1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_
6 #define V8_IA32_MACRO_ASSEMBLER_IA32_H_
7 
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 // Give alias names to registers for calling conventions.
17 const Register kReturnRegister0 = {Register::kCode_eax};
18 const Register kReturnRegister1 = {Register::kCode_edx};
19 const Register kJSFunctionRegister = {Register::kCode_edi};
20 const Register kContextRegister = {Register::kCode_esi};
21 const Register kInterpreterAccumulatorRegister = {Register::kCode_eax};
22 const Register kInterpreterRegisterFileRegister = {Register::kCode_edx};
23 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_ecx};
24 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_edi};
25 const Register kJavaScriptCallArgCountRegister = {Register::kCode_eax};
26 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_edx};
27 const Register kRuntimeCallFunctionRegister = {Register::kCode_ebx};
28 const Register kRuntimeCallArgCountRegister = {Register::kCode_eax};
29 
30 // Spill slots used by interpreter dispatch calling convention.
31 const int kInterpreterDispatchTableSpillSlot = -1;
32 
33 // Convenience for platform-independent signatures.  We do not normally
34 // distinguish memory operands from other operands on ia32.
35 typedef Operand MemOperand;
36 
37 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
38 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
39 enum PointersToHereCheck {
40   kPointersToHereMaybeInteresting,
41   kPointersToHereAreAlwaysInteresting
42 };
43 
44 enum RegisterValueType { REGISTER_VALUE_IS_SMI, REGISTER_VALUE_IS_INT32 };
45 
46 #ifdef DEBUG
47 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
48                 Register reg4 = no_reg, Register reg5 = no_reg,
49                 Register reg6 = no_reg, Register reg7 = no_reg,
50                 Register reg8 = no_reg);
51 #endif
52 
53 // MacroAssembler implements a collection of frequently used macros.
54 class MacroAssembler: public Assembler {
55  public:
56   MacroAssembler(Isolate* isolate, void* buffer, int size,
57                  CodeObjectRequired create_code_object);
58 
59   void Load(Register dst, const Operand& src, Representation r);
60   void Store(Register src, const Operand& dst, Representation r);
61 
62   // Load a register with a long value as efficiently as possible.
Set(Register dst,int32_t x)63   void Set(Register dst, int32_t x) {
64     if (x == 0) {
65       xor_(dst, dst);
66     } else {
67       mov(dst, Immediate(x));
68     }
69   }
Set(const Operand & dst,int32_t x)70   void Set(const Operand& dst, int32_t x) { mov(dst, Immediate(x)); }
71 
72   // Operations on roots in the root-array.
73   void LoadRoot(Register destination, Heap::RootListIndex index);
74   void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
75   void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
76   // These methods can only be used with constant roots (i.e. non-writable
77   // and not in new space).
78   void CompareRoot(Register with, Heap::RootListIndex index);
79   void CompareRoot(const Operand& with, Heap::RootListIndex index);
80   void PushRoot(Heap::RootListIndex index);
81 
82   // Compare the object in a register to a value and jump if they are equal.
83   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
84                   Label::Distance if_equal_distance = Label::kFar) {
85     CompareRoot(with, index);
86     j(equal, if_equal, if_equal_distance);
87   }
88   void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
89                   Label* if_equal,
90                   Label::Distance if_equal_distance = Label::kFar) {
91     CompareRoot(with, index);
92     j(equal, if_equal, if_equal_distance);
93   }
94 
95   // Compare the object in a register to a value and jump if they are not equal.
96   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
97                      Label* if_not_equal,
98                      Label::Distance if_not_equal_distance = Label::kFar) {
99     CompareRoot(with, index);
100     j(not_equal, if_not_equal, if_not_equal_distance);
101   }
102   void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
103                      Label* if_not_equal,
104                      Label::Distance if_not_equal_distance = Label::kFar) {
105     CompareRoot(with, index);
106     j(not_equal, if_not_equal, if_not_equal_distance);
107   }
108 
109   // ---------------------------------------------------------------------------
110   // GC Support
111   enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
112 
113   // Record in the remembered set the fact that we have a pointer to new space
114   // at the address pointed to by the addr register.  Only works if addr is not
115   // in new space.
116   void RememberedSetHelper(Register object,  // Used for debug code.
117                            Register addr, Register scratch,
118                            SaveFPRegsMode save_fp,
119                            RememberedSetFinalAction and_then);
120 
121   void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
122                      Label* condition_met,
123                      Label::Distance condition_met_distance = Label::kFar);
124 
125   void CheckPageFlagForMap(
126       Handle<Map> map, int mask, Condition cc, Label* condition_met,
127       Label::Distance condition_met_distance = Label::kFar);
128 
129   // Check if object is in new space.  Jumps if the object is not in new space.
130   // The register scratch can be object itself, but scratch will be clobbered.
131   void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch,
132                            Label::Distance distance = Label::kFar) {
133     InNewSpace(object, scratch, zero, branch, distance);
134   }
135 
136   // Check if object is in new space.  Jumps if the object is in new space.
137   // The register scratch can be object itself, but it will be clobbered.
