1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 
6 // Declares a Simulator for MIPS instructions if we are not generating a native
7 // MIPS binary. This Simulator allows us to run and debug MIPS code generation
8 // on regular desktop machines.
9 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
10 // which will start execution in the Simulator or forwards to the real entry
11 // on a MIPS HW platform.
12 
13 #ifndef V8_MIPS_SIMULATOR_MIPS_H_
14 #define V8_MIPS_SIMULATOR_MIPS_H_
15 
16 #include "src/allocation.h"
17 #include "src/mips/constants-mips.h"
18 
19 #if !defined(USE_SIMULATOR)
20 // Running without a simulator on a native mips platform.
21 
22 namespace v8 {
23 namespace internal {
24 
25 // When running without a simulator we call the entry directly.
26 #define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
27   entry(p0, p1, p2, p3, p4)
28 
29 typedef int (*mips_regexp_matcher)(String*, int, const byte*, const byte*,
30                                    void*, int*, int, Address, int, Isolate*);
31 
32 
33 // Call the generated regexp code directly. The code at the entry address
34 // should act as a function matching the type arm_regexp_matcher.
35 // The fifth argument is a dummy that reserves the space used for
36 // the return address added by the ExitFrame in native calls.
37 #define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
38                                    p7, p8)                                     \
39   (FUNCTION_CAST<mips_regexp_matcher>(entry)(p0, p1, p2, p3, NULL, p4, p5, p6, \
40                                              p7, p8))
41 
42 // The stack limit beyond which we will throw stack overflow errors in
43 // generated code. Because generated code on mips uses the C stack, we
44 // just use the C stack limit.
45 class SimulatorStack : public v8::internal::AllStatic {
46  public:
JsLimitFromCLimit(Isolate * isolate,uintptr_t c_limit)47   static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
48                                             uintptr_t c_limit) {
49     return c_limit;
50   }
51 
RegisterCTryCatch(Isolate * isolate,uintptr_t try_catch_address)52   static inline uintptr_t RegisterCTryCatch(Isolate* isolate,
53                                             uintptr_t try_catch_address) {
54     USE(isolate);
55     return try_catch_address;
56   }
57 
UnregisterCTryCatch(Isolate * isolate)58   static inline void UnregisterCTryCatch(Isolate* isolate) { USE(isolate); }
59 };
60 
61 }  // namespace internal
62 }  // namespace v8
63 
64 // Calculated the stack limit beyond which we will throw stack overflow errors.
65 // This macro must be called from a C++ method. It relies on being able to take
66 // the address of "this" to get a value on the current execution stack and then
67 // calculates the stack limit based on that value.
68 // NOTE: The check for overflow is not safe as there is no guarantee that the
69 // running thread has its stack in all memory up to address 0x00000000.
70 #define GENERATED_CODE_STACK_LIMIT(limit) \
71   (reinterpret_cast<uintptr_t>(this) >= limit ? \
72       reinterpret_cast<uintptr_t>(this) - limit : 0)
73 
74 #else  // !defined(USE_SIMULATOR)
75 // Running with a simulator.
76 
77 #include "src/assembler.h"
78 #include "src/hashmap.h"
79 
80 namespace v8 {
81 namespace internal {
82 
83 // -----------------------------------------------------------------------------
84 // Utility functions
85 
86 class CachePage {
87  public:
88   static const int LINE_VALID = 0;
89   static const int LINE_INVALID = 1;
90 
91   static const int kPageShift = 12;
92   static const int kPageSize = 1 << kPageShift;
93   static const int kPageMask = kPageSize - 1;
94   static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
95   static const int kLineLength = 1 << kLineShift;
96   static const int kLineMask = kLineLength - 1;
97 
CachePage()98   CachePage() {
99     memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
100   }
101 
ValidityByte(int offset)102   char* ValidityByte(int offset) {
103     return &validity_map_[offset >> kLineShift];
104   }
105 
CachedData(int offset)106   char* CachedData(int offset) {
107     return &data_[offset];
108   }
109 
110  private:
111   char data_[kPageSize];   // The cached data.
