• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_X87
6 
7 #include "src/codegen.h"
8 #include "src/ic/ic.h"
9 #include "src/ic/ic-compiler.h"
10 #include "src/ic/stub-cache.h"
11 
12 namespace v8 {
13 namespace internal {
14 
15 // ----------------------------------------------------------------------------
16 // Static IC stub generators.
17 //
18 
19 #define __ ACCESS_MASM(masm)
20 
21 
GenerateGlobalInstanceTypeCheck(MacroAssembler * masm,Register type,Label * global_object)22 static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, Register type,
23                                             Label* global_object) {
24   // Register usage:
25   //   type: holds the receiver instance type on entry.
26   __ cmp(type, JS_GLOBAL_OBJECT_TYPE);
27   __ j(equal, global_object);
28   __ cmp(type, JS_GLOBAL_PROXY_TYPE);
29   __ j(equal, global_object);
30 }
31 
32 
33 // Helper function used to load a property from a dictionary backing
34 // storage. This function may fail to load a property even though it is
35 // in the dictionary, so code at miss_label must always call a backup
36 // property load that is complete. This function is safe to call if
37 // name is not internalized, and will jump to the miss_label in that
38 // case. The generated code assumes that the receiver has slow
39 // properties, is not a global object and does not have interceptors.
GenerateDictionaryLoad(MacroAssembler * masm,Label * miss_label,Register elements,Register name,Register r0,Register r1,Register result)40 static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss_label,
41                                    Register elements, Register name,
42                                    Register r0, Register r1, Register result) {
43   // Register use:
44   //
45   // elements - holds the property dictionary on entry and is unchanged.
46   //
47   // name - holds the name of the property on entry and is unchanged.
48   //
49   // Scratch registers:
50   //
51   // r0   - used for the index into the property dictionary
52   //
53   // r1   - used to hold the capacity of the property dictionary.
54   //
55   // result - holds the result on exit.
56 
57   Label done;
58 
59   // Probe the dictionary.
60   NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss_label, &done,
61                                                    elements, name, r0, r1);
62 
63   // If probing finds an entry in the dictionary, r0 contains the
64   // index into the dictionary. Check that the value is a normal
65   // property.
66   __ bind(&done);
67   const int kElementsStartOffset =
68       NameDictionary::kHeaderSize +
69       NameDictionary::kElementsStartIndex * kPointerSize;
70   const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
71   __ test(Operand(elements, r0, times_4, kDetailsOffset - kHeapObjectTag),
72           Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize));
73   __ j(not_zero, miss_label);
74 
75   // Get the value at the masked, scaled index.
76   const int kValueOffset = kElementsStartOffset + kPointerSize;
77   __ mov(result, Operand(elements, r0, times_4, kValueOffset - kHeapObjectTag));
78 }
79 
80 
81 // Helper function used to store a property to a dictionary backing
82 // storage. This function may fail to store a property eventhough it
83 // is in the dictionary, so code at miss_label must always call a
84 // backup property store that is complete. This function is safe to
85 // call if name is not internalized, and will jump to the miss_label in
86 // that case. The generated code assumes that the receiver has slow
87 // properties, is not a global object and does not have interceptors.
GenerateDictionaryStore(MacroAssembler * masm,Label * miss_label,Register elements,Register name,Register value,Register r0,Register r1)88 static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss_label,
89                                     Register elements, Register name,
90                                     Register value, Register r0, Register r1) {
91   // Register use:
92   //
93   // elements - holds the property dictionary on entry and is clobbered.
94   //
95   // name - holds the name of the property on entry and is unchanged.
96   //
97   // value - holds the value to store and is unchanged.
98   //
99   // r0 - used for index into the property dictionary and is clobbered.
100   //
101   // r1 - used to hold the capacity of the property dictionary and is clobbered.
102   Label done;
103 
104 
105   // Probe the dictionary.
106   NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss_label, &done,
107                                                    elements, name, r0, r1);
108 
109   // If probing finds an entry in the dictionary, r0 contains the
110   // index into the dictionary. Check that the value is a normal
111   // property that is not read only.
112   __ bind(&done);
113   const int kElementsStartOffset =
114       NameDictionary::kHeaderSize +
115       NameDictionary::kElementsStartIndex * kPointerSize;
116   const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
117   const int kTypeAndReadOnlyMask =
118       (PropertyDetails::TypeField::kMask |
119        PropertyDetails::AttributesField::encode(READ_ONLY))
120       << kSmiTagSize;
121   __ test(Operand(elements, r0, times_4, kDetailsOffset - kHeapObjectTag),
122           Immediate(kTypeAndReadOnlyMask));
123   __ j(not_zero, miss_label);
124 
125   // Store the value at the masked, scaled index.