138   void JumpIfInNewSpace(Register object, Register scratch, Label* branch,
139                         Label::Distance distance = Label::kFar) {
140     InNewSpace(object, scratch, not_zero, branch, distance);
141   }
142 
143   // Check if an object has a given incremental marking color.  Also uses ecx!
144   void HasColor(Register object, Register scratch0, Register scratch1,
145                 Label* has_color, Label::Distance has_color_distance,
146                 int first_bit, int second_bit);
147 
148   void JumpIfBlack(Register object, Register scratch0, Register scratch1,
149                    Label* on_black,
150                    Label::Distance on_black_distance = Label::kFar);
151 
152   // Checks the color of an object.  If the object is white we jump to the
153   // incremental marker.
154   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
155                    Label* value_is_white, Label::Distance distance);
156 
157   // Notify the garbage collector that we wrote a pointer into an object.
158   // |object| is the object being stored into, |value| is the object being
159   // stored.  value and scratch registers are clobbered by the operation.
160   // The offset is the offset from the start of the object, not the offset from
161   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
162   void RecordWriteField(
163       Register object, int offset, Register value, Register scratch,
164       SaveFPRegsMode save_fp,
165       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
166       SmiCheck smi_check = INLINE_SMI_CHECK,
167       PointersToHereCheck pointers_to_here_check_for_value =
168           kPointersToHereMaybeInteresting);
169 
170   // As above, but the offset has the tag presubtracted.  For use with
171   // Operand(reg, off).
172   void RecordWriteContextSlot(
173       Register context, int offset, Register value, Register scratch,
174       SaveFPRegsMode save_fp,
175       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
176       SmiCheck smi_check = INLINE_SMI_CHECK,
177       PointersToHereCheck pointers_to_here_check_for_value =
178           kPointersToHereMaybeInteresting) {
179     RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
180                      remembered_set_action, smi_check,
181                      pointers_to_here_check_for_value);
182   }
183 
184   // Notify the garbage collector that we wrote a pointer into a fixed array.
185   // |array| is the array being stored into, |value| is the
186   // object being stored.  |index| is the array index represented as a
187   // Smi. All registers are clobbered by the operation RecordWriteArray
188   // filters out smis so it does not update the write barrier if the
189   // value is a smi.
190   void RecordWriteArray(
191       Register array, Register value, Register index, SaveFPRegsMode save_fp,
192       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
193       SmiCheck smi_check = INLINE_SMI_CHECK,
194       PointersToHereCheck pointers_to_here_check_for_value =
195           kPointersToHereMaybeInteresting);
196 
197   // For page containing |object| mark region covering |address|
198   // dirty. |object| is the object being stored into, |value| is the
199   // object being stored. The address and value registers are clobbered by the
200   // operation. RecordWrite filters out smis so it does not update the
201   // write barrier if the value is a smi.
202   void RecordWrite(
203       Register object, Register address, Register value, SaveFPRegsMode save_fp,
204       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
205       SmiCheck smi_check = INLINE_SMI_CHECK,
206       PointersToHereCheck pointers_to_here_check_for_value =
207           kPointersToHereMaybeInteresting);
208 
209   // For page containing |object| mark the region covering the object's map
210   // dirty. |object| is the object being stored into, |map| is the Map object
211   // that was stored.
212   void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
213                          Register scratch2, SaveFPRegsMode save_fp);
214 
215   // ---------------------------------------------------------------------------
216   // Debugger Support
217 
218   void DebugBreak();
219 
220   // Generates function and stub prologue code.
221   void StubPrologue();
222   void Prologue(bool code_pre_aging);
223 
224   // Enter specific kind of exit frame. Expects the number of
225   // arguments in register eax and sets up the number of arguments in
226   // register edi and the pointer to the first argument in register
227   // esi.
228   void EnterExitFrame(bool save_doubles);
229 
230   void EnterApiExitFrame(int argc);
231 
232   // Leave the current exit frame. Expects the return value in
233   // register eax:edx (untouched) and the pointer to the first
234   // argument in register esi (if pop_arguments == true).
235   void LeaveExitFrame(bool save_doubles, bool pop_arguments = true);
236 
237   // Leave the current exit frame. Expects the return value in
238   // register eax (untouched).
239   void LeaveApiExitFrame(bool restore_context);
240 
241   // Find the function context up the context chain.
242   void LoadContext(Register dst, int context_chain_length);
243 
244   // Load the global proxy from the current context.
245   void LoadGlobalProxy(Register dst);
246 
247   // Conditionally load the cached Array transitioned map of type
248   // transitioned_kind from the native context if the map in register
249   // map_in_out is the cached Array map in the native context of
250   // expected_kind.
251   void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
252                                            ElementsKind transitioned_kind,
253                                            Register map_in_out,
254                                            Register scratch,
255                                            Label* no_map_match);
256 
257   // Load the global function with the given index.
258   void LoadGlobalFunction(int index, Register function);
259 
260   // Load the initial map from the global function. The registers
261   // function and map can be the same.
262   void LoadGlobalFunctionInitialMap(Register function, Register map);
263 
264   // Push and pop the registers that can hold pointers.