112   static const int kValidityMapSize = kPageSize >> kLineShift;
113   char validity_map_[kValidityMapSize];  // One byte per line.
114 };
115 
116 class Simulator {
117  public:
118   friend class MipsDebugger;
119 
120   // Registers are declared in order. See SMRL chapter 2.
121   enum Register {
122     no_reg = -1,
123     zero_reg = 0,
124     at,
125     v0, v1,
126     a0, a1, a2, a3,
127     t0, t1, t2, t3, t4, t5, t6, t7,
128     s0, s1, s2, s3, s4, s5, s6, s7,
129     t8, t9,
130     k0, k1,
131     gp,
132     sp,
133     s8,
134     ra,
135     // LO, HI, and pc.
136     LO,
137     HI,
138     pc,   // pc must be the last register.
139     kNumSimuRegisters,
140     // aliases
141     fp = s8
142   };
143 
144   // Coprocessor registers.
145   // Generated code will always use doubles. So we will only use even registers.
146   enum FPURegister {
147     f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
148     f12, f13, f14, f15,   // f12 and f14 are arguments FPURegisters.
149     f16, f17, f18, f19, f20, f21, f22, f23, f24, f25,
150     f26, f27, f28, f29, f30, f31,
151     kNumFPURegisters
152   };
153 
154   explicit Simulator(Isolate* isolate);
155   ~Simulator();
156 
157   // The currently executing Simulator instance. Potentially there can be one
158   // for each native thread.
159   static Simulator* current(v8::internal::Isolate* isolate);
160 
161   // Accessors for register state. Reading the pc value adheres to the MIPS
162   // architecture specification and is off by a 8 from the currently executing
163   // instruction.
164   void set_register(int reg, int32_t value);
165   void set_dw_register(int dreg, const int* dbl);
166   int32_t get_register(int reg) const;
167   double get_double_from_register_pair(int reg);
168   // Same for FPURegisters.
169   void set_fpu_register(int fpureg, int64_t value);
170   void set_fpu_register_word(int fpureg, int32_t value);
171   void set_fpu_register_hi_word(int fpureg, int32_t value);
172   void set_fpu_register_float(int fpureg, float value);
173   void set_fpu_register_double(int fpureg, double value);
174   void set_fpu_register_invalid_result64(float original, float rounded);
175   void set_fpu_register_invalid_result(float original, float rounded);
176   void set_fpu_register_word_invalid_result(float original, float rounded);
177   void set_fpu_register_invalid_result64(double original, double rounded);
178   void set_fpu_register_invalid_result(double original, double rounded);
179   void set_fpu_register_word_invalid_result(double original, double rounded);
180   int64_t get_fpu_register(int fpureg) const;
181   int32_t get_fpu_register_word(int fpureg) const;
182   int32_t get_fpu_register_signed_word(int fpureg) const;
183   int32_t get_fpu_register_hi_word(int fpureg) const;
184   float get_fpu_register_float(int fpureg) const;
185   double get_fpu_register_double(int fpureg) const;
186   void set_fcsr_bit(uint32_t cc, bool value);
187   bool test_fcsr_bit(uint32_t cc);
188   void set_fcsr_rounding_mode(FPURoundingMode mode);
189   unsigned int get_fcsr_rounding_mode();
190   bool set_fcsr_round_error(double original, double rounded);
191   bool set_fcsr_round_error(float original, float rounded);
192   bool set_fcsr_round64_error(double original, double rounded);
193   bool set_fcsr_round64_error(float original, float rounded);
194   void round_according_to_fcsr(double toRound, double& rounded,
195                                int32_t& rounded_int, double fs);
196   void round_according_to_fcsr(float toRound, float& rounded,
197                                int32_t& rounded_int, float fs);
198   void round64_according_to_fcsr(double toRound, double& rounded,
199                                  int64_t& rounded_int, double fs);
200   void round64_according_to_fcsr(float toRound, float& rounded,
201                                  int64_t& rounded_int, float fs);
202   // Special case of set_register and get_register to access the raw PC value.
