1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_MIPS_CONSTANTS_H_
6 #define V8_MIPS_CONSTANTS_H_
7
8 #include "src/base/logging.h"
9 #include "src/base/macros.h"
10 #include "src/globals.h"
11
12 // UNIMPLEMENTED_ macro for MIPS.
13 #ifdef DEBUG
14 #define UNIMPLEMENTED_MIPS() \
15 v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \
16 __FILE__, __LINE__, __func__)
17 #else
18 #define UNIMPLEMENTED_MIPS()
19 #endif
20
21 #define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")
22
23 enum ArchVariants {
24 kMips64r2,
25 kMips64r6
26 };
27
28
29 #ifdef _MIPS_ARCH_MIPS64R2
30 static const ArchVariants kArchVariant = kMips64r2;
31 #elif _MIPS_ARCH_MIPS64R6
32 static const ArchVariants kArchVariant = kMips64r6;
33 #else
34 static const ArchVariants kArchVariant = kMips64r2;
35 #endif
36
37
38 enum Endianness { kLittle, kBig };
39
40 #if defined(V8_TARGET_LITTLE_ENDIAN)
41 static const Endianness kArchEndian = kLittle;
42 #elif defined(V8_TARGET_BIG_ENDIAN)
43 static const Endianness kArchEndian = kBig;
44 #else
45 #error Unknown endianness
46 #endif
47
48 // TODO(plind): consider deriving ABI from compiler flags or build system.
49
50 // ABI-dependent definitions are made with #define in simulator-mips64.h,
51 // so the ABI choice must be available to the pre-processor. However, in all
52 // other cases, we should use the enum AbiVariants with normal if statements.
53
54 #define MIPS_ABI_N64 1
55 // #define MIPS_ABI_O32 1
56
57 // The only supported Abi's are O32, and n64.
58 enum AbiVariants {
59 kO32,
60 kN64 // Use upper case N for 'n64' ABI to conform to style standard.
61 };
62
63 #ifdef MIPS_ABI_N64
64 static const AbiVariants kMipsAbi = kN64;
65 #else
66 static const AbiVariants kMipsAbi = kO32;
67 #endif
68
69
70 // TODO(plind): consider renaming these ...
71 #if(defined(__mips_hard_float) && __mips_hard_float != 0)
72 // Use floating-point coprocessor instructions. This flag is raised when
73 // -mhard-float is passed to the compiler.
74 const bool IsMipsSoftFloatABI = false;
75 #elif(defined(__mips_soft_float) && __mips_soft_float != 0)
76 // This flag is raised when -msoft-float is passed to the compiler.
77 // Although FPU is a base requirement for v8, soft-float ABI is used
78 // on soft-float systems with FPU kernel emulation.
79 const bool IsMipsSoftFloatABI = true;
80 #else
81 const bool IsMipsSoftFloatABI = true;
82 #endif
83
84
85 #ifndef __STDC_FORMAT_MACROS
86 #define __STDC_FORMAT_MACROS
87 #endif
88 #include <inttypes.h>
89
90
91 // Defines constants and accessor classes to assemble, disassemble and
92 // simulate MIPS32 instructions.
93 //
94 // See: MIPS32 Architecture For Programmers
95 // Volume II: The MIPS32 Instruction Set
96 // Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.
97
98 namespace v8 {
99 namespace internal {
100
101 // -----------------------------------------------------------------------------
102 // Registers and FPURegisters.
103
104 // Number of general purpose registers.
105 const int kNumRegisters = 32;
106 const int kInvalidRegister = -1;
107
108 // Number of registers with HI, LO, and pc.
109 const int kNumSimuRegisters = 35;
110
111 // In the simulator, the PC register is simulated as the 34th register.
112 const int kPCRegister = 34;
113
114 // Number coprocessor registers.
115 const int kNumFPURegisters = 32;
116 const int kInvalidFPURegister = -1;
117
118 // FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
119 const int kFCSRRegister = 31;
120 const int kInvalidFPUControlRegister = -1;
121 const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1 << 31) - 1;
122 const int32_t kFPUInvalidResultNegative = static_cast<int32_t>(1 << 31);
123 const uint64_t kFPU64InvalidResult =
124 static_cast<uint64_t>(static_cast<uint64_t>(1) << 63) - 1;
125 const int64_t kFPU64InvalidResultNegative =
126 static_cast<int64_t>(static_cast<uint64_t>(1) << 63);
127
128 // FCSR constants.
129 const uint32_t kFCSRInexactFlagBit = 2;
130 const uint32_t kFCSRUnderflowFlagBit = 3;
131 const uint32_t kFCSROverflowFlagBit = 4;
132 const uint32_t kFCSRDivideByZeroFlagBit = 5;
133 const uint32_t kFCSRInvalidOpFlagBit = 6;
134 const uint32_t kFCSRNaN2008FlagBit = 18;
135
136 const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
137 const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
138 const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
139 const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
140 const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;
141 const uint32_t kFCSRNaN2008FlagMask = 1 << kFCSRNaN2008FlagBit;
142
143 const uint32_t kFCSRFlagMask =
144 kFCSRInexactFlagMask |
145 kFCSRUnderflowFlagMask |
146 kFCSROverflowFlagMask |
147 kFCSRDivideByZeroFlagMask |
148 kFCSRInvalidOpFlagMask;
149
150 const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;
151
152 // 'pref' instruction hints
153 const int32_t kPrefHintLoad = 0;
154 const int32_t kPrefHintStore = 1;
155 const int32_t kPrefHintLoadStreamed = 4;
156 const int32_t kPrefHintStoreStreamed = 5;
157 const int32_t kPrefHintLoadRetained = 6;
158 const int32_t kPrefHintStoreRetained = 7;
159 const int32_t kPrefHintWritebackInvalidate = 25;
160 const int32_t kPrefHintPrepareForStore = 30;
161
162 // Helper functions for converting between register numbers and names.
163 class Registers {
164 public:
165 // Return the name of the register.
166 static const char* Name(int reg);
167
168 // Lookup the register number for the name provided.
169 static int Number(const char* name);
170
171 struct RegisterAlias {
172 int reg;
173 const char* name;
174 };
175
176 static const int64_t kMaxValue = 0x7fffffffffffffffl;
177 static const int64_t kMinValue = 0x8000000000000000l;
178
179 private:
180 static const char* names_[kNumSimuRegisters];
181 static const RegisterAlias aliases_[];
182 };
183
184 // Helper functions for converting between register numbers and names.
185 class FPURegisters {
186 public:
187 // Return the name of the register.
188 static const char* Name(int reg);
189
190 // Lookup the register number for the name provided.
191 static int Number(const char* name);
192
193 struct RegisterAlias {
194 int creg;
195 const char* name;
196 };
197
198 private:
199 static const char* names_[kNumFPURegisters];
200 static const RegisterAlias aliases_[];
201 };
202
203
204 // -----------------------------------------------------------------------------
205 // Instructions encoding constants.