126   const int kValueOffset = kElementsStartOffset + kPointerSize;
127   __ lea(r0, Operand(elements, r0, times_4, kValueOffset - kHeapObjectTag));
128   __ mov(Operand(r0, 0), value);
129 
130   // Update write barrier. Make sure not to clobber the value.
131   __ mov(r1, value);
132   __ RecordWrite(elements, r0, r1, kDontSaveFPRegs);
133 }
134 
135 
136 // Checks the receiver for special cases (value type, slow case bits).
137 // Falls through for regular JS object.
GenerateKeyedLoadReceiverCheck(MacroAssembler * masm,Register receiver,Register map,int interceptor_bit,Label * slow)138 static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm,
139                                            Register receiver, Register map,
140                                            int interceptor_bit, Label* slow) {
141   // Register use:
142   //   receiver - holds the receiver and is unchanged.
143   // Scratch registers:
144   //   map - used to hold the map of the receiver.
145 
146   // Check that the object isn't a smi.
147   __ JumpIfSmi(receiver, slow);
148 
149   // Get the map of the receiver.
150   __ mov(map, FieldOperand(receiver, HeapObject::kMapOffset));
151 
152   // Check bit field.
153   __ test_b(FieldOperand(map, Map::kBitFieldOffset),
154             (1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit));
155   __ j(not_zero, slow);
156   // Check that the object is some kind of JS object EXCEPT JS Value type. In
157   // the case that the object is a value-wrapper object, we enter the runtime
158   // system to make sure that indexing into string objects works as intended.
159   DCHECK(JS_OBJECT_TYPE > JS_VALUE_TYPE);
160 
161   __ CmpInstanceType(map, JS_OBJECT_TYPE);
162   __ j(below, slow);
163 }
164 
165 
166 // Loads an indexed element from a fast case array.
GenerateFastArrayLoad(MacroAssembler * masm,Register receiver,Register key,Register scratch,Register scratch2,Register result,Label * slow,LanguageMode language_mode)167 static void GenerateFastArrayLoad(MacroAssembler* masm, Register receiver,
168                                   Register key, Register scratch,
169                                   Register scratch2, Register result,
170                                   Label* slow, LanguageMode language_mode) {
171   // Register use:
172   //   receiver - holds the receiver and is unchanged.
173   //   key - holds the key and is unchanged (must be a smi).
174   // Scratch registers:
175   //   scratch - used to hold elements of the receiver and the loaded value.
176   //   scratch2 - holds maps and prototypes during prototype chain check.
177   //   result - holds the result on exit if the load succeeds and
178   //            we fall through.
179   Label check_prototypes, check_next_prototype;
180   Label done, in_bounds, absent;
181 
182   __ mov(scratch, FieldOperand(receiver, JSObject::kElementsOffset));
183   __ AssertFastElements(scratch);
184 
185   // Check that the key (index) is within bounds.
186   __ cmp(key, FieldOperand(scratch, FixedArray::kLengthOffset));
187   __ j(below, &in_bounds);
188   // Out-of-bounds. Check the prototype chain to see if we can just return
189   // 'undefined'.
190   __ cmp(key, 0);
191   __ j(less, slow);  // Negative keys can't take the fast OOB path.
192   __ bind(&check_prototypes);
193   __ mov(scratch2, FieldOperand(receiver, HeapObject::kMapOffset));
194   __ bind(&check_next_prototype);
195   __ mov(scratch2, FieldOperand(scratch2, Map::kPrototypeOffset));
196   // scratch2: current prototype
197   __ cmp(scratch2, masm->isolate()->factory()->null_value());
198   __ j(equal, &absent);
199   __ mov(scratch, FieldOperand(scratch2, JSObject::kElementsOffset));
200   __ mov(scratch2, FieldOperand(scratch2, HeapObject::kMapOffset));
201   // scratch: elements of current prototype
202   // scratch2: map of current prototype
203   __ CmpInstanceType(scratch2, JS_OBJECT_TYPE);
204   __ j(below, slow);
205   __ test_b(
206       FieldOperand(scratch2, Map::kBitFieldOffset),
207       (1 << Map::kIsAccessCheckNeeded) | (1 << Map::kHasIndexedInterceptor));
208   __ j(not_zero, slow);
209   __ cmp(scratch, masm->isolate()->factory()->empty_fixed_array());
210   __ j(not_equal, slow);
211   __ jmp(&check_next_prototype);
212 
213   __ bind(&absent);
214   if (is_strong(language_mode)) {
215     // Strong mode accesses must throw in this case, so call the runtime.
216     __ jmp(slow);
217   } else {
218     __ mov(result, masm->isolate()->factory()->undefined_value());
219     __ jmp(&done);
220   }
221 
222   __ bind(&in_bounds);
223   // Fast case: Do the load.
