1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_
6 #define V8_IA32_MACRO_ASSEMBLER_IA32_H_
7
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
12
13 namespace v8 {
14 namespace internal {
15
16 // Give alias names to registers for calling conventions.
17 const Register kReturnRegister0 = {Register::kCode_eax};
18 const Register kReturnRegister1 = {Register::kCode_edx};
19 const Register kJSFunctionRegister = {Register::kCode_edi};
20 const Register kContextRegister = {Register::kCode_esi};
21 const Register kInterpreterAccumulatorRegister = {Register::kCode_eax};
22 const Register kInterpreterRegisterFileRegister = {Register::kCode_edx};
23 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_ecx};
24 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_edi};
25 const Register kJavaScriptCallArgCountRegister = {Register::kCode_eax};
26 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_edx};
27 const Register kRuntimeCallFunctionRegister = {Register::kCode_ebx};
28 const Register kRuntimeCallArgCountRegister = {Register::kCode_eax};
29
30 // Spill slots used by interpreter dispatch calling convention.
31 const int kInterpreterDispatchTableSpillSlot = -1;
32
33 // Convenience for platform-independent signatures. We do not normally
34 // distinguish memory operands from other operands on ia32.
35 typedef Operand MemOperand;
36
37 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
38 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
39 enum PointersToHereCheck {
40 kPointersToHereMaybeInteresting,
41 kPointersToHereAreAlwaysInteresting
42 };
43
44 enum RegisterValueType { REGISTER_VALUE_IS_SMI, REGISTER_VALUE_IS_INT32 };
45
46 #ifdef DEBUG
47 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
48 Register reg4 = no_reg, Register reg5 = no_reg,
49 Register reg6 = no_reg, Register reg7 = no_reg,
50 Register reg8 = no_reg);
51 #endif
52
53 // MacroAssembler implements a collection of frequently used macros.
54 class MacroAssembler: public Assembler {
55 public:
56 MacroAssembler(Isolate* isolate, void* buffer, int size,
57 CodeObjectRequired create_code_object);
58
59 void Load(Register dst, const Operand& src, Representation r);
60 void Store(Register src, const Operand& dst, Representation r);
61
62 // Load a register with a long value as efficiently as possible.
Set(Register dst,int32_t x)63 void Set(Register dst, int32_t x) {
64 if (x == 0) {
65 xor_(dst, dst);
66 } else {
67 mov(dst, Immediate(x));
68 }
69 }
Set(const Operand & dst,int32_t x)70 void Set(const Operand& dst, int32_t x) { mov(dst, Immediate(x)); }
71
72 // Operations on roots in the root-array.
73 void LoadRoot(Register destination, Heap::RootListIndex index);
74 void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
75 void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
76 // These methods can only be used with constant roots (i.e. non-writable
77 // and not in new space).
78 void CompareRoot(Register with, Heap::RootListIndex index);
79 void CompareRoot(const Operand& with, Heap::RootListIndex index);
80 void PushRoot(Heap::RootListIndex index);
81
82 // Compare the object in a register to a value and jump if they are equal.
83 void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
84 Label::Distance if_equal_distance = Label::kFar) {
85 CompareRoot(with, index);
86 j(equal, if_equal, if_equal_distance);
87 }
88 void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
89 Label* if_equal,
90 Label::Distance if_equal_distance = Label::kFar) {
91 CompareRoot(with, index);
92 j(equal, if_equal, if_equal_distance);
93 }
94
95 // Compare the object in a register to a value and jump if they are not equal.
96 void JumpIfNotRoot(Register with, Heap::RootListIndex index,
97 Label* if_not_equal,
98 Label::Distance if_not_equal_distance = Label::kFar) {
99 CompareRoot(with, index);
100 j(not_equal, if_not_equal, if_not_equal_distance);
101 }
102 void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
103 Label* if_not_equal,
104 Label::Distance if_not_equal_distance = Label::kFar) {
105 CompareRoot(with, index);
106 j(not_equal, if_not_equal, if_not_equal_distance);
107 }
108
109 // ---------------------------------------------------------------------------
110 // GC Support
111 enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
112
113 // Record in the remembered set the fact that we have a pointer to new space
114 // at the address pointed to by the addr register. Only works if addr is not
115 // in new space.
116 void RememberedSetHelper(Register object, // Used for debug code.
117 Register addr, Register scratch,
118 SaveFPRegsMode save_fp,
119 RememberedSetFinalAction and_then);
120
121 void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
122 Label* condition_met,
123 Label::Distance condition_met_distance = Label::kFar);
124
125 void CheckPageFlagForMap(
126 Handle<Map> map, int mask, Condition cc, Label* condition_met,
127 Label::Distance condition_met_distance = Label::kFar);
128
129 // Check if object is in new space. Jumps if the object is not in new space.
130 // The register scratch can be object itself, but scratch will be clobbered.
131 void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch,
132 Label::Distance distance = Label::kFar) {
133 InNewSpace(object, scratch, zero, branch, distance);
134 }
135
136 // Check if object is in new space. Jumps if the object is in new space.
137 // The register scratch can be object itself, but it will be clobbered.