206
207 // On MIPS all instructions are 32 bits.
208 typedef int32_t Instr;
209
210 // Special Software Interrupt codes when used in the presence of the MIPS
211 // simulator.
212 enum SoftwareInterruptCodes {
213 // Transition to C code.
214 call_rt_redirected = 0xfffff
215 };
216
217 // On MIPS Simulator breakpoints can have different codes:
218 // - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
219 // the simulator will run through them and print the registers.
220 // - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
221 // instructions (see Assembler::stop()).
222 // - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
223 // debugger.
224 const uint32_t kMaxWatchpointCode = 31;
225 const uint32_t kMaxStopCode = 127;
226 STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode);
227
228
229 // ----- Fields offset and length.
230 const int kOpcodeShift = 26;
231 const int kOpcodeBits = 6;
232 const int kRsShift = 21;
233 const int kRsBits = 5;
234 const int kRtShift = 16;
235 const int kRtBits = 5;
236 const int kRdShift = 11;
237 const int kRdBits = 5;
238 const int kSaShift = 6;
239 const int kSaBits = 5;
240 const int kLsaSaBits = 2;
241 const int kFunctionShift = 0;
242 const int kFunctionBits = 6;
243 const int kLuiShift = 16;
244 const int kBp2Shift = 6;
245 const int kBp2Bits = 2;
246 const int kBp3Shift = 6;
247 const int kBp3Bits = 3;
248
249 const int kImm16Shift = 0;
250 const int kImm16Bits = 16;
251 const int kImm18Shift = 0;
252 const int kImm18Bits = 18;
253 const int kImm19Shift = 0;
254 const int kImm19Bits = 19;
255 const int kImm21Shift = 0;
256 const int kImm21Bits = 21;
257 const int kImm26Shift = 0;
258 const int kImm26Bits = 26;
259 const int kImm28Shift = 0;
260 const int kImm28Bits = 28;
261 const int kImm32Shift = 0;
262 const int kImm32Bits = 32;
263
264 // In branches and jumps immediate fields point to words, not bytes,
265 // and are therefore shifted by 2.
266 const int kImmFieldShift = 2;
267
268 const int kFrBits = 5;
269 const int kFrShift = 21;
270 const int kFsShift = 11;
271 const int kFsBits = 5;
272 const int kFtShift = 16;
273 const int kFtBits = 5;
274 const int kFdShift = 6;
275 const int kFdBits = 5;
276 const int kFCccShift = 8;
277 const int kFCccBits = 3;
278 const int kFBccShift = 18;
279 const int kFBccBits = 3;
280 const int kFBtrueShift = 16;
281 const int kFBtrueBits = 1;
282
283 // ----- Miscellaneous useful masks.
284 // Instruction bit masks.
285 const int kOpcodeMask = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
286 const int kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift;
287 const int kImm18Mask = ((1 << kImm18Bits) - 1) << kImm18Shift;
288 const int kImm19Mask = ((1 << kImm19Bits) - 1) << kImm19Shift;
289 const int kImm21Mask = ((1 << kImm21Bits) - 1) << kImm21Shift;
290 const int kImm26Mask = ((1 << kImm26Bits) - 1) << kImm26Shift;
291 const int kImm28Mask = ((1 << kImm28Bits) - 1) << kImm28Shift;
292 const int kRsFieldMask = ((1 << kRsBits) - 1) << kRsShift;
293 const int kRtFieldMask = ((1 << kRtBits) - 1) << kRtShift;
294 const int kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift;
295 const int kSaFieldMask = ((1 << kSaBits) - 1) << kSaShift;
296 const int kFunctionFieldMask = ((1 << kFunctionBits) - 1) << kFunctionShift;
297 // Misc masks.
298 const int kHiMask = 0xffff << 16;
299 const int kLoMask = 0xffff;
300 const int kSignMask = 0x80000000;
301 const int kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1;
302 const int64_t kHi16MaskOf64 = (int64_t)0xffff << 48;
303 const int64_t kSe16MaskOf64 = (int64_t)0xffff << 32;
304 const int64_t kTh16MaskOf64 = (int64_t)0xffff << 16;
305 const int32_t kJalRawMark = 0x00000000;
306 const int32_t kJRawMark = 0xf0000000;
307 const int32_t kJumpRawMask = 0xf0000000;
308
309 // ----- MIPS Opcodes and Function Fields.