224   STATIC_ASSERT((kPointerSize == 4) && (kSmiTagSize == 1) && (kSmiTag == 0));
225   __ mov(scratch, FieldOperand(scratch, key, times_2, FixedArray::kHeaderSize));
226   __ cmp(scratch, Immediate(masm->isolate()->factory()->the_hole_value()));
227   // In case the loaded value is the_hole we have to check the prototype chain.
228   __ j(equal, &check_prototypes);
229   __ Move(result, scratch);
230   __ bind(&done);
231 }
232 
233 
234 // Checks whether a key is an array index string or a unique name.
235 // Falls through if the key is a unique name.
GenerateKeyNameCheck(MacroAssembler * masm,Register key,Register map,Register hash,Label * index_string,Label * not_unique)236 static void GenerateKeyNameCheck(MacroAssembler* masm, Register key,
237                                  Register map, Register hash,
238                                  Label* index_string, Label* not_unique) {
239   // Register use:
240   //   key - holds the key and is unchanged. Assumed to be non-smi.
241   // Scratch registers:
242   //   map - used to hold the map of the key.
243   //   hash - used to hold the hash of the key.
244   Label unique;
245   __ CmpObjectType(key, LAST_UNIQUE_NAME_TYPE, map);
246   __ j(above, not_unique);
247   STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
248   __ j(equal, &unique);
249 
250   // Is the string an array index, with cached numeric value?
251   __ mov(hash, FieldOperand(key, Name::kHashFieldOffset));
252   __ test(hash, Immediate(Name::kContainsCachedArrayIndexMask));
253   __ j(zero, index_string);
254 
255   // Is the string internalized? We already know it's a string so a single
256   // bit test is enough.
257   STATIC_ASSERT(kNotInternalizedTag != 0);
258   __ test_b(FieldOperand(map, Map::kInstanceTypeOffset),
259             kIsNotInternalizedMask);
260   __ j(not_zero, not_unique);
261 
262   __ bind(&unique);
263 }
264 
265 
GenerateMegamorphic(MacroAssembler * masm,LanguageMode language_mode)266 void KeyedLoadIC::GenerateMegamorphic(MacroAssembler* masm,
267                                       LanguageMode language_mode) {
268   // The return address is on the stack.
269   Label slow, check_name, index_smi, index_name, property_array_property;
270   Label probe_dictionary, check_number_dictionary;
271 
272   Register receiver = LoadDescriptor::ReceiverRegister();
273   Register key = LoadDescriptor::NameRegister();
274   DCHECK(receiver.is(edx));
275   DCHECK(key.is(ecx));
276 
277   // Check that the key is a smi.
278   __ JumpIfNotSmi(key, &check_name);
279   __ bind(&index_smi);
280   // Now the key is known to be a smi. This place is also jumped to from
281   // where a numeric string is converted to a smi.
282 
283   GenerateKeyedLoadReceiverCheck(masm, receiver, eax,
284                                  Map::kHasIndexedInterceptor, &slow);
285 
286   // Check the receiver's map to see if it has fast elements.
287   __ CheckFastElements(eax, &check_number_dictionary);
288 
289   GenerateFastArrayLoad(masm, receiver, key, eax, ebx, eax, &slow,
290                         language_mode);
291   Isolate* isolate = masm->isolate();
292   Counters* counters = isolate->counters();
293   __ IncrementCounter(counters->keyed_load_generic_smi(), 1);
294   __ ret(0);
295 
296   __ bind(&check_number_dictionary);
297   __ mov(ebx, key);
298   __ SmiUntag(ebx);
299   __ mov(eax, FieldOperand(receiver, JSObject::kElementsOffset));
300 
301   // Check whether the elements is a number dictionary.
302   // ebx: untagged index
303   // eax: elements
304   __ CheckMap(eax, isolate->factory()->hash_table_map(), &slow,
305               DONT_DO_SMI_CHECK);
306   Label slow_pop_receiver;
307   // Push receiver on the stack to free up a register for the dictionary
308   // probing.
309   __ push(receiver);
310   __ LoadFromNumberDictionary(&slow_pop_receiver, eax, key, ebx, edx, edi, eax);
311   // Pop receiver before returning.
312   __ pop(receiver);
313   __ ret(0);
314 
315   __ bind(&slow_pop_receiver);
316   // Pop the receiver from the stack and jump to runtime.
317   __ pop(receiver);
318 
319   __ bind(&slow);
320   // Slow case: jump to runtime.
321   __ IncrementCounter(counters->keyed_load_generic_slow(), 1);
322   GenerateRuntimeGetProperty(masm, language_mode);
323 
324   __ bind(&check_name);
325   GenerateKeyNameCheck(masm, key, eax, ebx, &index_name, &slow);
326 
327   GenerateKeyedLoadReceiverCheck(masm, receiver, eax, Map::kHasNamedInterceptor,
328                                  &slow);
329 
330   // If the receiver is a fast-case object, check the stub cache. Otherwise
331   // probe the dictionary.