203   void set_pc(int32_t value);
204   int32_t get_pc() const;
205 
get_sp()206   Address get_sp() const {
207     return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
208   }
209 
210   // Accessor to the internal simulator stack area.
211   uintptr_t StackLimit(uintptr_t c_limit) const;
212 
213   // Executes MIPS instructions until the PC reaches end_sim_pc.
214   void Execute();
215 
216   // Call on program start.
217   static void Initialize(Isolate* isolate);
218 
219   static void TearDown(HashMap* i_cache, Redirection* first);
220 
221   // V8 generally calls into generated JS code with 5 parameters and into
222   // generated RegExp code with 7 parameters. This is a convenience function,
223   // which sets up the simulator state and grabs the result on return.
224   int32_t Call(byte* entry, int argument_count, ...);
225   // Alternative: call a 2-argument double function.
226   double CallFP(byte* entry, double d0, double d1);
227 
228   // Push an address onto the JS stack.
229   uintptr_t PushAddress(uintptr_t address);
230 
231   // Pop an address from the JS stack.
232   uintptr_t PopAddress();
233 
234   // Debugger input.
235   void set_last_debugger_input(char* input);
last_debugger_input()236   char* last_debugger_input() { return last_debugger_input_; }
237 
238   // ICache checking.
239   static void FlushICache(v8::internal::HashMap* i_cache, void* start,
240                           size_t size);
241 
242   // Returns true if pc register contains one of the 'special_values' defined
243   // below (bad_ra, end_sim_pc).
244   bool has_bad_pc() const;
245 
246  private:
247   enum special_values {
248     // Known bad pc value to ensure that the simulator does not execute
249     // without being properly setup.
250     bad_ra = -1,
251     // A pc value used to signal the simulator to stop execution.  Generally
252     // the ra is set to this value on transition from native C code to
253     // simulated execution, so that the simulator can "return" to the native
254     // C code.
255     end_sim_pc = -2,
256     // Unpredictable value.
257     Unpredictable = 0xbadbeaf
258   };
259 
260   // Unsupported instructions use Format to print an error and stop execution.
261   void Format(Instruction* instr, const char* format);
262 
263   // Read and write memory.
264   inline uint32_t ReadBU(int32_t addr);
265   inline int32_t ReadB(int32_t addr);
266   inline void WriteB(int32_t addr, uint8_t value);
267   inline void WriteB(int32_t addr, int8_t value);
268 
269   inline uint16_t ReadHU(int32_t addr, Instruction* instr);
270   inline int16_t ReadH(int32_t addr, Instruction* instr);
271   // Note: Overloaded on the sign of the value.
272   inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
273   inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
274 
275   inline int ReadW(int32_t addr, Instruction* instr);
276   inline void WriteW(int32_t addr, int value, Instruction* instr);
277 
278   inline double ReadD(int32_t addr, Instruction* instr);
279   inline void WriteD(int32_t addr, double value, Instruction* instr);
280 
281   // Helpers for data value tracing.
282   enum TraceType {
283     BYTE,
284     HALF,
285     WORD
286     // DWORD,
287     // DFLOAT - Floats may have printing issues due to paired lwc1's
288   };
289 
290   void TraceRegWr(int32_t value);
291   void TraceMemWr(int32_t addr, int32_t value, TraceType t);
292   void TraceMemRd(int32_t addr, int32_t value);
293   EmbeddedVector<char, 128> trace_buf_;
294 
295   // Operations depending on endianness.
296   // Get Double Higher / Lower word.
297   inline int32_t GetDoubleHIW(double* addr);
298   inline int32_t GetDoubleLOW(double* addr);
299   // Set Double Higher / Lower word.
300   inline int32_t SetDoubleHIW(double* addr);
301   inline int32_t SetDoubleLOW(double* addr);
302 
303   // Executing is handled based on the instruction type.
304   void DecodeTypeRegister(Instruction* instr);
305 
306   // Functions called from DecodeTypeRegister.