310 // We use this presentation to stay close to the table representation in
311 // MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
312 enum Opcode : uint32_t {
313 SPECIAL = 0U << kOpcodeShift,
314 REGIMM = 1U << kOpcodeShift,
315
316 J = ((0U << 3) + 2) << kOpcodeShift,
317 JAL = ((0U << 3) + 3) << kOpcodeShift,
318 BEQ = ((0U << 3) + 4) << kOpcodeShift,
319 BNE = ((0U << 3) + 5) << kOpcodeShift,
320 BLEZ = ((0U << 3) + 6) << kOpcodeShift,
321 BGTZ = ((0U << 3) + 7) << kOpcodeShift,
322
323 ADDI = ((1U << 3) + 0) << kOpcodeShift,
324 ADDIU = ((1U << 3) + 1) << kOpcodeShift,
325 SLTI = ((1U << 3) + 2) << kOpcodeShift,
326 SLTIU = ((1U << 3) + 3) << kOpcodeShift,
327 ANDI = ((1U << 3) + 4) << kOpcodeShift,
328 ORI = ((1U << 3) + 5) << kOpcodeShift,
329 XORI = ((1U << 3) + 6) << kOpcodeShift,
330 LUI = ((1U << 3) + 7) << kOpcodeShift, // LUI/AUI family.
331 DAUI = ((3U << 3) + 5) << kOpcodeShift,
332
333 BEQC = ((2U << 3) + 0) << kOpcodeShift,
334 COP1 = ((2U << 3) + 1) << kOpcodeShift, // Coprocessor 1 class.
335 BEQL = ((2U << 3) + 4) << kOpcodeShift,
336 BNEL = ((2U << 3) + 5) << kOpcodeShift,
337 BLEZL = ((2U << 3) + 6) << kOpcodeShift,
338 BGTZL = ((2U << 3) + 7) << kOpcodeShift,
339
340 DADDI = ((3U << 3) + 0) << kOpcodeShift, // This is also BNEC.
341 DADDIU = ((3U << 3) + 1) << kOpcodeShift,
342 LDL = ((3U << 3) + 2) << kOpcodeShift,
343 LDR = ((3U << 3) + 3) << kOpcodeShift,
344 SPECIAL2 = ((3U << 3) + 4) << kOpcodeShift,
345 SPECIAL3 = ((3U << 3) + 7) << kOpcodeShift,
346
347 LB = ((4U << 3) + 0) << kOpcodeShift,
348 LH = ((4U << 3) + 1) << kOpcodeShift,
349 LWL = ((4U << 3) + 2) << kOpcodeShift,
350 LW = ((4U << 3) + 3) << kOpcodeShift,
351 LBU = ((4U << 3) + 4) << kOpcodeShift,
352 LHU = ((4U << 3) + 5) << kOpcodeShift,
353 LWR = ((4U << 3) + 6) << kOpcodeShift,
354 LWU = ((4U << 3) + 7) << kOpcodeShift,
355
356 SB = ((5U << 3) + 0) << kOpcodeShift,
357 SH = ((5U << 3) + 1) << kOpcodeShift,
358 SWL = ((5U << 3) + 2) << kOpcodeShift,
359 SW = ((5U << 3) + 3) << kOpcodeShift,
360 SDL = ((5U << 3) + 4) << kOpcodeShift,
361 SDR = ((5U << 3) + 5) << kOpcodeShift,
362 SWR = ((5U << 3) + 6) << kOpcodeShift,
363
364 LWC1 = ((6U << 3) + 1) << kOpcodeShift,
365 BC = ((6U << 3) + 2) << kOpcodeShift,
366 LLD = ((6U << 3) + 4) << kOpcodeShift,
367 LDC1 = ((6U << 3) + 5) << kOpcodeShift,
368 POP66 = ((6U << 3) + 6) << kOpcodeShift,
369 LD = ((6U << 3) + 7) << kOpcodeShift,
370
371 PREF = ((6U << 3) + 3) << kOpcodeShift,
372
373 SWC1 = ((7U << 3) + 1) << kOpcodeShift,
374 BALC = ((7U << 3) + 2) << kOpcodeShift,
375 PCREL = ((7U << 3) + 3) << kOpcodeShift,
376 SCD = ((7U << 3) + 4) << kOpcodeShift,
377 SDC1 = ((7U << 3) + 5) << kOpcodeShift,
378 POP76 = ((7U << 3) + 6) << kOpcodeShift,
379 SD = ((7U << 3) + 7) << kOpcodeShift,
380
381 COP1X = ((1U << 4) + 3) << kOpcodeShift,
382
383 // New r6 instruction.
384 POP06 = BLEZ, // bgeuc/bleuc, blezalc, bgezalc
385 POP07 = BGTZ, // bltuc/bgtuc, bgtzalc, bltzalc
386 POP10 = ADDI, // beqzalc, bovc, beqc
387 POP26 = BLEZL, // bgezc, blezc, bgec/blec
388 POP27 = BGTZL, // bgtzc, bltzc, bltc/bgtc
389 POP30 = DADDI, // bnezalc, bnvc, bnec
390 };
391
392 enum SecondaryField : uint32_t {
393 // SPECIAL Encoding of Function Field.
394 SLL = ((0U << 3) + 0),
395 MOVCI = ((0U << 3) + 1),
396 SRL = ((0U << 3) + 2),
397 SRA = ((0U << 3) + 3),
398 SLLV = ((0U << 3) + 4),
399 LSA = ((0U << 3) + 5),
400 SRLV = ((0U << 3) + 6),
401 SRAV = ((0U << 3) + 7),
402
403 JR = ((1U << 3) + 0),
404 JALR = ((1U << 3) + 1),
405 MOVZ = ((1U << 3) + 2),
406 MOVN = ((1U << 3) + 3),
407 BREAK = ((1U << 3) + 5),
408
409 MFHI = ((2U << 3) + 0),
410 CLZ_R6 = ((2U << 3) + 0),
411 CLO_R6 = ((2U << 3) + 1),
412 MFLO = ((2U << 3) + 2),
413 DCLZ_R6 = ((2U << 3) + 2),
414 DCLO_R6 = ((2U << 3) + 3),
415 DSLLV = ((2U << 3) + 4),
416 DLSA = ((2U << 3) + 5),
417 DSRLV = ((2U << 3) + 6),
418 DSRAV = ((2U << 3) + 7),
419
420 MULT = ((3U << 3) + 0),
421 MULTU = ((3U << 3) + 1),
422 DIV = ((3U << 3) + 2),
423 DIVU = ((3U << 3) + 3),
424 DMULT = ((3U << 3) + 4),
425 DMULTU = ((3U << 3) + 5),
426 DDIV = ((3U << 3) + 6),
427 DDIVU = ((3U << 3) + 7),
428
429 ADD = ((4U << 3) + 0),
430 ADDU = ((4U << 3) + 1),
431 SUB = ((4U << 3) + 2),
432 SUBU = ((4U << 3) + 3),
433 AND = ((4U << 3) + 4),
434 OR = ((4U << 3) + 5),
435 XOR = ((4U << 3) + 6),
436 NOR = ((4U << 3) + 7),
437
438 SLT = ((5U << 3) + 2),
439 SLTU = ((5U << 3) + 3),
440 DADD = ((5U << 3) + 4),
441 DADDU = ((5U << 3) + 5),
442 DSUB = ((5U << 3) + 6),
443 DSUBU = ((5U << 3) + 7),
444
445 TGE = ((6U << 3) + 0),
446 TGEU = ((6U << 3) + 1),
447 TLT = ((6U << 3) + 2),
448 TLTU = ((6U << 3) + 3),
449 TEQ = ((6U << 3) + 4),
450 SELEQZ_S = ((6U << 3) + 5),
451 TNE = ((6U << 3) + 6),
452 SELNEZ_S = ((6U << 3) + 7),
453
454 DSLL = ((7U << 3) + 0),
455 DSRL = ((7U << 3) + 2),
456 DSRA = ((7U << 3) + 3),
457 DSLL32 = ((7U << 3) + 4),
458 DSRL32 = ((7U << 3) + 6),
459 DSRA32 = ((7U << 3) + 7),
460
461 // Multiply integers in r6.
462 MUL_MUH = ((3U << 3) + 0), // MUL, MUH.
463 MUL_MUH_U = ((3U << 3) + 1), // MUL_U, MUH_U.
464 D_MUL_MUH = ((7U << 2) + 0), // DMUL, DMUH.
465 D_MUL_MUH_U = ((7U << 2) + 1), // DMUL_U, DMUH_U.
466 RINT = ((3U << 3) + 2),
467
468 MUL_OP = ((0U << 3) + 2),
469 MUH_OP = ((0U << 3) + 3),
470 DIV_OP = ((0U << 3) + 2),
471 MOD_OP = ((0U << 3) + 3),
472
473 DIV_MOD = ((3U << 3) + 2),
474 DIV_MOD_U = ((3U << 3) + 3),
475 D_DIV_MOD = ((3U << 3) + 6),
476 D_DIV_MOD_U = ((3U << 3) + 7),
477
478 // drotr in special4?
479
480 // SPECIAL2 Encoding of Function Field.