332   __ mov(ebx, FieldOperand(receiver, JSObject::kPropertiesOffset));
333   __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
334          Immediate(isolate->factory()->hash_table_map()));
335   __ j(equal, &probe_dictionary);
336 
337   // The handlers in the stub cache expect a vector and slot. Since we won't
338   // change the IC from any downstream misses, a dummy vector can be used.
339   Handle<TypeFeedbackVector> dummy_vector =
340       TypeFeedbackVector::DummyVector(isolate);
341   int slot = dummy_vector->GetIndex(
342       FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedLoadICSlot));
343   __ push(Immediate(Smi::FromInt(slot)));
344   __ push(Immediate(dummy_vector));
345 
346   Code::Flags flags = Code::RemoveTypeAndHolderFromFlags(
347       Code::ComputeHandlerFlags(Code::LOAD_IC));
348   masm->isolate()->stub_cache()->GenerateProbe(masm, Code::KEYED_LOAD_IC, flags,
349                                                receiver, key, ebx, edi);
350 
351   __ pop(LoadWithVectorDescriptor::VectorRegister());
352   __ pop(LoadDescriptor::SlotRegister());
353 
354   // Cache miss.
355   GenerateMiss(masm);
356 
357   // Do a quick inline probe of the receiver's dictionary, if it
358   // exists.
359   __ bind(&probe_dictionary);
360 
361   __ mov(eax, FieldOperand(receiver, JSObject::kMapOffset));
362   __ movzx_b(eax, FieldOperand(eax, Map::kInstanceTypeOffset));
363   GenerateGlobalInstanceTypeCheck(masm, eax, &slow);
364 
365   GenerateDictionaryLoad(masm, &slow, ebx, key, eax, edi, eax);
366   __ IncrementCounter(counters->keyed_load_generic_symbol(), 1);
367   __ ret(0);
368 
369   __ bind(&index_name);
370   __ IndexFromHash(ebx, key);
371   // Now jump to the place where smi keys are handled.
372   __ jmp(&index_smi);
373 }
374 
375 
KeyedStoreGenerateMegamorphicHelper(MacroAssembler * masm,Label * fast_object,Label * fast_double,Label * slow,KeyedStoreCheckMap check_map,KeyedStoreIncrementLength increment_length)376 static void KeyedStoreGenerateMegamorphicHelper(
377     MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow,
378     KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length) {
379   Label transition_smi_elements;
380   Label finish_object_store, non_double_value, transition_double_elements;
381   Label fast_double_without_map_check;
382   Register receiver = StoreDescriptor::ReceiverRegister();
383   Register key = StoreDescriptor::NameRegister();
384   Register value = StoreDescriptor::ValueRegister();
385   DCHECK(receiver.is(edx));
386   DCHECK(key.is(ecx));
387   DCHECK(value.is(eax));
388   // key is a smi.
389   // ebx: FixedArray receiver->elements
390   // edi: receiver map
391   // Fast case: Do the store, could either Object or double.
392   __ bind(fast_object);
393   if (check_map == kCheckMap) {
394     __ mov(edi, FieldOperand(ebx, HeapObject::kMapOffset));
395     __ cmp(edi, masm->isolate()->factory()->fixed_array_map());
396     __ j(not_equal, fast_double);
397   }
398 
399   // HOLECHECK: guards "A[i] = V"
400   // We have to go to the runtime if the current value is the hole because
401   // there may be a callback on the element
402   Label holecheck_passed1;
403   __ cmp(FixedArrayElementOperand(ebx, key),
404          masm->isolate()->factory()->the_hole_value());
405   __ j(not_equal, &holecheck_passed1);
406   __ JumpIfDictionaryInPrototypeChain(receiver, ebx, edi, slow);
407   __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
408 
409   __ bind(&holecheck_passed1);
410 
411   // Smi stores don't require further checks.
412   Label non_smi_value;
413   __ JumpIfNotSmi(value, &non_smi_value);
414   if (increment_length == kIncrementLength) {
415     // Add 1 to receiver->length.
416     __ add(FieldOperand(receiver, JSArray::kLengthOffset),
417            Immediate(Smi::FromInt(1)));
418   }
419   // It's irrelevant whether array is smi-only or not when writing a smi.
420   __ mov(FixedArrayElementOperand(ebx, key), value);
421   __ ret(0);
422 
423   __ bind(&non_smi_value);
424   // Escape to elements kind transition case.
425   __ mov(edi, FieldOperand(receiver, HeapObject::kMapOffset));
426   __ CheckFastObjectElements(edi, &transition_smi_elements);
427 
428   // Fast elements array, store the value to the elements backing store.
