src2) {
1351 bmi2(k66, 0xf7, dst, src2, src1);
1352 }
shrx(Register dst,Register src1,Register src2)1353 void shrx(Register dst, Register src1, Register src2) {
1354 shrx(dst, Operand(src1), src2);
1355 }
shrx(Register dst,const Operand & src1,Register src2)1356 void shrx(Register dst, const Operand& src1, Register src2) {
1357 bmi2(kF2, 0xf7, dst, src2, src1);
1358 }
rorx(Register dst,Register src,byte imm8)1359 void rorx(Register dst, Register src, byte imm8) {
1360 rorx(dst, Operand(src), imm8);
1361 }
1362 void rorx(Register dst, const Operand& src, byte imm8);
1363
1364 #define PACKED_OP_LIST(V) \
1365 V(and, 0x54) \
1366 V(xor, 0x57)
1367
1368 #define AVX_PACKED_OP_DECLARE(name, opcode) \
1369 void v##name##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
1370 vps(opcode, dst, src1, Operand(src2)); \
1371 } \
1372 void v##name##ps(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1373 vps(opcode, dst, src1, src2); \
1374 } \
1375 void v##name##pd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
1376 vpd(opcode, dst, src1, Operand(src2)); \
1377 } \
1378 void v##name##pd(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1379 vpd(opcode, dst, src1, src2); \
1380 }
1381
1382 PACKED_OP_LIST(AVX_PACKED_OP_DECLARE);
1383 void vps(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1384 void vps(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1385 void vpd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1386 void vpd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1387
1388 // Prefetch src position into cache level.
1389 // Level 1, 2 or 3 specifies CPU cache level. Level 0 specifies a
1390 // non-temporal
1391 void prefetch(const Operand& src, int level);
1392 // TODO(lrn): Need SFENCE for movnt?
1393
1394 // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)1395 int SizeOfCodeGeneratedSince(Label* label) {
1396 return pc_offset() - label->pos();
1397 }
1398
1399 // Mark generator continuation.
1400 void RecordGeneratorContinuation();
1401
1402 // Mark address of a debug break slot.
1403 void RecordDebugBreakSlot(RelocInfo::Mode mode);
1404
1405 // Record a comment relocation entry that can be used by a disassembler.
1406 // Use --code-comments to enable.
1407 void RecordComment(const char* msg);
1408
1409 // Record a deoptimization reason that can be used by a log or cpu profiler.
1410 // Use --trace-deopt to enable.
1411 void RecordDeoptReason(const int reason, const SourcePosition position);
1412
1413 // Writes a single byte or word of data in the code stream. Used for
1414 // inline tables, e.g., jump-tables.
1415 void db(uint8_t data);
1416 void dd(uint32_t data);
1417 void dq(uint64_t data);
dp(uintptr_t data)1418 void dp(uintptr_t data) { dd(data); }
1419 void dd(Label* label);
1420
1421 // Check if there is less than kGap bytes available in the buffer.
1422 // If this is the case, we need to grow the buffer before emitting
1423 // an instruction or relocation information.
buffer_overflow()1424 inline bool buffer_overflow() const {
1425 return pc_ >= reloc_info_writer.pos() - kGap;
1426 }
1427
1428 // Get the number of bytes available in the buffer.
available_space()1429 inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1430
1431 static bool IsNop(Address addr);
1432
positions_recorder()1433 PositionsRecorder* positions_recorder() { return &positions_recorder_; }
1434
relocation_writer_size()1435 int relocation_writer_size() {
1436 return (buffer_ + buffer_size_) - reloc_info_writer.pos();
1437 }
1438
1439 // Avoid overflows for displacements etc.
1440 static const int kMaximalBufferSize = 512*MB;
1441
byte_at(int pos)1442 byte byte_at(int pos) { return buffer_[pos]; }
set_byte_at(int pos,byte value)1443 void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
1444
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1445 void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1446 ConstantPoolEntry::Access access,
1447 ConstantPoolEntry::Type type) {
1448 // No embedded constant pool support.