138 void JumpIfInNewSpace(Register object, Register scratch, Label* branch,
139 Label::Distance distance = Label::kFar) {
140 InNewSpace(object, scratch, not_zero, branch, distance);
141 }
142
143 // Check if an object has a given incremental marking color. Also uses ecx!
144 void HasColor(Register object, Register scratch0, Register scratch1,
145 Label* has_color, Label::Distance has_color_distance,
146 int first_bit, int second_bit);
147
148 void JumpIfBlack(Register object, Register scratch0, Register scratch1,
149 Label* on_black,
150 Label::Distance on_black_distance = Label::kFar);
151
152 // Checks the color of an object. If the object is white we jump to the
153 // incremental marker.
154 void JumpIfWhite(Register value, Register scratch1, Register scratch2,
155 Label* value_is_white, Label::Distance distance);
156
157 // Notify the garbage collector that we wrote a pointer into an object.
158 // |object| is the object being stored into, |value| is the object being
159 // stored. value and scratch registers are clobbered by the operation.
160 // The offset is the offset from the start of the object, not the offset from
161 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
162 void RecordWriteField(
163 Register object, int offset, Register value, Register scratch,
164 SaveFPRegsMode save_fp,
165 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
166 SmiCheck smi_check = INLINE_SMI_CHECK,
167 PointersToHereCheck pointers_to_here_check_for_value =
168 kPointersToHereMaybeInteresting);
169
170 // As above, but the offset has the tag presubtracted. For use with
171 // Operand(reg, off).
172 void RecordWriteContextSlot(
173 Register context, int offset, Register value, Register scratch,
174 SaveFPRegsMode save_fp,
175 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
176 SmiCheck smi_check = INLINE_SMI_CHECK,
177 PointersToHereCheck pointers_to_here_check_for_value =
178 kPointersToHereMaybeInteresting) {
179 RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
180 remembered_set_action, smi_check,
181 pointers_to_here_check_for_value);
182 }
183
184 // Notify the garbage collector that we wrote a pointer into a fixed array.
185 // |array| is the array being stored into, |value| is the
186 // object being stored. |index| is the array index represented as a
187 // Smi. All registers are clobbered by the operation RecordWriteArray
188 // filters out smis so it does not update the write barrier if the
189 // value is a smi.
190 void RecordWriteArray(
191 Register array, Register value, Register index, SaveFPRegsMode save_fp,
192 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
193 SmiCheck smi_check = INLINE_SMI_CHECK,
194 PointersToHereCheck pointers_to_here_check_for_value =
195 kPointersToHereMaybeInteresting);
196
197 // For page containing |object| mark region covering |address|
198 // dirty. |object| is the object being stored into, |value| is the
199 // object being stored. The address and value registers are clobbered by the
200 // operation. RecordWrite filters out smis so it does not update the
201 // write barrier if the value is a smi.
202 void RecordWrite(
203 Register object, Register address, Register value, SaveFPRegsMode save_fp,
204 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
205 SmiCheck smi_check = INLINE_SMI_CHECK,
206 PointersToHereCheck pointers_to_here_check_for_value =
207 kPointersToHereMaybeInteresting);
208
209 // For page containing |object| mark the region covering the object's map
210 // dirty. |object| is the object being stored into, |map| is the Map object
211 // that was stored.
212 void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
213 Register scratch2, SaveFPRegsMode save_fp);
214
215 // ---------------------------------------------------------------------------
216 // Debugger Support
217
218 void DebugBreak();
219
220 // Generates function and stub prologue code.
221 void StubPrologue();
222 void Prologue(bool code_pre_aging);
223
224 // Enter specific kind of exit frame. Expects the number of
225 // arguments in register eax and sets up the number of arguments in
226 // register edi and the pointer to the first argument in register
227 // esi.
228 void EnterExitFrame(bool save_doubles);
229
230 void EnterApiExitFrame(int argc);
231
232 // Leave the current exit frame. Expects the return value in
233 // register eax:edx (untouched) and the pointer to the first
234 // argument in register esi (if pop_arguments == true).
235 void LeaveExitFrame(bool save_doubles, bool pop_arguments = true);
236
237 // Leave the current exit frame. Expects the return value in
238 // register eax (untouched).
239 void LeaveApiExitFrame(bool restore_context);
240
241 // Find the function context up the context chain.
242 void LoadContext(Register dst, int context_chain_length);
243
244 // Load the global proxy from the current context.
245 void LoadGlobalProxy(Register dst);
246
247 // Conditionally load the cached Array transitioned map of type
248 // transitioned_kind from the native context if the map in register
249 // map_in_out is the cached Array map in the native context of
250 // expected_kind.
251 void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
252 ElementsKind transitioned_kind,
253 Register map_in_out,
254 Register scratch,
255 Label* no_map_match);
256
257 // Load the global function with the given index.
258 void LoadGlobalFunction(int index, Register function);
259
260 // Load the initial map from the global function. The registers
261 // function and map can be the same.
262 void LoadGlobalFunctionInitialMap(Register function, Register map);
263
264 // Push and pop the registers that can hold pointers.