429   __ bind(&finish_object_store);
430   if (increment_length == kIncrementLength) {
431     // Add 1 to receiver->length.
432     __ add(FieldOperand(receiver, JSArray::kLengthOffset),
433            Immediate(Smi::FromInt(1)));
434   }
435   __ mov(FixedArrayElementOperand(ebx, key), value);
436   // Update write barrier for the elements array address.
437   __ mov(edx, value);  // Preserve the value which is returned.
438   __ RecordWriteArray(ebx, edx, key, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
439                       OMIT_SMI_CHECK);
440   __ ret(0);
441 
442   __ bind(fast_double);
443   if (check_map == kCheckMap) {
444     // Check for fast double array case. If this fails, call through to the
445     // runtime.
446     __ cmp(edi, masm->isolate()->factory()->fixed_double_array_map());
447     __ j(not_equal, slow);
448     // If the value is a number, store it as a double in the FastDoubleElements
449     // array.
450   }
451 
452   // HOLECHECK: guards "A[i] double hole?"
453   // We have to see if the double version of the hole is present. If so
454   // go to the runtime.
455   uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32);
456   __ cmp(FieldOperand(ebx, key, times_4, offset), Immediate(kHoleNanUpper32));
457   __ j(not_equal, &fast_double_without_map_check);
458   __ JumpIfDictionaryInPrototypeChain(receiver, ebx, edi, slow);
459   __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
460 
461   __ bind(&fast_double_without_map_check);
462   __ StoreNumberToDoubleElements(value, ebx, key, edi,
463                                  &transition_double_elements, false);
464   if (increment_length == kIncrementLength) {
465     // Add 1 to receiver->length.
466     __ add(FieldOperand(receiver, JSArray::kLengthOffset),
467            Immediate(Smi::FromInt(1)));
468   }
469   __ ret(0);
470 
471   __ bind(&transition_smi_elements);
472   __ mov(ebx, FieldOperand(receiver, HeapObject::kMapOffset));
473 
474   // Transition the array appropriately depending on the value type.
475   __ CheckMap(value, masm->isolate()->factory()->heap_number_map(),
476               &non_double_value, DONT_DO_SMI_CHECK);
477 
478   // Value is a double. Transition FAST_SMI_ELEMENTS -> FAST_DOUBLE_ELEMENTS
479   // and complete the store.
480   __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
481                                          FAST_DOUBLE_ELEMENTS, ebx, edi, slow);
482   AllocationSiteMode mode =
483       AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS);
484   ElementsTransitionGenerator::GenerateSmiToDouble(masm, receiver, key, value,
485                                                    ebx, mode, slow);
486   __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
487   __ jmp(&fast_double_without_map_check);
488 
489   __ bind(&non_double_value);
490   // Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS
491   __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS, ebx,
492                                          edi, slow);
493   mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS);
494   ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
495       masm, receiver, key, value, ebx, mode, slow);
496   __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
497   __ jmp(&finish_object_store);
498 
499   __ bind(&transition_double_elements);
500   // Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
501   // HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
502   // transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
503   __ mov(ebx, FieldOperand(receiver, HeapObject::kMapOffset));
504   __ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS,
505                                          ebx, edi, slow);
506   mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS);
507   ElementsTransitionGenerator::GenerateDoubleToObject(masm, receiver, key,
508                                                       value, ebx, mode, slow);
509   __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
510   __ jmp(&finish_object_store);
511 }
512 
513 
GenerateMegamorphic(MacroAssembler * masm,LanguageMode language_mode)514 void KeyedStoreIC::GenerateMegamorphic(MacroAssembler* masm,
515                                        LanguageMode language_mode) {
516   // Return address is on the stack.
517   Label slow, fast_object, fast_object_grow;
518   Label fast_double, fast_double_grow;
519   Label array, extra, check_if_double_array, maybe_name_key, miss;
520   Register receiver = StoreDescriptor::ReceiverRegister();
521   Register key = StoreDescriptor::NameRegister();
522   DCHECK(receiver.is(edx));
523   DCHECK(key.is(ecx));
524 
525   // Check that the object isn't a smi.
526   __ JumpIfSmi(receiver, &slow);
527   // Get the map from the receiver.
528   __ mov(edi, FieldOperand(receiver, HeapObject::kMapOffset));
529   // Check that the receiver does not require access checks and is not observed.
530   // The generic stub does not perform map checks or handle observed objects.
531   __ test_b(FieldOperand(edi, Map::kBitFieldOffset),
532             1 << Map::kIsAccessCheckNeeded | 1 << Map::kIsObserved);
533   __ j(not_zero, &slow);
534   // Check that the key is a smi.