481 MUL = ((0U << 3) + 2),
482 CLZ = ((4U << 3) + 0),
483 CLO = ((4U << 3) + 1),
484 DCLZ = ((4U << 3) + 4),
485 DCLO = ((4U << 3) + 5),
486
487 // SPECIAL3 Encoding of Function Field.
488 EXT = ((0U << 3) + 0),
489 DEXTM = ((0U << 3) + 1),
490 DEXTU = ((0U << 3) + 2),
491 DEXT = ((0U << 3) + 3),
492 INS = ((0U << 3) + 4),
493 DINSM = ((0U << 3) + 5),
494 DINSU = ((0U << 3) + 6),
495 DINS = ((0U << 3) + 7),
496
497 BSHFL = ((4U << 3) + 0),
498 DBSHFL = ((4U << 3) + 4),
499
500 // SPECIAL3 Encoding of sa Field.
501 BITSWAP = ((0U << 3) + 0),
502 ALIGN = ((0U << 3) + 2),
503 WSBH = ((0U << 3) + 2),
504 SEB = ((2U << 3) + 0),
505 SEH = ((3U << 3) + 0),
506
507 DBITSWAP = ((0U << 3) + 0),
508 DALIGN = ((0U << 3) + 1),
509 DBITSWAP_SA = ((0U << 3) + 0) << kSaShift,
510 DSBH = ((0U << 3) + 2),
511 DSHD = ((0U << 3) + 5),
512
513 // REGIMM encoding of rt Field.
514 BLTZ = ((0U << 3) + 0) << 16,
515 BGEZ = ((0U << 3) + 1) << 16,
516 BLTZAL = ((2U << 3) + 0) << 16,
517 BGEZAL = ((2U << 3) + 1) << 16,
518 BGEZALL = ((2U << 3) + 3) << 16,
519 DAHI = ((0U << 3) + 6) << 16,
520 DATI = ((3U << 3) + 6) << 16,
521
522 // COP1 Encoding of rs Field.
523 MFC1 = ((0U << 3) + 0) << 21,
524 DMFC1 = ((0U << 3) + 1) << 21,
525 CFC1 = ((0U << 3) + 2) << 21,
526 MFHC1 = ((0U << 3) + 3) << 21,
527 MTC1 = ((0U << 3) + 4) << 21,
528 DMTC1 = ((0U << 3) + 5) << 21,
529 CTC1 = ((0U << 3) + 6) << 21,
530 MTHC1 = ((0U << 3) + 7) << 21,
531 BC1 = ((1U << 3) + 0) << 21,
532 S = ((2U << 3) + 0) << 21,
533 D = ((2U << 3) + 1) << 21,
534 W = ((2U << 3) + 4) << 21,
535 L = ((2U << 3) + 5) << 21,
536 PS = ((2U << 3) + 6) << 21,
537 // COP1 Encoding of Function Field When rs=S.
538
539 ADD_S = ((0U << 3) + 0),
540 SUB_S = ((0U << 3) + 1),
541 MUL_S = ((0U << 3) + 2),
542 DIV_S = ((0U << 3) + 3),
543 ABS_S = ((0U << 3) + 5),
544 SQRT_S = ((0U << 3) + 4),
545 MOV_S = ((0U << 3) + 6),
546 NEG_S = ((0U << 3) + 7),
547 ROUND_L_S = ((1U << 3) + 0),
548 TRUNC_L_S = ((1U << 3) + 1),
549 CEIL_L_S = ((1U << 3) + 2),
550 FLOOR_L_S = ((1U << 3) + 3),
551 ROUND_W_S = ((1U << 3) + 4),
552 TRUNC_W_S = ((1U << 3) + 5),
553 CEIL_W_S = ((1U << 3) + 6),
554 FLOOR_W_S = ((1U << 3) + 7),
555 RECIP_S = ((2U << 3) + 5),
556 RSQRT_S = ((2U << 3) + 6),
557 CLASS_S = ((3U << 3) + 3),
558 CVT_D_S = ((4U << 3) + 1),
559 CVT_W_S = ((4U << 3) + 4),
560 CVT_L_S = ((4U << 3) + 5),
561 CVT_PS_S = ((4U << 3) + 6),
562 // COP1 Encoding of Function Field When rs=D.
563 ADD_D = ((0U << 3) + 0),
564 SUB_D = ((0U << 3) + 1),
565 MUL_D = ((0U << 3) + 2),
566 DIV_D = ((0U << 3) + 3),
567 SQRT_D = ((0U << 3) + 4),
568 ABS_D = ((0U << 3) + 5),
569 MOV_D = ((0U << 3) + 6),
570 NEG_D = ((0U << 3) + 7),
571 ROUND_L_D = ((1U << 3) + 0),
572 TRUNC_L_D = ((1U << 3) + 1),
573 CEIL_L_D = ((1U << 3) + 2),
574 FLOOR_L_D = ((1U << 3) + 3),
575 ROUND_W_D = ((1U << 3) + 4),
576 TRUNC_W_D = ((1U << 3) + 5),
577 CEIL_W_D = ((1U << 3) + 6),
578 FLOOR_W_D = ((1U << 3) + 7),
579 RECIP_D = ((2U << 3) + 5),
580 RSQRT_D = ((2U << 3) + 6),
581 CLASS_D = ((3U << 3) + 3),
582 MIN = ((3U << 3) + 4),
583 MINA = ((3U << 3) + 5),
584 MAX = ((3U << 3) + 6),
585 MAXA = ((3U << 3) + 7),
586 CVT_S_D = ((4U << 3) + 0),
587 CVT_W_D = ((4U << 3) + 4),
588 CVT_L_D = ((4U << 3) + 5),
589 C_F_D = ((6U << 3) + 0),
590 C_UN_D = ((6U << 3) + 1),
591 C_EQ_D = ((6U << 3) + 2),
592 C_UEQ_D = ((6U << 3) + 3),
593 C_OLT_D = ((6U << 3) + 4),
594 C_ULT_D = ((6U << 3) + 5),
595 C_OLE_D = ((6U << 3) + 6),
596 C_ULE_D = ((6U << 3) + 7),
597
598 // COP1 Encoding of Function Field When rs=W or L.
599 CVT_S_W = ((4U << 3) + 0),
600 CVT_D_W = ((4U << 3) + 1),
601 CVT_S_L = ((4U << 3) + 0),
602 CVT_D_L = ((4U << 3) + 1),
603 BC1EQZ = ((2U << 2) + 1) << 21,
604 BC1NEZ = ((3U << 2) + 1) << 21,
605 // COP1 CMP positive predicates Bit 5..4 = 00.