PushSafepointRegisters()265 void PushSafepointRegisters() { pushad(); }
PopSafepointRegisters()266 void PopSafepointRegisters() { popad(); }
267 // Store the value in register/immediate src in the safepoint
268 // register stack slot for register dst.
269 void StoreToSafepointRegisterSlot(Register dst, Register src);
270 void StoreToSafepointRegisterSlot(Register dst, Immediate src);
271 void LoadFromSafepointRegisterSlot(Register dst, Register src);
272
273 void LoadHeapObject(Register result, Handle<HeapObject> object);
274 void CmpHeapObject(Register reg, Handle<HeapObject> object);
275 void PushHeapObject(Handle<HeapObject> object);
276
LoadObject(Register result,Handle<Object> object)277 void LoadObject(Register result, Handle<Object> object) {
278 AllowDeferredHandleDereference heap_object_check;
279 if (object->IsHeapObject()) {
280 LoadHeapObject(result, Handle<HeapObject>::cast(object));
281 } else {
282 Move(result, Immediate(object));
283 }
284 }
285
CmpObject(Register reg,Handle<Object> object)286 void CmpObject(Register reg, Handle<Object> object) {
287 AllowDeferredHandleDereference heap_object_check;
288 if (object->IsHeapObject()) {
289 CmpHeapObject(reg, Handle<HeapObject>::cast(object));
290 } else {
291 cmp(reg, Immediate(object));
292 }
293 }
294
295 // Compare the given value and the value of weak cell.
296 void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
297
298 void GetWeakValue(Register value, Handle<WeakCell> cell);
299
300 // Load the value of the weak cell in the value register. Branch to the given
301 // miss label if the weak cell was cleared.
302 void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
303
304 // ---------------------------------------------------------------------------
305 // JavaScript invokes
306
307 // Invoke the JavaScript function code by either calling or jumping.
308
309 void InvokeFunctionCode(Register function, Register new_target,
310 const ParameterCount& expected,
311 const ParameterCount& actual, InvokeFlag flag,
312 const CallWrapper& call_wrapper);
313
314 void FloodFunctionIfStepping(Register fun, Register new_target,
315 const ParameterCount& expected,
316 const ParameterCount& actual);
317
318 // Invoke the JavaScript function in the given register. Changes the
319 // current context to the context in the function before invoking.
320 void InvokeFunction(Register function, Register new_target,
321 const ParameterCount& actual, InvokeFlag flag,
322 const CallWrapper& call_wrapper);
323
324 void InvokeFunction(Register function, const ParameterCount& expected,
325 const ParameterCount& actual, InvokeFlag flag,
326 const CallWrapper& call_wrapper);
327
328 void InvokeFunction(Handle<JSFunction> function,
329 const ParameterCount& expected,
330 const ParameterCount& actual, InvokeFlag flag,
331 const CallWrapper& call_wrapper);
332
333 // Invoke specified builtin JavaScript function.
334 void InvokeBuiltin(int native_context_index, InvokeFlag flag,
335 const CallWrapper& call_wrapper = NullCallWrapper());
336
337 // Store the function for the given builtin in the target register.
338 void GetBuiltinFunction(Register target, int native_context_index);
339
340 // Expression support
341 // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
342 // hinders register renaming and makes dependence chains longer. So we use
343 // xorps to clear the dst register before cvtsi2sd to solve this issue.
Cvtsi2sd(XMMRegister dst,Register src)344 void Cvtsi2sd(XMMRegister dst, Register src) { Cvtsi2sd(dst, Operand(src)); }
345 void Cvtsi2sd(XMMRegister dst, const Operand& src);
346
347 // Support for constant splitting.
348 bool IsUnsafeImmediate(const Immediate& x);
349 void SafeMove(Register dst, const Immediate& x);
350 void SafePush(const Immediate& x);
351
352 // Compare object type for heap object.
353 // Incoming register is heap_object and outgoing register is map.
354 void CmpObjectType(Register heap_object, InstanceType type, Register map);
355
356 // Compare instance type for map.
357 void CmpInstanceType(Register map, InstanceType type);
358
359 // Check if a map for a JSObject indicates that the object has fast elements.
360 // Jump to the specified label if it does not.
361 void CheckFastElements(Register map, Label* fail,
362 Label::Distance distance = Label::kFar);
363
364 // Check if a map for a JSObject indicates that the object can have both smi
365 // and HeapObject elements. Jump to the specified label if it does not.
366 void CheckFastObjectElements(Register map, Label* fail,
367 Label::Distance distance = Label::kFar);
368
369 // Check if a map for a JSObject indicates that the object has fast smi only
370 // elements. Jump to the specified label if it does not.
371 void CheckFastSmiElements(Register map, Label* fail,
372 Label::Distance distance = Label::kFar);
373
374 // Check to see if maybe_number can be stored as a double in
375 // FastDoubleElements. If it can, store it at the index specified by key in
376 // the FastDoubleElements array elements, otherwise jump to fail.
377 void StoreNumberToDoubleElements(Register maybe_number, Register elements,
378 Register key, Register scratch1,
379 XMMRegister scratch2, Label* fail,
380 int offset = 0);
381
382 // Compare an object's map with the specified map.