535   __ JumpIfNotSmi(key, &maybe_name_key);
536   __ CmpInstanceType(edi, JS_ARRAY_TYPE);
537   __ j(equal, &array);
538   // Check that the object is some kind of JS object EXCEPT JS Value type. In
539   // the case that the object is a value-wrapper object, we enter the runtime
540   // system to make sure that indexing into string objects works as intended.
541   STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE);
542   __ CmpInstanceType(edi, JS_OBJECT_TYPE);
543   __ j(below, &slow);
544 
545   // Object case: Check key against length in the elements array.
546   // Key is a smi.
547   // edi: receiver map
548   __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
549   // Check array bounds. Both the key and the length of FixedArray are smis.
550   __ cmp(key, FieldOperand(ebx, FixedArray::kLengthOffset));
551   __ j(below, &fast_object);
552 
553   // Slow case: call runtime.
554   __ bind(&slow);
555   PropertyICCompiler::GenerateRuntimeSetProperty(masm, language_mode);
556   // Never returns to here.
557 
558   __ bind(&maybe_name_key);
559   __ mov(ebx, FieldOperand(key, HeapObject::kMapOffset));
560   __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
561   __ JumpIfNotUniqueNameInstanceType(ebx, &slow);
562 
563 
564   // The handlers in the stub cache expect a vector and slot. Since we won't
565   // change the IC from any downstream misses, a dummy vector can be used.
566   Handle<TypeFeedbackVector> dummy_vector =
567       TypeFeedbackVector::DummyVector(masm->isolate());
568   int slot = dummy_vector->GetIndex(
569       FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedStoreICSlot));
570   __ push(Immediate(Smi::FromInt(slot)));
571   __ push(Immediate(dummy_vector));
572 
573   Code::Flags flags = Code::RemoveTypeAndHolderFromFlags(
574       Code::ComputeHandlerFlags(Code::STORE_IC));
575   masm->isolate()->stub_cache()->GenerateProbe(masm, Code::STORE_IC, flags,
576                                                receiver, key, edi, no_reg);
577 
578   __ pop(VectorStoreICDescriptor::VectorRegister());
579   __ pop(VectorStoreICDescriptor::SlotRegister());
580 
581   // Cache miss.
582   __ jmp(&miss);
583 
584   // Extra capacity case: Check if there is extra capacity to
585   // perform the store and update the length. Used for adding one
586   // element to the array by writing to array[array.length].
587   __ bind(&extra);
588   // receiver is a JSArray.
589   // key is a smi.
590   // ebx: receiver->elements, a FixedArray
591   // edi: receiver map
592   // flags: compare (key, receiver.length())
593   // do not leave holes in the array:
594   __ j(not_equal, &slow);
595   __ cmp(key, FieldOperand(ebx, FixedArray::kLengthOffset));
596   __ j(above_equal, &slow);
597   __ mov(edi, FieldOperand(ebx, HeapObject::kMapOffset));
598   __ cmp(edi, masm->isolate()->factory()->fixed_array_map());
599   __ j(not_equal, &check_if_double_array);
600   __ jmp(&fast_object_grow);
601 
602   __ bind(&check_if_double_array);
603   __ cmp(edi, masm->isolate()->factory()->fixed_double_array_map());
604   __ j(not_equal, &slow);
605   __ jmp(&fast_double_grow);
606 
607   // Array case: Get the length and the elements array from the JS
608   // array. Check that the array is in fast mode (and writable); if it
609   // is the length is always a smi.
610   __ bind(&array);
611   // receiver is a JSArray.
612   // key is a smi.
613   // edi: receiver map
614   __ mov(ebx, FieldOperand(receiver, JSObject::kElementsOffset));
615 
616   // Check the key against the length in the array and fall through to the
617   // common store code.
618   __ cmp(key, FieldOperand(receiver, JSArray::kLengthOffset));  // Compare smis.
619   __ j(above_equal, &extra);
620 
621   KeyedStoreGenerateMegamorphicHelper(masm, &fast_object, &fast_double, &slow,
622                                       kCheckMap, kDontIncrementLength);
623   KeyedStoreGenerateMegamorphicHelper(masm, &fast_object_grow,
624                                       &fast_double_grow, &slow, kDontCheckMap,
625                                       kIncrementLength);
626 
627   __ bind(&miss);
628   GenerateMiss(masm);
629 }
630 
631 
GenerateNormal(MacroAssembler * masm,LanguageMode language_mode)632 void LoadIC::GenerateNormal(MacroAssembler* masm, LanguageMode language_mode) {
633   Register dictionary = eax;
634   DCHECK(!dictionary.is(LoadDescriptor::ReceiverRegister()));
635   DCHECK(!dictionary.is(LoadDescriptor::NameRegister()));
636 
637   Label slow;
638 
639   __ mov(dictionary, FieldOperand(LoadDescriptor::ReceiverRegister(),
640                                   JSObject::kPropertiesOffset));
641   GenerateDictionaryLoad(masm, &slow, dictionary,
642                          LoadDescriptor::NameRegister(), edi, ebx, eax);
643   __ ret(0);
644 
645   // Dictionary load failed, go slow (but don't miss).