307   void DecodeTypeRegisterCOP1();
308 
309   void DecodeTypeRegisterCOP1X();
310 
311   void DecodeTypeRegisterSPECIAL();
312 
313   void DecodeTypeRegisterSPECIAL2();
314 
315   void DecodeTypeRegisterSPECIAL3();
316 
317   // Called from DecodeTypeRegisterCOP1.
318   void DecodeTypeRegisterSRsType();
319 
320   void DecodeTypeRegisterDRsType();
321 
322   void DecodeTypeRegisterWRsType();
323 
324   void DecodeTypeRegisterLRsType();
325 
326   Instruction* currentInstr_;
327 
get_instr()328   inline Instruction* get_instr() const { return currentInstr_; }
set_instr(Instruction * instr)329   inline void set_instr(Instruction* instr) { currentInstr_ = instr; }
330 
rs_reg()331   inline int32_t rs_reg() const { return currentInstr_->RsValue(); }
rs()332   inline int32_t rs() const { return get_register(rs_reg()); }
rs_u()333   inline uint32_t rs_u() const {
334     return static_cast<uint32_t>(get_register(rs_reg()));
335   }
rt_reg()336   inline int32_t rt_reg() const { return currentInstr_->RtValue(); }
rt()337   inline int32_t rt() const { return get_register(rt_reg()); }
rt_u()338   inline uint32_t rt_u() const {
339     return static_cast<uint32_t>(get_register(rt_reg()));
340   }
rd_reg()341   inline int32_t rd_reg() const { return currentInstr_->RdValue(); }
fr_reg()342   inline int32_t fr_reg() const { return currentInstr_->FrValue(); }
fs_reg()343   inline int32_t fs_reg() const { return currentInstr_->FsValue(); }
ft_reg()344   inline int32_t ft_reg() const { return currentInstr_->FtValue(); }
fd_reg()345   inline int32_t fd_reg() const { return currentInstr_->FdValue(); }
sa()346   inline int32_t sa() const { return currentInstr_->SaValue(); }
lsa_sa()347   inline int32_t lsa_sa() const { return currentInstr_->LsaSaValue(); }
348 
SetResult(int32_t rd_reg,int32_t alu_out)349   inline void SetResult(int32_t rd_reg, int32_t alu_out) {
350     set_register(rd_reg, alu_out);
351     TraceRegWr(alu_out);
352   }
353 
354   void DecodeTypeImmediate(Instruction* instr);
355   void DecodeTypeJump(Instruction* instr);
356 
357   // Used for breakpoints and traps.
358   void SoftwareInterrupt(Instruction* instr);
359 
360   // Compact branch guard.
CheckForbiddenSlot(int32_t current_pc)361   void CheckForbiddenSlot(int32_t current_pc) {
362     Instruction* instr_aftter_compact_branch =
363         reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
364     if (instr_aftter_compact_branch->IsForbiddenInBranchDelay()) {
365       V8_Fatal(__FILE__, __LINE__,
366                "Error: Unexpected instruction 0x%08x immediately after a "
367                "compact branch instruction.",
368                *reinterpret_cast<uint32_t*>(instr_aftter_compact_branch));
369     }
370   }
371 
372   // Stop helper functions.
373   bool IsWatchpoint(uint32_t code);
374   void PrintWatchpoint(uint32_t code);
375   void HandleStop(uint32_t code, Instruction* instr);
376   bool IsStopInstruction(Instruction* instr);
377   bool IsEnabledStop(uint32_t code);
378   void EnableStop(uint32_t code);
379   void DisableStop(uint32_t code);
380   void IncreaseStopCounter(uint32_t code);
381   void PrintStopInfo(uint32_t code);
382 
383 
384   // Executes one instruction.
385   void InstructionDecode(Instruction* instr);
386   // Execute one instruction placed in a branch delay slot.
BranchDelayInstructionDecode(Instruction * instr)387   void BranchDelayInstructionDecode(Instruction* instr) {
388     if (instr->InstructionBits() == nopInstr) {
389       // Short-cut generic nop instructions. They are always valid and they
390       // never change the simulator state.