383 void CompareMap(Register obj, Handle<Map> map);
384
385 // Check if the map of an object is equal to a specified map and branch to
386 // label if not. Skip the smi check if not required (object is known to be a
387 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
388 // against maps that are ElementsKind transition maps of the specified map.
389 void CheckMap(Register obj, Handle<Map> map, Label* fail,
390 SmiCheckType smi_check_type);
391
392 // Check if the map of an object is equal to a specified weak map and branch
393 // to a specified target if equal. Skip the smi check if not required
394 // (object is known to be a heap object)
395 void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
396 Handle<WeakCell> cell, Handle<Code> success,
397 SmiCheckType smi_check_type);
398
399 // Check if the object in register heap_object is a string. Afterwards the
400 // register map contains the object map and the register instance_type
401 // contains the instance_type. The registers map and instance_type can be the
402 // same in which case it contains the instance type afterwards. Either of the
403 // registers map and instance_type can be the same as heap_object.
404 Condition IsObjectStringType(Register heap_object, Register map,
405 Register instance_type);
406
407 // Check if the object in register heap_object is a name. Afterwards the
408 // register map contains the object map and the register instance_type
409 // contains the instance_type. The registers map and instance_type can be the
410 // same in which case it contains the instance type afterwards. Either of the
411 // registers map and instance_type can be the same as heap_object.
412 Condition IsObjectNameType(Register heap_object, Register map,
413 Register instance_type);
414
415 // FCmp is similar to integer cmp, but requires unsigned
416 // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
417 void FCmp();
418
419 void ClampUint8(Register reg);
420
421 void ClampDoubleToUint8(XMMRegister input_reg, XMMRegister scratch_reg,
422 Register result_reg);
423
424 void SlowTruncateToI(Register result_reg, Register input_reg,
425 int offset = HeapNumber::kValueOffset - kHeapObjectTag);
426
427 void TruncateHeapNumberToI(Register result_reg, Register input_reg);
428 void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
429
430 void DoubleToI(Register result_reg, XMMRegister input_reg,
431 XMMRegister scratch, MinusZeroMode minus_zero_mode,
432 Label* lost_precision, Label* is_nan, Label* minus_zero,
433 Label::Distance dst = Label::kFar);
434
435 // Smi tagging support.
SmiTag(Register reg)436 void SmiTag(Register reg) {
437 STATIC_ASSERT(kSmiTag == 0);
438 STATIC_ASSERT(kSmiTagSize == 1);
439 add(reg, reg);
440 }
SmiUntag(Register reg)441 void SmiUntag(Register reg) {
442 sar(reg, kSmiTagSize);
443 }
444
445 // Modifies the register even if it does not contain a Smi!
SmiUntag(Register reg,Label * is_smi)446 void SmiUntag(Register reg, Label* is_smi) {
447 STATIC_ASSERT(kSmiTagSize == 1);
448 sar(reg, kSmiTagSize);
449 STATIC_ASSERT(kSmiTag == 0);
450 j(not_carry, is_smi);
451 }
452
LoadUint32(XMMRegister dst,Register src)453 void LoadUint32(XMMRegister dst, Register src) {
454 LoadUint32(dst, Operand(src));
455 }
456 void LoadUint32(XMMRegister dst, const Operand& src);
457
458 // Jump the register contains a smi.
459 inline void JumpIfSmi(Register value, Label* smi_label,
460 Label::Distance distance = Label::kFar) {
461 test(value, Immediate(kSmiTagMask));
462 j(zero, smi_label, distance);
463 }
464 // Jump if the operand is a smi.
465 inline void JumpIfSmi(Operand value, Label* smi_label,
466 Label::Distance distance = Label::kFar) {
467 test(value, Immediate(kSmiTagMask));
468 j(zero, smi_label, distance);
469 }
470 // Jump if register contain a non-smi.
471 inline void JumpIfNotSmi(Register value, Label* not_smi_label,
472 Label::Distance distance = Label::kFar) {
473 test(value, Immediate(kSmiTagMask));
474 j(not_zero, not_smi_label, distance);
475 }
476
477 void LoadInstanceDescriptors(Register map, Register descriptors);
478 void EnumLength(Register dst, Register map);
479 void NumberOfOwnDescriptors(Register dst, Register map);
480 void LoadAccessor(Register dst, Register holder, int accessor_index,
481 AccessorComponent accessor);
482
483 template<typename Field>
DecodeField(Register reg)484 void DecodeField(Register reg) {
485 static const int shift = Field::kShift;
486 static const int mask = Field::kMask >> Field::kShift;
487 if (shift != 0) {
488 sar(reg, shift);
489 }
490 and_(reg, Immediate(mask));
491 }
492
493 template<typename Field>
DecodeFieldToSmi(Register reg)494 void DecodeFieldToSmi(Register reg) {
495 static const int shift = Field::kShift;
496 static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
497 STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
498 STATIC_ASSERT(kSmiTag == 0);
499 if (shift < kSmiTagSize) {
500 shl(reg, kSmiTagSize - shift);
501 } else if (shift > kSmiTagSize) {
502 sar(reg, shift - kSmiTagSize);
503 }
504 and_(reg, Immediate(mask));
505 }
506
507 void LoadPowerOf2(XMMRegister dst, Register scratch, int power);
508
509 // Abort execution if argument is not a number, enabled via --debug-code.