606 CMP_AF = ((0U << 3) + 0),
607 CMP_UN = ((0U << 3) + 1),
608 CMP_EQ = ((0U << 3) + 2),
609 CMP_UEQ = ((0U << 3) + 3),
610 CMP_LT = ((0U << 3) + 4),
611 CMP_ULT = ((0U << 3) + 5),
612 CMP_LE = ((0U << 3) + 6),
613 CMP_ULE = ((0U << 3) + 7),
614 CMP_SAF = ((1U << 3) + 0),
615 CMP_SUN = ((1U << 3) + 1),
616 CMP_SEQ = ((1U << 3) + 2),
617 CMP_SUEQ = ((1U << 3) + 3),
618 CMP_SSLT = ((1U << 3) + 4),
619 CMP_SSULT = ((1U << 3) + 5),
620 CMP_SLE = ((1U << 3) + 6),
621 CMP_SULE = ((1U << 3) + 7),
622 // COP1 CMP negative predicates Bit 5..4 = 01.
623 CMP_AT = ((2U << 3) + 0), // Reserved, not implemented.
624 CMP_OR = ((2U << 3) + 1),
625 CMP_UNE = ((2U << 3) + 2),
626 CMP_NE = ((2U << 3) + 3),
627 CMP_UGE = ((2U << 3) + 4), // Reserved, not implemented.
628 CMP_OGE = ((2U << 3) + 5), // Reserved, not implemented.
629 CMP_UGT = ((2U << 3) + 6), // Reserved, not implemented.
630 CMP_OGT = ((2U << 3) + 7), // Reserved, not implemented.
631 CMP_SAT = ((3U << 3) + 0), // Reserved, not implemented.
632 CMP_SOR = ((3U << 3) + 1),
633 CMP_SUNE = ((3U << 3) + 2),
634 CMP_SNE = ((3U << 3) + 3),
635 CMP_SUGE = ((3U << 3) + 4), // Reserved, not implemented.
636 CMP_SOGE = ((3U << 3) + 5), // Reserved, not implemented.
637 CMP_SUGT = ((3U << 3) + 6), // Reserved, not implemented.
638 CMP_SOGT = ((3U << 3) + 7), // Reserved, not implemented.
639
640 SEL = ((2U << 3) + 0),
641 MOVF = ((2U << 3) + 1), // Function field for MOVT.fmt and MOVF.fmt
642 MOVZ_C = ((2U << 3) + 2), // COP1 on FPR registers.
643 MOVN_C = ((2U << 3) + 3), // COP1 on FPR registers.
644 SELEQZ_C = ((2U << 3) + 4), // COP1 on FPR registers.
645 SELNEZ_C = ((2U << 3) + 7), // COP1 on FPR registers.
646
647 // COP1 Encoding of Function Field When rs=PS.
648 // COP1X Encoding of Function Field.
649 MADD_D = ((4U << 3) + 1),
650
651 // PCREL Encoding of rt Field.
652 ADDIUPC = ((0U << 2) + 0),
653 LWPC = ((0U << 2) + 1),
654 LWUPC = ((0U << 2) + 2),
655 LDPC = ((0U << 3) + 6),
656 // reserved ((1U << 3) + 6),
657 AUIPC = ((3U << 3) + 6),
658 ALUIPC = ((3U << 3) + 7),
659
660 // POP66 Encoding of rs Field.
661 JIC = ((0U << 5) + 0),
662
663 // POP76 Encoding of rs Field.
664 JIALC = ((0U << 5) + 0),
665
666 NULLSF = 0U
667 };
668
669
670 // ----- Emulated conditions.
671 // On MIPS we use this enum to abstract from conditional branch instructions.
672 // The 'U' prefix is used to specify unsigned comparisons.
673 // Opposite conditions must be paired as odd/even numbers
674 // because 'NegateCondition' function flips LSB to negate condition.
675 enum Condition {
676 // Any value < 0 is considered no_condition.
677 kNoCondition = -1,
678 overflow = 0,
679 no_overflow = 1,
680 Uless = 2,
681 Ugreater_equal = 3,
682 Uless_equal = 4,
683 Ugreater = 5,
684 equal = 6,
685 not_equal = 7, // Unordered or Not Equal.
686 negative = 8,
687 positive = 9,
688 parity_even = 10,
689 parity_odd = 11,
690 less = 12,
691 greater_equal = 13,
692 less_equal = 14,
693 greater = 15,
694 ueq = 16, // Unordered or Equal.
695 ogl = 17, // Ordered and Not Equal.
696 cc_always = 18,
697
698 // Aliases.
699 carry = Uless,
700 not_carry = Ugreater_equal,
701 zero = equal,
702 eq = equal,
703 not_zero = not_equal,
704 ne = not_equal,
705 nz = not_equal,
706 sign = negative,
707 not_sign = positive,
708 mi = negative,
709 pl = positive,
710 hi = Ugreater,
711 ls = Uless_equal,
712 ge = greater_equal,
713 lt = less,
714 gt = greater,
715 le = less_equal,
716 hs = Ugreater_equal,
717 lo = Uless,
718 al = cc_always,
719 ult = Uless,
720 uge = Ugreater_equal,
721 ule = Uless_equal,
722 ugt = Ugreater,
723 cc_default = kNoCondition
724 };
725
726
727 // Returns the equivalent of !cc.
728 // Negation of the default kNoCondition (-1) results in a non-default
729 // no_condition value (-2). As long as tests for no_condition check
730 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)731 inline Condition NegateCondition(Condition cc) {
732 DCHECK(cc != cc_always);
733 return static_cast<Condition>(cc ^ 1);
734 }
735
736
NegateFpuCondition(Condition cc)737 inline Condition NegateFpuCondition(Condition cc) {
738 DCHECK(cc != cc_always);
739 switch (cc) {
740 case ult:
741 return ge;
742 case ugt:
743 return le;
744 case uge:
745 return lt;
746 case ule:
747 return gt;
748 case lt:
749 return uge;
750 case gt:
751 return ule;
752 case ge:
753 return ult;
754 case le:
755 return ugt;
756 case eq:
757 return ne;
758 case ne:
759 return eq;
760 case ueq:
761 return ogl;
762 case ogl:
763 return ueq;
764 default:
765 return cc;
766 }
767 }
768
769
770 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cc)771 inline Condition CommuteCondition(Condition cc) {
772 switch (cc) {
773 case Uless:
774 return Ugreater;
775 case Ugreater:
776 return Uless;
777 case Ugreater_equal:
778 return Uless_equal;
779 case Uless_equal:
780 return Ugreater_equal;
781 case less:
782 return greater;
783 case greater:
784 return less;
785 case greater_equal:
786 return less_equal;
787 case less_equal:
788 return greater_equal;
789 default:
790 return cc;
791 }
792 }
793
794
795 // ----- Coprocessor conditions.