391       return;
392     }
393 
394     if (instr->IsForbiddenInBranchDelay()) {
395       V8_Fatal(__FILE__, __LINE__,
396                "Eror:Unexpected %i opcode in a branch delay slot.",
397                instr->OpcodeValue());
398     }
399     InstructionDecode(instr);
400     SNPrintF(trace_buf_, " ");
401   }
402 
403   // ICache.
404   static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
405   static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
406                            int size);
407   static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
408 
409   enum Exception {
410     none,
411     kIntegerOverflow,
412     kIntegerUnderflow,
413     kDivideByZero,
414     kNumExceptions
415   };
416 
417   // Exceptions.
418   void SignalException(Exception e);
419 
420   // Runtime call support.
421   static void* RedirectExternalReference(Isolate* isolate,
422                                          void* external_function,
423                                          ExternalReference::Type type);
424 
425   // Handle arguments and return value for runtime FP functions.
426   void GetFpArgs(double* x, double* y, int32_t* z);
427   void SetFpResult(const double& result);
428 
429   void CallInternal(byte* entry);
430 
431   // Architecture state.
432   // Registers.
433   int32_t registers_[kNumSimuRegisters];
434   // Coprocessor Registers.
435   // Note: FP32 mode uses only the lower 32-bit part of each element,
436   // the upper 32-bit is unpredictable.
437   int64_t FPUregisters_[kNumFPURegisters];
438   // FPU control register.
439   uint32_t FCSR_;
440 
441   // Simulator support.
442   // Allocate 1MB for stack.
443   static const size_t stack_size_ = 1 * 1024*1024;
444   char* stack_;
445   bool pc_modified_;
446   uint64_t icount_;
447   int break_count_;
448 
449   // Debugger input.
450   char* last_debugger_input_;
451 
452   // Icache simulation.
453   v8::internal::HashMap* i_cache_;
454 
455   v8::internal::Isolate* isolate_;
456 
457   // Registered breakpoints.
458   Instruction* break_pc_;
459   Instr break_instr_;
460 
461   // Stop is disabled if bit 31 is set.
462   static const uint32_t kStopDisabledBit = 1 << 31;
463 
464   // A stop is enabled, meaning the simulator will stop when meeting the
465   // instruction, if bit 31 of watched_stops_[code].count is unset.
466   // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
467   // the breakpoint was hit or gone through.
468   struct StopCountAndDesc {
469     uint32_t count;
470     char* desc;
471   };
472   StopCountAndDesc watched_stops_[kMaxStopCode + 1];
473 };
474 
475 
476 // When running with the simulator transition into simulated execution at this
477 // point.
478 #define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
479   reinterpret_cast<Object*>(Simulator::current(isolate)->Call(  \
480       FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
481 
482 #define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
483                                    p7, p8)                                     \
484   Simulator::current(isolate)                                                  \
485       ->Call(entry, 10, p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8)
486 
487 
488 // The simulator has its own stack. Thus it has a different stack limit from
489 // the C-based native code.  The JS-based limit normally points near the end of
490 // the simulator stack.  When the C-based limit is exhausted we reflect that by
491 // lowering the JS-based limit as well, to make stack checks trigger.
492 class SimulatorStack : public v8::internal::AllStatic {
493  public:
JsLimitFromCLimit(Isolate * isolate,uintptr_t c_limit)494   static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
495                                             uintptr_t c_limit) {
496     return Simulator::current(isolate)->StackLimit(c_limit);
497   }
498 
RegisterCTryCatch(Isolate * isolate,uintptr_t try_catch_address)499   static inline uintptr_t RegisterCTryCatch(Isolate* isolate,
500                                             uintptr_t try_catch_address) {
501     Simulator* sim = Simulator::current(isolate);
502     return sim->PushAddress(try_catch_address);
503   }
504 
UnregisterCTryCatch(Isolate * isolate)505   static inline void UnregisterCTryCatch(Isolate* isolate) {
506     Simulator::current(isolate)->PopAddress();
507   }
508 };
509 
510 }  // namespace internal
511 }  // namespace v8
512 
513 #endif  // !defined(USE_SIMULATOR)
514 #endif  // V8_MIPS_SIMULATOR_MIPS_H_
515