PushSafepointRegisters()265   void PushSafepointRegisters() { pushad(); }
PopSafepointRegisters()266   void PopSafepointRegisters() { popad(); }
267   // Store the value in register/immediate src in the safepoint
268   // register stack slot for register dst.
269   void StoreToSafepointRegisterSlot(Register dst, Register src);
270   void StoreToSafepointRegisterSlot(Register dst, Immediate src);
271   void LoadFromSafepointRegisterSlot(Register dst, Register src);
272 
273   void LoadHeapObject(Register result, Handle<HeapObject> object);
274   void CmpHeapObject(Register reg, Handle<HeapObject> object);
275   void PushHeapObject(Handle<HeapObject> object);
276 
LoadObject(Register result,Handle<Object> object)277   void LoadObject(Register result, Handle<Object> object) {
278     AllowDeferredHandleDereference heap_object_check;
279     if (object->IsHeapObject()) {
280       LoadHeapObject(result, Handle<HeapObject>::cast(object));
281     } else {
282       Move(result, Immediate(object));
283     }
284   }
285 
CmpObject(Register reg,Handle<Object> object)286   void CmpObject(Register reg, Handle<Object> object) {
287     AllowDeferredHandleDereference heap_object_check;
288     if (object->IsHeapObject()) {
289       CmpHeapObject(reg, Handle<HeapObject>::cast(object));
290     } else {
291       cmp(reg, Immediate(object));
292     }
293   }
294 
295   // Compare the given value and the value of weak cell.
296   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
297 
298   void GetWeakValue(Register value, Handle<WeakCell> cell);
299 
300   // Load the value of the weak cell in the value register. Branch to the given
301   // miss label if the weak cell was cleared.
302   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
303 
304   // ---------------------------------------------------------------------------
305   // JavaScript invokes
306 
307   // Invoke the JavaScript function code by either calling or jumping.
308 
309   void InvokeFunctionCode(Register function, Register new_target,
310                           const ParameterCount& expected,
311                           const ParameterCount& actual, InvokeFlag flag,
312                           const CallWrapper& call_wrapper);
313 
314   void FloodFunctionIfStepping(Register fun, Register new_target,
315                                const ParameterCount& expected,
316                                const ParameterCount& actual);
317 
318   // Invoke the JavaScript function in the given register. Changes the
319   // current context to the context in the function before invoking.
320   void InvokeFunction(Register function, Register new_target,
321                       const ParameterCount& actual, InvokeFlag flag,
322                       const CallWrapper& call_wrapper);
323 
324   void InvokeFunction(Register function, const ParameterCount& expected,
325                       const ParameterCount& actual, InvokeFlag flag,
326                       const CallWrapper& call_wrapper);
327 
328   void InvokeFunction(Handle<JSFunction> function,
329                       const ParameterCount& expected,
330                       const ParameterCount& actual, InvokeFlag flag,
331                       const CallWrapper& call_wrapper);
332 
333   // Invoke specified builtin JavaScript function.
334   void InvokeBuiltin(int native_context_index, InvokeFlag flag,
335                      const CallWrapper& call_wrapper = NullCallWrapper());
336 
337   // Store the function for the given builtin in the target register.
338   void GetBuiltinFunction(Register target, int native_context_index);
339 
340   // Expression support
341   // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
342   // hinders register renaming and makes dependence chains longer. So we use
343   // xorps to clear the dst register before cvtsi2sd to solve this issue.
Cvtsi2sd(XMMRegister dst,Register src)344   void Cvtsi2sd(XMMRegister dst, Register src) { Cvtsi2sd(dst, Operand(src)); }
345   void Cvtsi2sd(XMMRegister dst, const Operand& src);
346 
347   // Support for constant splitting.
348   bool IsUnsafeImmediate(const Immediate& x);
349   void SafeMove(Register dst, const Immediate& x);
350   void SafePush(const Immediate& x);
351 
352   // Compare object type for heap object.
353   // Incoming register is heap_object and outgoing register is map.
354   void CmpObjectType(Register heap_object, InstanceType type, Register map);
355 
356   // Compare instance type for map.
357   void CmpInstanceType(Register map, InstanceType type);
358 
359   // Check if a map for a JSObject indicates that the object has fast elements.
360   // Jump to the specified label if it does not.
361   void CheckFastElements(Register map, Label* fail,
362                          Label::Distance distance = Label::kFar);
363 
364   // Check if a map for a JSObject indicates that the object can have both smi
365   // and HeapObject elements.  Jump to the specified label if it does not.
366   void CheckFastObjectElements(Register map, Label* fail,
367                                Label::Distance distance = Label::kFar);
368 
369   // Check if a map for a JSObject indicates that the object has fast smi only
370   // elements.  Jump to the specified label if it does not.
371   void CheckFastSmiElements(Register map, Label* fail,
372                             Label::Distance distance = Label::kFar);
373 
374   // Check to see if maybe_number can be stored as a double in
375   // FastDoubleElements. If it can, store it at the index specified by key in
376   // the FastDoubleElements array elements, otherwise jump to fail.
377   void StoreNumberToDoubleElements(Register maybe_number, Register elements,
378                                    Register key, Register scratch1,
379                                    XMMRegister scratch2, Label* fail,
380                                    int offset = 0);
381 
382   // Compare an object's map with the specified map.