796 enum FPUCondition {
797 kNoFPUCondition = -1,
798
799 F = 0x00, // False.
800 UN = 0x01, // Unordered.
801 EQ = 0x02, // Equal.
802 UEQ = 0x03, // Unordered or Equal.
803 OLT = 0x04, // Ordered or Less Than, on Mips release < 6.
804 LT = 0x04, // Ordered or Less Than, on Mips release >= 6.
805 ULT = 0x05, // Unordered or Less Than.
806 OLE = 0x06, // Ordered or Less Than or Equal, on Mips release < 6.
807 LE = 0x06, // Ordered or Less Than or Equal, on Mips release >= 6.
808 ULE = 0x07, // Unordered or Less Than or Equal.
809
810 // Following constants are available on Mips release >= 6 only.
811 ORD = 0x11, // Ordered, on Mips release >= 6.
812 UNE = 0x12, // Not equal, on Mips release >= 6.
813 NE = 0x13, // Ordered Greater Than or Less Than. on Mips >= 6 only.
814 };
815
816
817 // FPU rounding modes.
818 enum FPURoundingMode {
819 RN = 0 << 0, // Round to Nearest.
820 RZ = 1 << 0, // Round towards zero.
821 RP = 2 << 0, // Round towards Plus Infinity.
822 RM = 3 << 0, // Round towards Minus Infinity.
823
824 // Aliases.
825 kRoundToNearest = RN,
826 kRoundToZero = RZ,
827 kRoundToPlusInf = RP,
828 kRoundToMinusInf = RM,
829
830 mode_round = RN,
831 mode_ceil = RP,
832 mode_floor = RM,
833 mode_trunc = RZ
834 };
835
836 const uint32_t kFPURoundingModeMask = 3 << 0;
837
838 enum CheckForInexactConversion {
839 kCheckForInexactConversion,
840 kDontCheckForInexactConversion
841 };
842
843
844 // -----------------------------------------------------------------------------
845 // Hints.
846
847 // Branch hints are not used on the MIPS. They are defined so that they can
848 // appear in shared function signatures, but will be ignored in MIPS
849 // implementations.
850 enum Hint {
851 no_hint = 0
852 };
853
854
NegateHint(Hint hint)855 inline Hint NegateHint(Hint hint) {
856 return no_hint;
857 }
858
859
860 // -----------------------------------------------------------------------------
861 // Specific instructions, constants, and masks.
862 // These constants are declared in assembler-mips.cc, as they use named
863 // registers and other constants.
864
865 // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
866 // operations as post-increment of sp.
867 extern const Instr kPopInstruction;
868 // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
869 extern const Instr kPushInstruction;
870 // sw(r, MemOperand(sp, 0))
871 extern const Instr kPushRegPattern;
872 // lw(r, MemOperand(sp, 0))
873 extern const Instr kPopRegPattern;
874 extern const Instr kLwRegFpOffsetPattern;
875 extern const Instr kSwRegFpOffsetPattern;
876 extern const Instr kLwRegFpNegOffsetPattern;
877 extern const Instr kSwRegFpNegOffsetPattern;
878 // A mask for the Rt register for push, pop, lw, sw instructions.
879 extern const Instr kRtMask;
880 extern const Instr kLwSwInstrTypeMask;
881 extern const Instr kLwSwInstrArgumentMask;
882 extern const Instr kLwSwOffsetMask;
883
884 // Break 0xfffff, reserved for redirected real time call.
885 const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
886 // A nop instruction. (Encoding of sll 0 0 0).
887 const Instr nopInstr = 0;
888
OpcodeToBitNumber(Opcode opcode)889 static constexpr uint64_t OpcodeToBitNumber(Opcode opcode) {
890 return 1ULL << (static_cast<uint32_t>(opcode) >> kOpcodeShift);
891 }
892
893
894 class Instruction {
895 public:
896 enum {
897 kInstrSize = 4,
898 kInstrSizeLog2 = 2,
899 // On MIPS PC cannot actually be directly accessed. We behave as if PC was
900 // always the value of the current instruction being executed.
901 kPCReadOffset = 0
902 };
903
904 // Get the raw instruction bits.
InstructionBits()905 inline Instr InstructionBits() const {
906 return *reinterpret_cast<const Instr*>(this);
907 }
908
909 // Set the raw instruction bits to value.
SetInstructionBits(Instr value)910 inline void SetInstructionBits(Instr value) {
911 *reinterpret_cast<Instr*>(this) = value;
912 }
913
914 // Read one particular bit out of the instruction bits.
Bit(int nr)915 inline int Bit(int nr) const {
916 return (InstructionBits() >> nr) & 1;
917 }
918
919 // Read a bit field out of the instruction bits.
Bits(int hi,int lo)920 inline int Bits(int hi, int lo) const {
921 return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1);
922 }
923
924 // Instruction type.
925 enum Type {
926 kRegisterType,
927 kImmediateType,
928 kJumpType,
929 kUnsupported = -1
930 };
931
932 enum TypeChecks { NORMAL, EXTRA };
933
934
935 static constexpr uint64_t kOpcodeImmediateTypeMask =
936 OpcodeToBitNumber(REGIMM) | OpcodeToBitNumber(BEQ) |
937 OpcodeToBitNumber(BNE) | OpcodeToBitNumber(BLEZ) |
938 OpcodeToBitNumber(BGTZ) | OpcodeToBitNumber(ADDI) |
939 OpcodeToBitNumber(DADDI) | OpcodeToBitNumber(ADDIU) |
940 OpcodeToBitNumber(DADDIU) | OpcodeToBitNumber(SLTI) |
941 OpcodeToBitNumber(SLTIU) | OpcodeToBitNumber(ANDI) |
942 OpcodeToBitNumber(ORI) | OpcodeToBitNumber(XORI) |
943 OpcodeToBitNumber(LUI) | OpcodeToBitNumber(BEQL) |
944 OpcodeToBitNumber(BNEL) | OpcodeToBitNumber(BLEZL) |
945 OpcodeToBitNumber(BGTZL) | OpcodeToBitNumber(POP66) |
946 OpcodeToBitNumber(POP76) | OpcodeToBitNumber(LB) | OpcodeToBitNumber(LH) |
947 OpcodeToBitNumber(LWL) | OpcodeToBitNumber(LW) | OpcodeToBitNumber(LWU) |
948 OpcodeToBitNumber(LD) | OpcodeToBitNumber(LBU) | OpcodeToBitNumber(LHU) |
949 OpcodeToBitNumber(LWR) | OpcodeToBitNumber(SB) | OpcodeToBitNumber(SH) |
950 OpcodeToBitNumber(SWL) | OpcodeToBitNumber(SW) | OpcodeToBitNumber(SD) |
951 OpcodeToBitNumber(SWR) | OpcodeToBitNumber(LWC1) |
952 OpcodeToBitNumber(LDC1) | OpcodeToBitNumber(SWC1) |
953 OpcodeToBitNumber(SDC1) | OpcodeToBitNumber(PCREL) |
954 OpcodeToBitNumber(DAUI) | OpcodeToBitNumber(BC) | OpcodeToBitNumber(BALC);
955
956 #define FunctionFieldToBitNumber(function) (1ULL << function)
957
958 // On r6, DCLZ_R6 aliases to existing MFLO.