646   __ bind(&slow);
647   GenerateRuntimeGetProperty(masm, language_mode);
648 }
649 
650 
LoadIC_PushArgs(MacroAssembler * masm)651 static void LoadIC_PushArgs(MacroAssembler* masm) {
652   Register receiver = LoadDescriptor::ReceiverRegister();
653   Register name = LoadDescriptor::NameRegister();
654 
655   Register slot = LoadDescriptor::SlotRegister();
656   Register vector = LoadWithVectorDescriptor::VectorRegister();
657   DCHECK(!edi.is(receiver) && !edi.is(name) && !edi.is(slot) &&
658          !edi.is(vector));
659 
660   __ pop(edi);
661   __ push(receiver);
662   __ push(name);
663   __ push(slot);
664   __ push(vector);
665   __ push(edi);
666 }
667 
668 
GenerateMiss(MacroAssembler * masm)669 void LoadIC::GenerateMiss(MacroAssembler* masm) {
670   // Return address is on the stack.
671   __ IncrementCounter(masm->isolate()->counters()->load_miss(), 1);
672   LoadIC_PushArgs(masm);
673 
674   // Perform tail call to the entry.
675   __ TailCallRuntime(Runtime::kLoadIC_Miss);
676 }
677 
678 
GenerateRuntimeGetProperty(MacroAssembler * masm,LanguageMode language_mode)679 void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm,
680                                         LanguageMode language_mode) {
681   // Return address is on the stack.
682   Register receiver = LoadDescriptor::ReceiverRegister();
683   Register name = LoadDescriptor::NameRegister();
684   DCHECK(!ebx.is(receiver) && !ebx.is(name));
685 
686   __ pop(ebx);
687   __ push(receiver);
688   __ push(name);
689   __ push(ebx);
690 
691   // Do tail-call to runtime routine.
692   __ TailCallRuntime(is_strong(language_mode) ? Runtime::kGetPropertyStrong
693                                               : Runtime::kGetProperty);
694 }
695 
696 
GenerateMiss(MacroAssembler * masm)697 void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
698   // Return address is on the stack.
699   __ IncrementCounter(masm->isolate()->counters()->keyed_load_miss(), 1);
700 
701   LoadIC_PushArgs(masm);
702 
703   // Perform tail call to the entry.
704   __ TailCallRuntime(Runtime::kKeyedLoadIC_Miss);
705 }
706 
707 
GenerateRuntimeGetProperty(MacroAssembler * masm,LanguageMode language_mode)708 void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm,
709                                              LanguageMode language_mode) {
710   // Return address is on the stack.
711   Register receiver = LoadDescriptor::ReceiverRegister();
712   Register name = LoadDescriptor::NameRegister();
713   DCHECK(!ebx.is(receiver) && !ebx.is(name));
714 
715   __ pop(ebx);
716   __ push(receiver);
717   __ push(name);
718   __ push(ebx);
719 
720   // Do tail-call to runtime routine.
721   __ TailCallRuntime(is_strong(language_mode) ? Runtime::kKeyedGetPropertyStrong
722                                               : Runtime::kKeyedGetProperty);
723 }
724 
725 
GenerateMegamorphic(MacroAssembler * masm)726 void StoreIC::GenerateMegamorphic(MacroAssembler* masm) {
727   // This shouldn't be called.
728   // TODO(mvstanton): remove this method.
729   __ int3();
730   return;
731 }
732 
733 
StoreIC_PushArgs(MacroAssembler * masm)734 static void StoreIC_PushArgs(MacroAssembler* masm) {
735   Register receiver = StoreDescriptor::ReceiverRegister();
736   Register name = StoreDescriptor::NameRegister();
737   Register value = StoreDescriptor::ValueRegister();
738   Register slot = VectorStoreICDescriptor::SlotRegister();
739   Register vector = VectorStoreICDescriptor::VectorRegister();
740 
741   __ xchg(receiver, Operand(esp, 0));
742   __ push(name);
743   __ push(value);
744   __ push(slot);
745   __ push(vector);
746   __ push(receiver);  // Contains the return address.
747 }
748 
749 
GenerateMiss(MacroAssembler * masm)750 void StoreIC::GenerateMiss(MacroAssembler* masm) {
751   // Return address is on the stack.
752   StoreIC_PushArgs(masm);
753 
754   // Perform tail call to the entry.