383   void CompareMap(Register obj, Handle<Map> map);
384 
385   // Check if the map of an object is equal to a specified map and branch to
386   // label if not. Skip the smi check if not required (object is known to be a
387   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
388   // against maps that are ElementsKind transition maps of the specified map.
389   void CheckMap(Register obj, Handle<Map> map, Label* fail,
390                 SmiCheckType smi_check_type);
391 
392   // Check if the map of an object is equal to a specified weak map and branch
393   // to a specified target if equal. Skip the smi check if not required
394   // (object is known to be a heap object)
395   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
396                        Handle<WeakCell> cell, Handle<Code> success,
397                        SmiCheckType smi_check_type);
398 
399   // Check if the object in register heap_object is a string. Afterwards the
400   // register map contains the object map and the register instance_type
401   // contains the instance_type. The registers map and instance_type can be the
402   // same in which case it contains the instance type afterwards. Either of the
403   // registers map and instance_type can be the same as heap_object.
404   Condition IsObjectStringType(Register heap_object, Register map,
405                                Register instance_type);
406 
407   // Check if the object in register heap_object is a name. Afterwards the
408   // register map contains the object map and the register instance_type
409   // contains the instance_type. The registers map and instance_type can be the
410   // same in which case it contains the instance type afterwards. Either of the
411   // registers map and instance_type can be the same as heap_object.
412   Condition IsObjectNameType(Register heap_object, Register map,
413                              Register instance_type);
414 
415   // FCmp is similar to integer cmp, but requires unsigned
416   // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
417   void FCmp();
418 
419   void ClampUint8(Register reg);
420 
421   void ClampDoubleToUint8(XMMRegister input_reg, XMMRegister scratch_reg,
422                           Register result_reg);
423 
424   void SlowTruncateToI(Register result_reg, Register input_reg,
425       int offset = HeapNumber::kValueOffset - kHeapObjectTag);
426 
427   void TruncateHeapNumberToI(Register result_reg, Register input_reg);
428   void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
429 
430   void DoubleToI(Register result_reg, XMMRegister input_reg,
431                  XMMRegister scratch, MinusZeroMode minus_zero_mode,
432                  Label* lost_precision, Label* is_nan, Label* minus_zero,
433                  Label::Distance dst = Label::kFar);
434 
435   // Smi tagging support.
SmiTag(Register reg)436   void SmiTag(Register reg) {
437     STATIC_ASSERT(kSmiTag == 0);
438     STATIC_ASSERT(kSmiTagSize == 1);
439     add(reg, reg);
440   }
SmiUntag(Register reg)441   void SmiUntag(Register reg) {
442     sar(reg, kSmiTagSize);
443   }
444 
445   // Modifies the register even if it does not contain a Smi!
SmiUntag(Register reg,Label * is_smi)446   void SmiUntag(Register reg, Label* is_smi) {
447     STATIC_ASSERT(kSmiTagSize == 1);
448     sar(reg, kSmiTagSize);
449     STATIC_ASSERT(kSmiTag == 0);
450     j(not_carry, is_smi);
451   }
452 
LoadUint32(XMMRegister dst,Register src)453   void LoadUint32(XMMRegister dst, Register src) {
454     LoadUint32(dst, Operand(src));
455   }
456   void LoadUint32(XMMRegister dst, const Operand& src);
457 
458   // Jump the register contains a smi.
459   inline void JumpIfSmi(Register value, Label* smi_label,
460                         Label::Distance distance = Label::kFar) {
461     test(value, Immediate(kSmiTagMask));
462     j(zero, smi_label, distance);
463   }
464   // Jump if the operand is a smi.
465   inline void JumpIfSmi(Operand value, Label* smi_label,
466                         Label::Distance distance = Label::kFar) {
467     test(value, Immediate(kSmiTagMask));
468     j(zero, smi_label, distance);
469   }
470   // Jump if register contain a non-smi.
471   inline void JumpIfNotSmi(Register value, Label* not_smi_label,
472                            Label::Distance distance = Label::kFar) {
473     test(value, Immediate(kSmiTagMask));
474     j(not_zero, not_smi_label, distance);
475   }
476 
477   void LoadInstanceDescriptors(Register map, Register descriptors);
478   void EnumLength(Register dst, Register map);
479   void NumberOfOwnDescriptors(Register dst, Register map);
480   void LoadAccessor(Register dst, Register holder, int accessor_index,
481                     AccessorComponent accessor);
482 
483   template<typename Field>
DecodeField(Register reg)484   void DecodeField(Register reg) {
485     static const int shift = Field::kShift;
486     static const int mask = Field::kMask >> Field::kShift;
487     if (shift != 0) {
488       sar(reg, shift);
489     }
490     and_(reg, Immediate(mask));
491   }
492 
493   template<typename Field>
DecodeFieldToSmi(Register reg)494   void DecodeFieldToSmi(Register reg) {
495     static const int shift = Field::kShift;
496     static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
497     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
498     STATIC_ASSERT(kSmiTag == 0);
499     if (shift < kSmiTagSize) {
500       shl(reg, kSmiTagSize - shift);
501     } else if (shift > kSmiTagSize) {
502       sar(reg, shift - kSmiTagSize);
503     }
504     and_(reg, Immediate(mask));
505   }
506 
507   void LoadPowerOf2(XMMRegister dst, Register scratch, int power);
508 
509   // Abort execution if argument is not a number, enabled via --debug-code.