959 static const uint64_t kFunctionFieldRegisterTypeMask =
960 FunctionFieldToBitNumber(JR) | FunctionFieldToBitNumber(JALR) |
961 FunctionFieldToBitNumber(BREAK) | FunctionFieldToBitNumber(SLL) |
962 FunctionFieldToBitNumber(DSLL) | FunctionFieldToBitNumber(DSLL32) |
963 FunctionFieldToBitNumber(SRL) | FunctionFieldToBitNumber(DSRL) |
964 FunctionFieldToBitNumber(DSRL32) | FunctionFieldToBitNumber(SRA) |
965 FunctionFieldToBitNumber(DSRA) | FunctionFieldToBitNumber(DSRA32) |
966 FunctionFieldToBitNumber(SLLV) | FunctionFieldToBitNumber(DSLLV) |
967 FunctionFieldToBitNumber(SRLV) | FunctionFieldToBitNumber(DSRLV) |
968 FunctionFieldToBitNumber(SRAV) | FunctionFieldToBitNumber(DSRAV) |
969 FunctionFieldToBitNumber(LSA) | FunctionFieldToBitNumber(DLSA) |
970 FunctionFieldToBitNumber(MFHI) | FunctionFieldToBitNumber(MFLO) |
971 FunctionFieldToBitNumber(MULT) | FunctionFieldToBitNumber(DMULT) |
972 FunctionFieldToBitNumber(MULTU) | FunctionFieldToBitNumber(DMULTU) |
973 FunctionFieldToBitNumber(DIV) | FunctionFieldToBitNumber(DDIV) |
974 FunctionFieldToBitNumber(DIVU) | FunctionFieldToBitNumber(DDIVU) |
975 FunctionFieldToBitNumber(ADD) | FunctionFieldToBitNumber(DADD) |
976 FunctionFieldToBitNumber(ADDU) | FunctionFieldToBitNumber(DADDU) |
977 FunctionFieldToBitNumber(SUB) | FunctionFieldToBitNumber(DSUB) |
978 FunctionFieldToBitNumber(SUBU) | FunctionFieldToBitNumber(DSUBU) |
979 FunctionFieldToBitNumber(AND) | FunctionFieldToBitNumber(OR) |
980 FunctionFieldToBitNumber(XOR) | FunctionFieldToBitNumber(NOR) |
981 FunctionFieldToBitNumber(SLT) | FunctionFieldToBitNumber(SLTU) |
982 FunctionFieldToBitNumber(TGE) | FunctionFieldToBitNumber(TGEU) |
983 FunctionFieldToBitNumber(TLT) | FunctionFieldToBitNumber(TLTU) |
984 FunctionFieldToBitNumber(TEQ) | FunctionFieldToBitNumber(TNE) |
985 FunctionFieldToBitNumber(MOVZ) | FunctionFieldToBitNumber(MOVN) |
986 FunctionFieldToBitNumber(MOVCI) | FunctionFieldToBitNumber(SELEQZ_S) |
987 FunctionFieldToBitNumber(SELNEZ_S);
988
989
990 // Get the encoding type of the instruction.
991 inline Type InstructionType(TypeChecks checks = NORMAL) const;
992
993
994 // Accessors for the different named fields used in the MIPS encoding.
OpcodeValue()995 inline Opcode OpcodeValue() const {
996 return static_cast<Opcode>(
997 Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
998 }
999
RsValue()1000 inline int RsValue() const {
1001 DCHECK(InstructionType() == kRegisterType ||
1002 InstructionType() == kImmediateType);
1003 return Bits(kRsShift + kRsBits - 1, kRsShift);
1004 }
1005
RtValue()1006 inline int RtValue() const {
1007 DCHECK(InstructionType() == kRegisterType ||
1008 InstructionType() == kImmediateType);
1009 return Bits(kRtShift + kRtBits - 1, kRtShift);
1010 }
1011
RdValue()1012 inline int RdValue() const {
1013 DCHECK(InstructionType() == kRegisterType);
1014 return Bits(kRdShift + kRdBits - 1, kRdShift);
1015 }
1016
SaValue()1017 inline int SaValue() const {
1018 DCHECK(InstructionType() == kRegisterType);
1019 return Bits(kSaShift + kSaBits - 1, kSaShift);
1020 }
1021
LsaSaValue()1022 inline int LsaSaValue() const {
1023 DCHECK(InstructionType() == kRegisterType);
1024 return Bits(kSaShift + kLsaSaBits - 1, kSaShift);
1025 }
1026
FunctionValue()1027 inline int FunctionValue() const {
1028 DCHECK(InstructionType() == kRegisterType ||
1029 InstructionType() == kImmediateType);
1030 return Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
1031 }
1032
FdValue()1033 inline int FdValue() const {
1034 return Bits(kFdShift + kFdBits - 1, kFdShift);
1035 }
1036
FsValue()1037 inline int FsValue() const {
1038 return Bits(kFsShift + kFsBits - 1, kFsShift);
1039 }
1040
FtValue()1041 inline int FtValue() const {
1042 return Bits(kFtShift + kFtBits - 1, kFtShift);
1043 }
1044
FrValue()1045 inline int FrValue() const {
1046 return Bits(kFrShift + kFrBits -1, kFrShift);
1047 }
1048
Bp2Value()1049 inline int Bp2Value() const {
1050 DCHECK(InstructionType() == kRegisterType);
1051 return Bits(kBp2Shift + kBp2Bits - 1, kBp2Shift);
1052 }
1053
Bp3Value()1054 inline int Bp3Value() const {
1055 DCHECK(InstructionType() == kRegisterType);
1056 return Bits(kBp3Shift + kBp3Bits - 1, kBp3Shift);
1057 }
1058
1059 // Float Compare condition code instruction bits.
FCccValue()1060 inline int FCccValue() const {
1061 return Bits(kFCccShift + kFCccBits - 1, kFCccShift);
1062 }
1063
1064 // Float Branch condition code instruction bits.
FBccValue()1065 inline int FBccValue() const {
1066 return Bits(kFBccShift + kFBccBits - 1, kFBccShift);
1067 }
1068
1069 // Float Branch true/false instruction bit.
FBtrueValue()1070 inline int FBtrueValue() const {
1071 return Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
1072 }
1073
1074 // Return the fields at their original place in the instruction encoding.
OpcodeFieldRaw()1075 inline Opcode OpcodeFieldRaw() const {
1076 return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
1077 }
1078
RsFieldRaw()1079 inline int RsFieldRaw() const {
1080 DCHECK(InstructionType() == kRegisterType ||
1081 InstructionType() == kImmediateType);
1082 return InstructionBits() & kRsFieldMask;
1083 }
1084
1085 // Same as above function, but safe to call within InstructionType().