1449 UNREACHABLE();
1450 }
1451
1452 protected:
1453 void emit_sse_operand(XMMRegister reg, const Operand& adr);
1454 void emit_sse_operand(XMMRegister dst, XMMRegister src);
1455 void emit_sse_operand(Register dst, XMMRegister src);
1456 void emit_sse_operand(XMMRegister dst, Register src);
1457
addr_at(int pos)1458 byte* addr_at(int pos) { return buffer_ + pos; }
1459
1460
1461 private:
long_at(int pos)1462 uint32_t long_at(int pos) {
1463 return *reinterpret_cast<uint32_t*>(addr_at(pos));
1464 }
long_at_put(int pos,uint32_t x)1465 void long_at_put(int pos, uint32_t x) {
1466 *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1467 }
1468
1469 // code emission
1470 void GrowBuffer();
1471 inline void emit(uint32_t x);
1472 inline void emit(Handle<Object> handle);
1473 inline void emit(uint32_t x,
1474 RelocInfo::Mode rmode,
1475 TypeFeedbackId id = TypeFeedbackId::None());
1476 inline void emit(Handle<Code> code,
1477 RelocInfo::Mode rmode,
1478 TypeFeedbackId id = TypeFeedbackId::None());
1479 inline void emit(const Immediate& x);
1480 inline void emit_w(const Immediate& x);
1481 inline void emit_q(uint64_t x);
1482
1483 // Emit the code-object-relative offset of the label's position
1484 inline void emit_code_relative_offset(Label* label);
1485
1486 // instruction generation
1487 void emit_arith_b(int op1, int op2, Register dst, int imm8);
1488
1489 // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
1490 // with a given destination expression and an immediate operand. It attempts
1491 // to use the shortest encoding possible.
1492 // sel specifies the /n in the modrm byte (see the Intel PRM).
1493 void emit_arith(int sel, Operand dst, const Immediate& x);
1494
1495 void emit_operand(Register reg, const Operand& adr);
1496
1497 void emit_label(Label* label);
1498
1499 void emit_farith(int b1, int b2, int i);
1500
1501 // Emit vex prefix
1502 enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 };
1503 enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 };
1504 enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 };
1505 enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 };
1506 inline void emit_vex_prefix(XMMRegister v, VectorLength l, SIMDPrefix pp,
1507 LeadingOpcode m, VexW w);
1508 inline void emit_vex_prefix(Register v, VectorLength l, SIMDPrefix pp,
1509 LeadingOpcode m, VexW w);
1510
1511 // labels
1512 void print(Label* L);
1513 void bind_to(Label* L, int pos);
1514
1515 // displacements
1516 inline Displacement disp_at(Label* L);
1517 inline void disp_at_put(Label* L, Displacement disp);
1518 inline void emit_disp(Label* L, Displacement::Type type);
1519 inline void emit_near_disp(Label* L);
1520
1521 // Most BMI instructions are similiar.
1522 void bmi1(byte op, Register reg, Register vreg, const Operand& rm);
1523 void bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg,
1524 const Operand& rm);
1525
1526 // record reloc info for current pc_
1527 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1528
1529 friend class CodePatcher;
1530 friend class EnsureSpace;
1531
1532 // Internal reference positions, required for (potential) patching in
1533 // GrowBuffer(); contains only those internal references whose labels
1534 // are already bound.
1535 std::deque<int> internal_reference_positions_;
1536
1537 // code generation
1538 RelocInfoWriter reloc_info_writer;
1539
1540 PositionsRecorder positions_recorder_;
1541 friend class PositionsRecorder;
1542 };
1543
1544
1545 // Helper class that ensures that there is enough space for generating
1546 // instructions and relocation information. The constructor makes
1547 // sure that there is enough space and (in debug mode) the destructor
1548 // checks that we did not generate too much.
1549 class EnsureSpace BASE_EMBEDDED {
1550 public:
EnsureSpace(Assembler * assembler)1551 explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1552 if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1553 #ifdef DEBUG
1554 space_before_ = assembler_->available_space();
1555 #endif
1556 }
1557
1558 #ifdef DEBUG
~EnsureSpace()1559 ~EnsureSpace() {
1560 int bytes_generated = space_before_ - assembler_->available_space();
1561 DCHECK(bytes_generated < assembler_->kGap);
1562 }
1563 #endif
1564
1565 private:
1566 Assembler* assembler_;
1567 #ifdef DEBUG
1568 int space_before_;
1569 #endif
1570 };
1571
1572 } // namespace internal
1573 } // namespace v8
1574
1575 #endif // V8_IA32_ASSEMBLER_IA32_H_
1576