510   void AssertNumber(Register object);
511 
512   // Abort execution if argument is not a smi, enabled via --debug-code.
513   void AssertSmi(Register object);
514 
515   // Abort execution if argument is a smi, enabled via --debug-code.
516   void AssertNotSmi(Register object);
517 
518   // Abort execution if argument is not a string, enabled via --debug-code.
519   void AssertString(Register object);
520 
521   // Abort execution if argument is not a name, enabled via --debug-code.
522   void AssertName(Register object);
523 
524   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
525   void AssertFunction(Register object);
526 
527   // Abort execution if argument is not a JSBoundFunction,
528   // enabled via --debug-code.
529   void AssertBoundFunction(Register object);
530 
531   // Abort execution if argument is not undefined or an AllocationSite, enabled
532   // via --debug-code.
533   void AssertUndefinedOrAllocationSite(Register object);
534 
535   // ---------------------------------------------------------------------------
536   // Exception handling
537 
538   // Push a new stack handler and link it into stack handler chain.
539   void PushStackHandler();
540 
541   // Unlink the stack handler on top of the stack from the stack handler chain.
542   void PopStackHandler();
543 
544   // ---------------------------------------------------------------------------
545   // Inline caching support
546 
547   // Generate code for checking access rights - used for security checks
548   // on access to global objects across environments. The holder register
549   // is left untouched, but the scratch register is clobbered.
550   void CheckAccessGlobalProxy(Register holder_reg, Register scratch1,
551                               Register scratch2, Label* miss);
552 
553   void GetNumberHash(Register r0, Register scratch);
554 
555   void LoadFromNumberDictionary(Label* miss, Register elements, Register key,
556                                 Register r0, Register r1, Register r2,
557                                 Register result);
558 
559   // ---------------------------------------------------------------------------
560   // Allocation support
561 
562   // Allocate an object in new space or old space. If the given space
563   // is exhausted control continues at the gc_required label. The allocated
564   // object is returned in result and end of the new object is returned in
565   // result_end. The register scratch can be passed as no_reg in which case
566   // an additional object reference will be added to the reloc info. The
567   // returned pointers in result and result_end have not yet been tagged as
568   // heap objects. If result_contains_top_on_entry is true the content of
569   // result is known to be the allocation top on entry (could be result_end
570   // from a previous call). If result_contains_top_on_entry is true scratch
571   // should be no_reg as it is never used.
572   void Allocate(int object_size, Register result, Register result_end,
573                 Register scratch, Label* gc_required, AllocationFlags flags);
574 
575   void Allocate(int header_size, ScaleFactor element_size,
576                 Register element_count, RegisterValueType element_count_type,
577                 Register result, Register result_end, Register scratch,
578                 Label* gc_required, AllocationFlags flags);
579 
580   void Allocate(Register object_size, Register result, Register result_end,
581                 Register scratch, Label* gc_required, AllocationFlags flags);
582 
583   // Allocate a heap number in new space with undefined value. The
584   // register scratch2 can be passed as no_reg; the others must be
585   // valid registers. Returns tagged pointer in result register, or
586   // jumps to gc_required if new space is full.
587   void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
588                           Label* gc_required, MutableMode mode = IMMUTABLE);
589 
590   // Allocate a sequential string. All the header fields of the string object
591   // are initialized.
592   void AllocateTwoByteString(Register result, Register length,
593                              Register scratch1, Register scratch2,
594                              Register scratch3, Label* gc_required);
595   void AllocateOneByteString(Register result, Register length,
596                              Register scratch1, Register scratch2,
597                              Register scratch3, Label* gc_required);
598   void AllocateOneByteString(Register result, int length, Register scratch1,
599                              Register scratch2, Label* gc_required);
600 
601   // Allocate a raw cons string object. Only the map field of the result is
602   // initialized.
603   void AllocateTwoByteConsString(Register result, Register scratch1,
604                                  Register scratch2, Label* gc_required);
605   void AllocateOneByteConsString(Register result, Register scratch1,
606                                  Register scratch2, Label* gc_required);
607 
608   // Allocate a raw sliced string object. Only the map field of the result is
609   // initialized.
610   void AllocateTwoByteSlicedString(Register result, Register scratch1,
611                                    Register scratch2, Label* gc_required);
612   void AllocateOneByteSlicedString(Register result, Register scratch1,
613                                    Register scratch2, Label* gc_required);
614 
615   // Allocate and initialize a JSValue wrapper with the specified {constructor}
616   // and {value}.
617   void AllocateJSValue(Register result, Register constructor, Register value,
618                        Register scratch, Label* gc_required);
619 
620   // Copy memory, byte-by-byte, from source to destination.  Not optimized for
621   // long or aligned copies.
622   // The contents of index and scratch are destroyed.