510 void AssertNumber(Register object);
511
512 // Abort execution if argument is not a smi, enabled via --debug-code.
513 void AssertSmi(Register object);
514
515 // Abort execution if argument is a smi, enabled via --debug-code.
516 void AssertNotSmi(Register object);
517
518 // Abort execution if argument is not a string, enabled via --debug-code.
519 void AssertString(Register object);
520
521 // Abort execution if argument is not a name, enabled via --debug-code.
522 void AssertName(Register object);
523
524 // Abort execution if argument is not a JSFunction, enabled via --debug-code.
525 void AssertFunction(Register object);
526
527 // Abort execution if argument is not a JSBoundFunction,
528 // enabled via --debug-code.
529 void AssertBoundFunction(Register object);
530
531 // Abort execution if argument is not undefined or an AllocationSite, enabled
532 // via --debug-code.
533 void AssertUndefinedOrAllocationSite(Register object);
534
535 // ---------------------------------------------------------------------------
536 // Exception handling
537
538 // Push a new stack handler and link it into stack handler chain.
539 void PushStackHandler();
540
541 // Unlink the stack handler on top of the stack from the stack handler chain.
542 void PopStackHandler();
543
544 // ---------------------------------------------------------------------------
545 // Inline caching support
546
547 // Generate code for checking access rights - used for security checks
548 // on access to global objects across environments. The holder register
549 // is left untouched, but the scratch register is clobbered.
550 void CheckAccessGlobalProxy(Register holder_reg, Register scratch1,
551 Register scratch2, Label* miss);
552
553 void GetNumberHash(Register r0, Register scratch);
554
555 void LoadFromNumberDictionary(Label* miss, Register elements, Register key,
556 Register r0, Register r1, Register r2,
557 Register result);
558
559 // ---------------------------------------------------------------------------
560 // Allocation support
561
562 // Allocate an object in new space or old space. If the given space
563 // is exhausted control continues at the gc_required label. The allocated
564 // object is returned in result and end of the new object is returned in
565 // result_end. The register scratch can be passed as no_reg in which case
566 // an additional object reference will be added to the reloc info. The
567 // returned pointers in result and result_end have not yet been tagged as
568 // heap objects. If result_contains_top_on_entry is true the content of
569 // result is known to be the allocation top on entry (could be result_end
570 // from a previous call). If result_contains_top_on_entry is true scratch
571 // should be no_reg as it is never used.
572 void Allocate(int object_size, Register result, Register result_end,
573 Register scratch, Label* gc_required, AllocationFlags flags);
574
575 void Allocate(int header_size, ScaleFactor element_size,
576 Register element_count, RegisterValueType element_count_type,
577 Register result, Register result_end, Register scratch,
578 Label* gc_required, AllocationFlags flags);
579
580 void Allocate(Register object_size, Register result, Register result_end,
581 Register scratch, Label* gc_required, AllocationFlags flags);
582
583 // Allocate a heap number in new space with undefined value. The
584 // register scratch2 can be passed as no_reg; the others must be
585 // valid registers. Returns tagged pointer in result register, or
586 // jumps to gc_required if new space is full.
587 void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
588 Label* gc_required, MutableMode mode = IMMUTABLE);
589
590 // Allocate a sequential string. All the header fields of the string object
591 // are initialized.
592 void AllocateTwoByteString(Register result, Register length,
593 Register scratch1, Register scratch2,
594 Register scratch3, Label* gc_required);
595 void AllocateOneByteString(Register result, Register length,
596 Register scratch1, Register scratch2,
597 Register scratch3, Label* gc_required);
598 void AllocateOneByteString(Register result, int length, Register scratch1,
599 Register scratch2, Label* gc_required);
600
601 // Allocate a raw cons string object. Only the map field of the result is
602 // initialized.
603 void AllocateTwoByteConsString(Register result, Register scratch1,
604 Register scratch2, Label* gc_required);
605 void AllocateOneByteConsString(Register result, Register scratch1,
606 Register scratch2, Label* gc_required);
607
608 // Allocate a raw sliced string object. Only the map field of the result is
609 // initialized.
610 void AllocateTwoByteSlicedString(Register result, Register scratch1,
611 Register scratch2, Label* gc_required);
612 void AllocateOneByteSlicedString(Register result, Register scratch1,
613 Register scratch2, Label* gc_required);
614
615 // Allocate and initialize a JSValue wrapper with the specified {constructor}
616 // and {value}.
617 void AllocateJSValue(Register result, Register constructor, Register value,
618 Register scratch, Label* gc_required);
619
620 // Copy memory, byte-by-byte, from source to destination. Not optimized for
621 // long or aligned copies.
622 // The contents of index and scratch are destroyed.