755   __ TailCallRuntime(Runtime::kStoreIC_Miss);
756 }
757 
758 
GenerateNormal(MacroAssembler * masm)759 void StoreIC::GenerateNormal(MacroAssembler* masm) {
760   Label restore_miss;
761   Register receiver = StoreDescriptor::ReceiverRegister();
762   Register name = StoreDescriptor::NameRegister();
763   Register value = StoreDescriptor::ValueRegister();
764   Register vector = VectorStoreICDescriptor::VectorRegister();
765   Register slot = VectorStoreICDescriptor::SlotRegister();
766 
767   // A lot of registers are needed for storing to slow case
768   // objects. Push and restore receiver but rely on
769   // GenerateDictionaryStore preserving the value and name.
770   __ push(receiver);
771   __ push(vector);
772   __ push(slot);
773 
774   Register dictionary = ebx;
775   __ mov(dictionary, FieldOperand(receiver, JSObject::kPropertiesOffset));
776   GenerateDictionaryStore(masm, &restore_miss, dictionary, name, value,
777                           receiver, edi);
778   __ Drop(3);
779   Counters* counters = masm->isolate()->counters();
780   __ IncrementCounter(counters->store_normal_hit(), 1);
781   __ ret(0);
782 
783   __ bind(&restore_miss);
784   __ pop(slot);
785   __ pop(vector);
786   __ pop(receiver);
787   __ IncrementCounter(counters->store_normal_miss(), 1);
788   GenerateMiss(masm);
789 }
790 
791 
GenerateMiss(MacroAssembler * masm)792 void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
793   // Return address is on the stack.
794   StoreIC_PushArgs(masm);
795 
796   // Do tail-call to runtime routine.
797   __ TailCallRuntime(Runtime::kKeyedStoreIC_Miss);
798 }
799 
800 
801 #undef __
802 
803 
ComputeCondition(Token::Value op)804 Condition CompareIC::ComputeCondition(Token::Value op) {
805   switch (op) {
806     case Token::EQ_STRICT:
807     case Token::EQ:
808       return equal;
809     case Token::LT:
810       return less;
811     case Token::GT:
812       return greater;
813     case Token::LTE:
814       return less_equal;
815     case Token::GTE:
816       return greater_equal;
817     default:
818       UNREACHABLE();
819       return no_condition;
820   }
821 }
822 
823 
HasInlinedSmiCode(Address address)824 bool CompareIC::HasInlinedSmiCode(Address address) {
825   // The address of the instruction following the call.
826   Address test_instruction_address =
827       address + Assembler::kCallTargetAddressOffset;
828 
829   // If the instruction following the call is not a test al, nothing
830   // was inlined.
831   return *test_instruction_address == Assembler::kTestAlByte;
832 }
833 
834 
PatchInlinedSmiCode(Isolate * isolate,Address address,InlinedSmiCheck check)835 void PatchInlinedSmiCode(Isolate* isolate, Address address,
836                          InlinedSmiCheck check) {
837   // The address of the instruction following the call.
838   Address test_instruction_address =
839       address + Assembler::kCallTargetAddressOffset;
840 
841   // If the instruction following the call is not a test al, nothing
842   // was inlined.
843   if (*test_instruction_address != Assembler::kTestAlByte) {
844     DCHECK(*test_instruction_address == Assembler::kNopByte);
845     return;
846   }
847 
848   Address delta_address = test_instruction_address + 1;
849   // The delta to the start of the map check instruction and the
850   // condition code uses at the patched jump.
851   uint8_t delta = *reinterpret_cast<uint8_t*>(delta_address);
852   if (FLAG_trace_ic) {
853     PrintF("[  patching ic at %p, test=%p, delta=%d\n", address,
854            test_instruction_address, delta);
855   }
856 
857   // Patch with a short conditional jump. Enabling means switching from a short
858   // jump-if-carry/not-carry to jump-if-zero/not-zero, whereas disabling is the
859   // reverse operation of that.
860   Address jmp_address = test_instruction_address - delta;
861   DCHECK((check == ENABLE_INLINED_SMI_CHECK)
862              ? (*jmp_address == Assembler::kJncShortOpcode ||
863                 *jmp_address == Assembler::kJcShortOpcode)
864              : (*jmp_address == Assembler::kJnzShortOpcode ||
865                 *jmp_address == Assembler::kJzShortOpcode));
866   Condition cc =
867       (check == ENABLE_INLINED_SMI_CHECK)
868           ? (*jmp_address == Assembler::kJncShortOpcode ? not_zero : zero)
869           : (*jmp_address == Assembler::kJnzShortOpcode ? not_carry : carry);
870   *jmp_address = static_cast<byte>(Assembler::kJccShortPrefix | cc);
871 }
872 }  // namespace internal
873 }  // namespace v8
874 
875 #endif  // V8_TARGET_ARCH_X87
876