623   void CopyBytes(Register source, Register destination, Register length,
624                  Register scratch);
625 
626   // Initialize fields with filler values.  Fields starting at |current_address|
627   // not including |end_address| are overwritten with the value in |filler|.  At
628   // the end the loop, |current_address| takes the value of |end_address|.
629   void InitializeFieldsWithFiller(Register current_address,
630                                   Register end_address, Register filler);
631 
632   // ---------------------------------------------------------------------------
633   // Support functions.
634 
635   // Check a boolean-bit of a Smi field.
636   void BooleanBitTest(Register object, int field_offset, int bit_index);
637 
638   // Check if result is zero and op is negative.
639   void NegativeZeroTest(Register result, Register op, Label* then_label);
640 
641   // Check if result is zero and any of op1 and op2 are negative.
642   // Register scratch is destroyed, and it must be different from op2.
643   void NegativeZeroTest(Register result, Register op1, Register op2,
644                         Register scratch, Label* then_label);
645 
646   // Machine code version of Map::GetConstructor().
647   // |temp| holds |result|'s map when done.
648   void GetMapConstructor(Register result, Register map, Register temp);
649 
650   // Try to get function prototype of a function and puts the value in
651   // the result register. Checks that the function really is a
652   // function and jumps to the miss label if the fast checks fail. The
653   // function register will be untouched; the other registers may be
654   // clobbered.
655   void TryGetFunctionPrototype(Register function, Register result,
656                                Register scratch, Label* miss);
657 
658   // Picks out an array index from the hash field.
659   // Register use:
660   //   hash - holds the index's hash. Clobbered.
661   //   index - holds the overwritten index on exit.
662   void IndexFromHash(Register hash, Register index);
663 
664   // ---------------------------------------------------------------------------
665   // Runtime calls
666 
667   // Call a code stub.  Generate the code if necessary.
668   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
669 
670   // Tail call a code stub (jump).  Generate the code if necessary.
671   void TailCallStub(CodeStub* stub);
672 
673   // Return from a code stub after popping its arguments.
674   void StubReturn(int argc);
675 
676   // Call a runtime routine.
677   void CallRuntime(const Runtime::Function* f, int num_arguments,
678                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)679   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
680     const Runtime::Function* function = Runtime::FunctionForId(fid);
681     CallRuntime(function, function->nargs, kSaveFPRegs);
682   }
683 
684   // Convenience function: Same as above, but takes the fid instead.
685   void CallRuntime(Runtime::FunctionId fid,
686                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
687     const Runtime::Function* function = Runtime::FunctionForId(fid);
688     CallRuntime(function, function->nargs, save_doubles);
689   }
690 
691   // Convenience function: Same as above, but takes the fid instead.
692   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
693                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
694     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
695   }
696 
697   // Convenience function: call an external reference.
698   void CallExternalReference(ExternalReference ref, int num_arguments);
699 
700   // Convenience function: tail call a runtime routine (jump).
701   void TailCallRuntime(Runtime::FunctionId fid);
702 
703   // Before calling a C-function from generated code, align arguments on stack.
704   // After aligning the frame, arguments must be stored in esp[0], esp[4],
705   // etc., not pushed. The argument count assumes all arguments are word sized.
706   // Some compilers/platforms require the stack to be aligned when calling
707   // C++ code.
708   // Needs a scratch register to do some arithmetic. This register will be
709   // trashed.
710   void PrepareCallCFunction(int num_arguments, Register scratch);
711 
712   // Calls a C function and cleans up the space for arguments allocated
713   // by PrepareCallCFunction. The called function is not allowed to trigger a
714   // garbage collection, since that might move the code and invalidate the
715   // return address (unless this is somehow accounted for by the called
716   // function).
717   void CallCFunction(ExternalReference function, int num_arguments);
718   void CallCFunction(Register function, int num_arguments);
719 
720   // Jump to a runtime routine.
721   void JumpToExternalReference(const ExternalReference& ext);
722 
723   // ---------------------------------------------------------------------------
724   // Utilities
725 
726   void Ret();
727 
728   // Return and drop arguments from stack, where the number of arguments
729   // may be bigger than 2^16 - 1.  Requires a scratch register.
730   void Ret(int bytes_dropped, Register scratch);
731 
732   // Emit code to discard a non-negative number of pointer-sized elements
733   // from the stack, clobbering only the esp register.
734   void Drop(int element_count);
735 
Call(Label * target)736   void Call(Label* target) { call(target); }
Call(Handle<Code> target,RelocInfo::Mode rmode)737   void Call(Handle<Code> target, RelocInfo::Mode rmode) { call(target, rmode); }
Jump(Handle<Code> target,RelocInfo::Mode rmode)738   void Jump(Handle<Code> target, RelocInfo::Mode rmode) { jmp(target, rmode); }
Push(Register src)739   void Push(Register src) { push(src); }
Push(const Operand & src)740   void Push(const Operand& src) { push(src); }
Push(Immediate value)741   void Push(Immediate value) { push(value); }
Pop(Register dst)742   void Pop(Register dst) { pop(dst); }
Pop(const Operand & dst)743   void Pop(const Operand& dst) { pop(dst); }
PushReturnAddressFrom(Register src)744   void PushReturnAddressFrom(Register src) { push(src); }
PopReturnAddressTo(Register dst)745   void PopReturnAddressTo(Register dst) { pop(dst); }
746 
747   // Non-SSE2 instructions.