623 void CopyBytes(Register source, Register destination, Register length,
624 Register scratch);
625
626 // Initialize fields with filler values. Fields starting at |current_address|
627 // not including |end_address| are overwritten with the value in |filler|. At
628 // the end the loop, |current_address| takes the value of |end_address|.
629 void InitializeFieldsWithFiller(Register current_address,
630 Register end_address, Register filler);
631
632 // ---------------------------------------------------------------------------
633 // Support functions.
634
635 // Check a boolean-bit of a Smi field.
636 void BooleanBitTest(Register object, int field_offset, int bit_index);
637
638 // Check if result is zero and op is negative.
639 void NegativeZeroTest(Register result, Register op, Label* then_label);
640
641 // Check if result is zero and any of op1 and op2 are negative.
642 // Register scratch is destroyed, and it must be different from op2.
643 void NegativeZeroTest(Register result, Register op1, Register op2,
644 Register scratch, Label* then_label);
645
646 // Machine code version of Map::GetConstructor().
647 // |temp| holds |result|'s map when done.
648 void GetMapConstructor(Register result, Register map, Register temp);
649
650 // Try to get function prototype of a function and puts the value in
651 // the result register. Checks that the function really is a
652 // function and jumps to the miss label if the fast checks fail. The
653 // function register will be untouched; the other registers may be
654 // clobbered.
655 void TryGetFunctionPrototype(Register function, Register result,
656 Register scratch, Label* miss);
657
658 // Picks out an array index from the hash field.
659 // Register use:
660 // hash - holds the index's hash. Clobbered.
661 // index - holds the overwritten index on exit.
662 void IndexFromHash(Register hash, Register index);
663
664 // ---------------------------------------------------------------------------
665 // Runtime calls
666
667 // Call a code stub. Generate the code if necessary.
668 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
669
670 // Tail call a code stub (jump). Generate the code if necessary.
671 void TailCallStub(CodeStub* stub);
672
673 // Return from a code stub after popping its arguments.
674 void StubReturn(int argc);
675
676 // Call a runtime routine.
677 void CallRuntime(const Runtime::Function* f, int num_arguments,
678 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)679 void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
680 const Runtime::Function* function = Runtime::FunctionForId(fid);
681 CallRuntime(function, function->nargs, kSaveFPRegs);
682 }
683
684 // Convenience function: Same as above, but takes the fid instead.
685 void CallRuntime(Runtime::FunctionId fid,
686 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
687 const Runtime::Function* function = Runtime::FunctionForId(fid);
688 CallRuntime(function, function->nargs, save_doubles);
689 }
690
691 // Convenience function: Same as above, but takes the fid instead.
692 void CallRuntime(Runtime::FunctionId fid, int num_arguments,
693 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
694 CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
695 }
696
697 // Convenience function: call an external reference.
698 void CallExternalReference(ExternalReference ref, int num_arguments);
699
700 // Convenience function: tail call a runtime routine (jump).
701 void TailCallRuntime(Runtime::FunctionId fid);
702
703 // Before calling a C-function from generated code, align arguments on stack.
704 // After aligning the frame, arguments must be stored in esp[0], esp[4],
705 // etc., not pushed. The argument count assumes all arguments are word sized.
706 // Some compilers/platforms require the stack to be aligned when calling
707 // C++ code.
708 // Needs a scratch register to do some arithmetic. This register will be
709 // trashed.
710 void PrepareCallCFunction(int num_arguments, Register scratch);
711
712 // Calls a C function and cleans up the space for arguments allocated
713 // by PrepareCallCFunction. The called function is not allowed to trigger a
714 // garbage collection, since that might move the code and invalidate the
715 // return address (unless this is somehow accounted for by the called
716 // function).
717 void CallCFunction(ExternalReference function, int num_arguments);
718 void CallCFunction(Register function, int num_arguments);
719
720 // Jump to a runtime routine.
721 void JumpToExternalReference(const ExternalReference& ext);
722
723 // ---------------------------------------------------------------------------
724 // Utilities
725
726 void Ret();
727
728 // Return and drop arguments from stack, where the number of arguments
729 // may be bigger than 2^16 - 1. Requires a scratch register.
730 void Ret(int bytes_dropped, Register scratch);
731
732 // Emit code to discard a non-negative number of pointer-sized elements
733 // from the stack, clobbering only the esp register.
734 void Drop(int element_count);
735
Call(Label * target)736 void Call(Label* target) { call(target); }
Call(Handle<Code> target,RelocInfo::Mode rmode)737 void Call(Handle<Code> target, RelocInfo::Mode rmode) { call(target, rmode); }
Jump(Handle<Code> target,RelocInfo::Mode rmode)738 void Jump(Handle<Code> target, RelocInfo::Mode rmode) { jmp(target, rmode); }
Push(Register src)739 void Push(Register src) { push(src); }
Push(const Operand & src)740 void Push(const Operand& src) { push(src); }
Push(Immediate value)741 void Push(Immediate value) { push(value); }
Pop(Register dst)742 void Pop(Register dst) { pop(dst); }
Pop(const Operand & dst)743 void Pop(const Operand& dst) { pop(dst); }
PushReturnAddressFrom(Register src)744 void PushReturnAddressFrom(Register src) { push(src); }
PopReturnAddressTo(Register dst)745 void PopReturnAddressTo(Register dst) { pop(dst); }
746
747 // Non-SSE2 instructions.