748   void Pextrd(Register dst, XMMRegister src, int8_t imm8);
Pinsrd(XMMRegister dst,Register src,int8_t imm8)749   void Pinsrd(XMMRegister dst, Register src, int8_t imm8) {
750     Pinsrd(dst, Operand(src), imm8);
751   }
752   void Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
753 
Lzcnt(Register dst,Register src)754   void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); }
755   void Lzcnt(Register dst, const Operand& src);
756 
Tzcnt(Register dst,Register src)757   void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); }
758   void Tzcnt(Register dst, const Operand& src);
759 
Popcnt(Register dst,Register src)760   void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); }
761   void Popcnt(Register dst, const Operand& src);
762 
763   // Emit call to the code we are currently generating.
CallSelf()764   void CallSelf() {
765     Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
766     call(self, RelocInfo::CODE_TARGET);
767   }
768 
769   // Move if the registers are not identical.
770   void Move(Register target, Register source);
771 
772   // Move a constant into a destination using the most efficient encoding.
773   void Move(Register dst, const Immediate& x);
774   void Move(const Operand& dst, const Immediate& x);
775 
776   // Move an immediate into an XMM register.
777   void Move(XMMRegister dst, uint32_t src);
778   void Move(XMMRegister dst, uint64_t src);
Move(XMMRegister dst,double src)779   void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
780 
Move(Register dst,Smi * source)781   void Move(Register dst, Smi* source) { Move(dst, Immediate(source)); }
782 
783   // Push a handle value.
Push(Handle<Object> handle)784   void Push(Handle<Object> handle) { push(Immediate(handle)); }
Push(Smi * smi)785   void Push(Smi* smi) { Push(Immediate(smi)); }
786 
CodeObject()787   Handle<Object> CodeObject() {
788     DCHECK(!code_object_.is_null());
789     return code_object_;
790   }
791 
792   // Emit code for a truncating division by a constant. The dividend register is
793   // unchanged, the result is in edx, and eax gets clobbered.
794   void TruncatingDiv(Register dividend, int32_t divisor);
795 
796   // ---------------------------------------------------------------------------
797   // StatsCounter support
798 
799   void SetCounter(StatsCounter* counter, int value);
800   void IncrementCounter(StatsCounter* counter, int value);
801   void DecrementCounter(StatsCounter* counter, int value);
802   void IncrementCounter(Condition cc, StatsCounter* counter, int value);
803   void DecrementCounter(Condition cc, StatsCounter* counter, int value);
804 
805   // ---------------------------------------------------------------------------
806   // Debugging
807 
808   // Calls Abort(msg) if the condition cc is not satisfied.
809   // Use --debug_code to enable.
810   void Assert(Condition cc, BailoutReason reason);
811 
812   void AssertFastElements(Register elements);
813 
814   // Like Assert(), but always enabled.
815   void Check(Condition cc, BailoutReason reason);
816 
817   // Print a message to stdout and abort execution.
818   void Abort(BailoutReason reason);
819 
820   // Check that the stack is aligned.
821   void CheckStackAlignment();
822 
823   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)824   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()825   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)826   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()827   bool has_frame() { return has_frame_; }
828   inline bool AllowThisStubCall(CodeStub* stub);
829 
830   // ---------------------------------------------------------------------------
831   // String utilities.
832 
833   // Check whether the instance type represents a flat one-byte string. Jump to
834   // the label if not. If the instance type can be scratched specify same
835   // register for both instance type and scratch.
836   void JumpIfInstanceTypeIsNotSequentialOneByte(
837       Register instance_type, Register scratch,
838       Label* on_not_flat_one_byte_string);
839 
840   // Checks if both objects are sequential one-byte strings, and jumps to label
841   // if either is not.
842   void JumpIfNotBothSequentialOneByteStrings(
843       Register object1, Register object2, Register scratch1, Register scratch2,
844       Label* on_not_flat_one_byte_strings);
845 
846   // Checks if the given register or operand is a unique name
847   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
848                                        Label::Distance distance = Label::kFar) {
849     JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
850   }
851 
852   void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
853                                        Label::Distance distance = Label::kFar);
854 
855   void EmitSeqStringSetCharCheck(Register string, Register index,
856                                  Register value, uint32_t encoding_mask);
857 
SafepointRegisterStackIndex(Register reg)858   static int SafepointRegisterStackIndex(Register reg) {
859     return SafepointRegisterStackIndex(reg.code());
860   }
861 
862   // Load the type feedback vector from a JavaScript frame.
863   void EmitLoadTypeFeedbackVector(Register vector);
864 
865   // Activation support.
866   void EnterFrame(StackFrame::Type type);
867   void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
868   void LeaveFrame(StackFrame::Type type);
869 
870   // Expects object in eax and returns map with validated enum cache
871   // in eax.  Assumes that any other register can be used as a scratch.
872   void CheckEnumCache(Label* call_runtime);
873 
874   // AllocationMemento support. Arrays may have an associated
875   // AllocationMemento object that can be checked for in order to pretransition
876   // to another type.
877   // On entry, receiver_reg should point to the array object.
878   // scratch_reg gets clobbered.
879   // If allocation info is present, conditional code is set to equal.
880   void TestJSArrayForAllocationMemento(Register receiver_reg,
881                                        Register scratch_reg,
882                                        Label* no_memento_found);
883 
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)884   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
885                                          Register scratch_reg,
886                                          Label* memento_found) {
887     Label no_memento_found;
888     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
889                                     &no_memento_found);
890     j(equal, memento_found);
891     bind(&no_memento_found);
892   }
893 
894   // Jumps to found label if a prototype map has dictionary elements.
895   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
896                                         Register scratch1, Label* found);
897 
898  private:
899   bool generating_stub_;
900   bool has_frame_;
901   // This handle will be patched with the code object on installation.
902   Handle<Object> code_object_;
903 
904   // Helper functions for generating invokes.
905   void InvokePrologue(const ParameterCount& expected,
906                       const ParameterCount& actual, Label* done,
907                       bool* definitely_mismatches, InvokeFlag flag,
908                       Label::Distance done_distance,
909                       const CallWrapper& call_wrapper);
910 
911   void EnterExitFramePrologue();
912   void EnterExitFrameEpilogue(int argc, bool save_doubles);
913 
914   void LeaveExitFrameEpilogue(bool restore_context);
915 
916   // Allocation support helpers.
917   void LoadAllocationTopHelper(Register result, Register scratch,
918                                AllocationFlags flags);
919 
920   void UpdateAllocationTopHelper(Register result_end, Register scratch,
921                                  AllocationFlags flags);
922 
923   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
924   void InNewSpace(Register object, Register scratch, Condition cc,
925                   Label* condition_met,
926                   Label::Distance condition_met_distance = Label::kFar);
927 
928   // Helper for finding the mark bits for an address.  Afterwards, the
929   // bitmap register points at the word with the mark bits and the mask
930   // the position of the first bit.  Uses ecx as scratch and leaves addr_reg
931   // unchanged.
932   inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
933                           Register mask_reg);
934 
935   // Compute memory operands for safepoint stack slots.
936   Operand SafepointRegisterSlot(Register reg);
937   static int SafepointRegisterStackIndex(int reg_code);
938 
939   // Needs access to SafepointRegisterStackIndex for compiled frame
940   // traversal.
941   friend class StandardFrame;
942 };
943 
944 // The code patcher is used to patch (typically) small parts of code e.g. for
945 // debugging and other types of instrumentation. When using the code patcher
946 // the exact number of bytes specified must be emitted. Is not legal to emit
947 // relocation information. If any of these constraints are violated it causes
948 // an assertion.
949 class CodePatcher {
950  public:
951   CodePatcher(Isolate* isolate, byte* address, int size);
952   ~CodePatcher();
953 
954   // Macro assembler to emit code.
masm()955   MacroAssembler* masm() { return &masm_; }
956 
957  private:
958   byte* address_;        // The address of the code being patched.
959   int size_;             // Number of bytes of the expected patch size.
960   MacroAssembler masm_;  // Macro assembler used to generate the code.
961 };
962 
963 // -----------------------------------------------------------------------------
964 // Static helper functions.
965 
966 // Generate an Operand for loading a field from an object.
FieldOperand(Register object,int offset)967 inline Operand FieldOperand(Register object, int offset) {
968   return Operand(object, offset - kHeapObjectTag);
969 }
970 
971 // Generate an Operand for loading an indexed field from an object.
FieldOperand(Register object,Register index,ScaleFactor scale,int offset)972 inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
973                             int offset) {
974   return Operand(object, index, scale, offset - kHeapObjectTag);
975 }
976 
977 inline Operand FixedArrayElementOperand(Register array, Register index_as_smi,
978                                         int additional_offset = 0) {
979   int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
980   return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
981 }
982 
ContextOperand(Register context,int index)983 inline Operand ContextOperand(Register context, int index) {
984   return Operand(context, Context::SlotOffset(index));
985 }
986 
ContextOperand(Register context,Register index)987 inline Operand ContextOperand(Register context, Register index) {
988   return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
989 }
990 
NativeContextOperand()991 inline Operand NativeContextOperand() {
992   return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX);
993 }
994 
995 #ifdef GENERATED_CODE_COVERAGE
996 extern void LogGeneratedCodeCoverage(const char* file_line);
997 #define CODE_COVERAGE_STRINGIFY(x) #x
998 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
999 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1000 #define ACCESS_MASM(masm) {                                               \
1001     byte* ia32_coverage_function =                                        \
1002         reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
1003     masm->pushfd();                                                       \
1004     masm->pushad();                                                       \
1005     masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__)));         \
1006     masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY);         \
1007     masm->pop(eax);                                                       \
1008     masm->popad();                                                        \
1009     masm->popfd();                                                        \
1010   }                                                                       \
1011   masm->
1012 #else
1013 #define ACCESS_MASM(masm) masm->
1014 #endif
1015 
1016 }  // namespace internal
1017 }  // namespace v8
1018 
1019 #endif  // V8_IA32_MACRO_ASSEMBLER_IA32_H_
1020