748 void Pextrd(Register dst, XMMRegister src, int8_t imm8);
Pinsrd(XMMRegister dst,Register src,int8_t imm8)749 void Pinsrd(XMMRegister dst, Register src, int8_t imm8) {
750 Pinsrd(dst, Operand(src), imm8);
751 }
752 void Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
753
Lzcnt(Register dst,Register src)754 void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); }
755 void Lzcnt(Register dst, const Operand& src);
756
Tzcnt(Register dst,Register src)757 void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); }
758 void Tzcnt(Register dst, const Operand& src);
759
Popcnt(Register dst,Register src)760 void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); }
761 void Popcnt(Register dst, const Operand& src);
762
763 // Emit call to the code we are currently generating.
CallSelf()764 void CallSelf() {
765 Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
766 call(self, RelocInfo::CODE_TARGET);
767 }
768
769 // Move if the registers are not identical.
770 void Move(Register target, Register source);
771
772 // Move a constant into a destination using the most efficient encoding.
773 void Move(Register dst, const Immediate& x);
774 void Move(const Operand& dst, const Immediate& x);
775
776 // Move an immediate into an XMM register.
777 void Move(XMMRegister dst, uint32_t src);
778 void Move(XMMRegister dst, uint64_t src);
Move(XMMRegister dst,double src)779 void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
780
Move(Register dst,Smi * source)781 void Move(Register dst, Smi* source) { Move(dst, Immediate(source)); }
782
783 // Push a handle value.
Push(Handle<Object> handle)784 void Push(Handle<Object> handle) { push(Immediate(handle)); }
Push(Smi * smi)785 void Push(Smi* smi) { Push(Immediate(smi)); }
786
CodeObject()787 Handle<Object> CodeObject() {
788 DCHECK(!code_object_.is_null());
789 return code_object_;
790 }
791
792 // Emit code for a truncating division by a constant. The dividend register is
793 // unchanged, the result is in edx, and eax gets clobbered.
794 void TruncatingDiv(Register dividend, int32_t divisor);
795
796 // ---------------------------------------------------------------------------
797 // StatsCounter support
798
799 void SetCounter(StatsCounter* counter, int value);
800 void IncrementCounter(StatsCounter* counter, int value);
801 void DecrementCounter(StatsCounter* counter, int value);
802 void IncrementCounter(Condition cc, StatsCounter* counter, int value);
803 void DecrementCounter(Condition cc, StatsCounter* counter, int value);
804
805 // ---------------------------------------------------------------------------
806 // Debugging
807
808 // Calls Abort(msg) if the condition cc is not satisfied.
809 // Use --debug_code to enable.
810 void Assert(Condition cc, BailoutReason reason);
811
812 void AssertFastElements(Register elements);
813
814 // Like Assert(), but always enabled.
815 void Check(Condition cc, BailoutReason reason);
816
817 // Print a message to stdout and abort execution.
818 void Abort(BailoutReason reason);
819
820 // Check that the stack is aligned.
821 void CheckStackAlignment();
822
823 // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)824 void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()825 bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)826 void set_has_frame(bool value) { has_frame_ = value; }
has_frame()827 bool has_frame() { return has_frame_; }
828 inline bool AllowThisStubCall(CodeStub* stub);
829
830 // ---------------------------------------------------------------------------
831 // String utilities.
832
833 // Check whether the instance type represents a flat one-byte string. Jump to
834 // the label if not. If the instance type can be scratched specify same
835 // register for both instance type and scratch.
836 void JumpIfInstanceTypeIsNotSequentialOneByte(
837 Register instance_type, Register scratch,
838 Label* on_not_flat_one_byte_string);
839
840 // Checks if both objects are sequential one-byte strings, and jumps to label
841 // if either is not.
842 void JumpIfNotBothSequentialOneByteStrings(
843 Register object1, Register object2, Register scratch1, Register scratch2,
844 Label* on_not_flat_one_byte_strings);
845
846 // Checks if the given register or operand is a unique name
847 void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
848 Label::Distance distance = Label::kFar) {
849 JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
850 }
851
852 void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
853 Label::Distance distance = Label::kFar);
854
855 void EmitSeqStringSetCharCheck(Register string, Register index,
856 Register value, uint32_t encoding_mask);
857
SafepointRegisterStackIndex(Register reg)858 static int SafepointRegisterStackIndex(Register reg) {
859 return SafepointRegisterStackIndex(reg.code());
860 }
861
862 // Load the type feedback vector from a JavaScript frame.
863 void EmitLoadTypeFeedbackVector(Register vector);
864
865 // Activation support.
866 void EnterFrame(StackFrame::Type type);
867 void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
868 void LeaveFrame(StackFrame::Type type);
869
870 // Expects object in eax and returns map with validated enum cache
871 // in eax. Assumes that any other register can be used as a scratch.
872 void CheckEnumCache(Label* call_runtime);
873
874 // AllocationMemento support. Arrays may have an associated
875 // AllocationMemento object that can be checked for in order to pretransition
876 // to another type.
877 // On entry, receiver_reg should point to the array object.
878 // scratch_reg gets clobbered.
879 // If allocation info is present, conditional code is set to equal.
880 void TestJSArrayForAllocationMemento(Register receiver_reg,
881 Register scratch_reg,
882 Label* no_memento_found);
883
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)884 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
885 Register scratch_reg,
886 Label* memento_found) {
887 Label no_memento_found;
888 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
889 &no_memento_found);
890 j(equal, memento_found);
891 bind(&no_memento_found);
892 }
893
894 // Jumps to found label if a prototype map has dictionary elements.
895 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
896 Register scratch1, Label* found);
897
898 private:
899 bool generating_stub_;
900 bool has_frame_;
901 // This handle will be patched with the code object on installation.
902 Handle<Object> code_object_;
903
904 // Helper functions for generating invokes.
905 void InvokePrologue(const ParameterCount& expected,
906 const ParameterCount& actual, Label* done,
907 bool* definitely_mismatches, InvokeFlag flag,
908 Label::Distance done_distance,
909 const CallWrapper& call_wrapper);
910
911 void EnterExitFramePrologue();
912 void EnterExitFrameEpilogue(int argc, bool save_doubles);
913
914 void LeaveExitFrameEpilogue(bool restore_context);
915
916 // Allocation support helpers.
917 void LoadAllocationTopHelper(Register result, Register scratch,
918 AllocationFlags flags);
919
920 void UpdateAllocationTopHelper(Register result_end, Register scratch,
921 AllocationFlags flags);
922
923 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
924 void InNewSpace(Register object, Register scratch, Condition cc,
925 Label* condition_met,
926 Label::Distance condition_met_distance = Label::kFar);
927
928 // Helper for finding the mark bits for an address. Afterwards, the
929 // bitmap register points at the word with the mark bits and the mask
930 // the position of the first bit. Uses ecx as scratch and leaves addr_reg
931 // unchanged.
932 inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
933 Register mask_reg);
934
935 // Compute memory operands for safepoint stack slots.
936 Operand SafepointRegisterSlot(Register reg);
937 static int SafepointRegisterStackIndex(int reg_code);
938
939 // Needs access to SafepointRegisterStackIndex for compiled frame
940 // traversal.
941 friend class StandardFrame;
942 };
943
944 // The code patcher is used to patch (typically) small parts of code e.g. for
945 // debugging and other types of instrumentation. When using the code patcher
946 // the exact number of bytes specified must be emitted. Is not legal to emit
947 // relocation information. If any of these constraints are violated it causes
948 // an assertion.
949 class CodePatcher {
950 public:
951 CodePatcher(Isolate* isolate, byte* address, int size);
952 ~CodePatcher();
953
954 // Macro assembler to emit code.
masm()955 MacroAssembler* masm() { return &masm_; }
956
957 private:
958 byte* address_; // The address of the code being patched.
959 int size_; // Number of bytes of the expected patch size.
960 MacroAssembler masm_; // Macro assembler used to generate the code.
961 };
962
963 // -----------------------------------------------------------------------------
964 // Static helper functions.
965
966 // Generate an Operand for loading a field from an object.
FieldOperand(Register object,int offset)967 inline Operand FieldOperand(Register object, int offset) {
968 return Operand(object, offset - kHeapObjectTag);
969 }
970
971 // Generate an Operand for loading an indexed field from an object.
FieldOperand(Register object,Register index,ScaleFactor scale,int offset)972 inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
973 int offset) {
974 return Operand(object, index, scale, offset - kHeapObjectTag);
975 }
976
977 inline Operand FixedArrayElementOperand(Register array, Register index_as_smi,
978 int additional_offset = 0) {
979 int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
980 return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
981 }
982
ContextOperand(Register context,int index)983 inline Operand ContextOperand(Register context, int index) {
984 return Operand(context, Context::SlotOffset(index));
985 }
986
ContextOperand(Register context,Register index)987 inline Operand ContextOperand(Register context, Register index) {
988 return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
989 }
990
NativeContextOperand()991 inline Operand NativeContextOperand() {
992 return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX);
993 }
994
995 #ifdef GENERATED_CODE_COVERAGE
996 extern void LogGeneratedCodeCoverage(const char* file_line);
997 #define CODE_COVERAGE_STRINGIFY(x) #x
998 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
999 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1000 #define ACCESS_MASM(masm) { \
1001 byte* ia32_coverage_function = \
1002 reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
1003 masm->pushfd(); \
1004 masm->pushad(); \
1005 masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
1006 masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY); \
1007 masm->pop(eax); \
1008 masm->popad(); \
1009 masm->popfd(); \
1010 } \
1011 masm->
1012 #else
1013 #define ACCESS_MASM(masm) masm->
1014 #endif
1015
1016 } // namespace internal
1017 } // namespace v8
1018
1019 #endif // V8_IA32_MACRO_ASSEMBLER_IA32_H_
1020