RsFieldRawNoAssert()1086 inline int RsFieldRawNoAssert() const {
1087 return InstructionBits() & kRsFieldMask;
1088 }
1089
RtFieldRaw()1090 inline int RtFieldRaw() const {
1091 DCHECK(InstructionType() == kRegisterType ||
1092 InstructionType() == kImmediateType);
1093 return InstructionBits() & kRtFieldMask;
1094 }
1095
RdFieldRaw()1096 inline int RdFieldRaw() const {
1097 DCHECK(InstructionType() == kRegisterType);
1098 return InstructionBits() & kRdFieldMask;
1099 }
1100
SaFieldRaw()1101 inline int SaFieldRaw() const {
1102 return InstructionBits() & kSaFieldMask;
1103 }
1104
FunctionFieldRaw()1105 inline int FunctionFieldRaw() const {
1106 return InstructionBits() & kFunctionFieldMask;
1107 }
1108
1109 // Get the secondary field according to the opcode.
SecondaryValue()1110 inline int SecondaryValue() const {
1111 Opcode op = OpcodeFieldRaw();
1112 switch (op) {
1113 case SPECIAL:
1114 case SPECIAL2:
1115 return FunctionValue();
1116 case COP1:
1117 return RsValue();
1118 case REGIMM:
1119 return RtValue();
1120 default:
1121 return NULLSF;
1122 }
1123 }
1124
ImmValue(int bits)1125 inline int32_t ImmValue(int bits) const {
1126 DCHECK(InstructionType() == kImmediateType);
1127 return Bits(bits - 1, 0);
1128 }
1129
Imm16Value()1130 inline int32_t Imm16Value() const {
1131 DCHECK(InstructionType() == kImmediateType);
1132 return Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
1133 }
1134
Imm18Value()1135 inline int32_t Imm18Value() const {
1136 DCHECK(InstructionType() == kImmediateType);
1137 return Bits(kImm18Shift + kImm18Bits - 1, kImm18Shift);
1138 }
1139
Imm19Value()1140 inline int32_t Imm19Value() const {
1141 DCHECK(InstructionType() == kImmediateType);
1142 return Bits(kImm19Shift + kImm19Bits - 1, kImm19Shift);
1143 }
1144
Imm21Value()1145 inline int32_t Imm21Value() const {
1146 DCHECK(InstructionType() == kImmediateType);
1147 return Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift);
1148 }
1149
Imm26Value()1150 inline int32_t Imm26Value() const {
1151 DCHECK((InstructionType() == kJumpType) ||
1152 (InstructionType() == kImmediateType));
1153 return Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
1154 }
1155
1156 static bool IsForbiddenAfterBranchInstr(Instr instr);
1157
1158 // Say if the instruction should not be used in a branch delay slot or
1159 // immediately after a compact branch.
IsForbiddenAfterBranch()1160 inline bool IsForbiddenAfterBranch() const {
1161 return IsForbiddenAfterBranchInstr(InstructionBits());
1162 }
1163
1164 // Say if the instruction 'links'. e.g. jal, bal.
1165 bool IsLinkingInstruction() const;
1166 // Say if the instruction is a break or a trap.
1167 bool IsTrap() const;
1168
1169 // Instructions are read of out a code stream. The only way to get a
1170 // reference to an instruction is to convert a pointer. There is no way
1171 // to allocate or create instances of class Instruction.
1172 // Use the At(pc) function to create references to Instruction.
At(byte * pc)1173 static Instruction* At(byte* pc) {
1174 return reinterpret_cast<Instruction*>(pc);
1175 }
1176
1177 private:
1178 // We need to prevent the creation of instances of class Instruction.
1179 DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
1180 };
1181
1182
1183 // -----------------------------------------------------------------------------
1184 // MIPS assembly various constants.
1185
1186 // C/C++ argument slots size.
1187 const int kCArgSlotCount = (kMipsAbi == kN64) ? 0 : 4;
1188
1189 // TODO(plind): below should be based on kPointerSize
1190 // TODO(plind): find all usages and remove the needless instructions for n64.
1191 const int kCArgsSlotsSize = kCArgSlotCount * Instruction::kInstrSize * 2;
1192
1193 const int kInvalidStackOffset = -1;
1194 const int kBranchReturnOffset = 2 * Instruction::kInstrSize;
1195
1196
InstructionType(TypeChecks checks)1197 Instruction::Type Instruction::InstructionType(TypeChecks checks) const {
1198 if (checks == EXTRA) {
1199 if (OpcodeToBitNumber(OpcodeFieldRaw()) & kOpcodeImmediateTypeMask) {
1200 return kImmediateType;
1201 }
1202 }
1203 switch (OpcodeFieldRaw()) {
1204 case SPECIAL:
1205 if (checks == EXTRA) {
1206 if (FunctionFieldToBitNumber(FunctionFieldRaw()) &
1207 kFunctionFieldRegisterTypeMask) {
1208 return kRegisterType;
1209 } else {
1210 return kUnsupported;
1211 }
1212 } else {
1213 return kRegisterType;
1214 }
1215 break;
1216 case SPECIAL2:
1217 switch (FunctionFieldRaw()) {
1218 case MUL:
1219 case CLZ:
1220 case DCLZ:
1221 return kRegisterType;
1222 default:
1223 return kUnsupported;
1224 }
1225 break;
1226 case SPECIAL3:
1227 switch (FunctionFieldRaw()) {
1228 case INS:
1229 case EXT:
1230 case DEXT:
1231 case DEXTM:
1232 case DEXTU:
1233 return kRegisterType;
1234 case BSHFL: {
1235 int sa = SaFieldRaw() >> kSaShift;
1236 switch (sa) {
1237 case BITSWAP:
1238 return kRegisterType;
1239 case WSBH:
1240 case SEB:
1241 case SEH:
1242 return kUnsupported;
1243 }
1244 sa >>= kBp2Bits;
1245 switch (sa) {
1246 case ALIGN:
1247 return kRegisterType;
1248 default:
1249 return kUnsupported;
1250 }
1251 }
1252 case DBSHFL: {
1253 int sa = SaFieldRaw() >> kSaShift;
1254 switch (sa) {
1255 case DBITSWAP:
1256 return kRegisterType;
1257 case DSBH:
1258 case DSHD:
1259 return kUnsupported;
1260 }
1261 sa = SaFieldRaw() >> kSaShift;
1262 sa >>= kBp3Bits;
1263 switch (sa) {
1264 case DALIGN:
1265 return kRegisterType;
1266 default:
1267 return kUnsupported;
1268 }
1269 }
1270 default:
1271 return kUnsupported;
1272 }
1273 break;
1274 case COP1: // Coprocessor instructions.
1275 switch (RsFieldRawNoAssert()) {
1276 case BC1: // Branch on coprocessor condition.
1277 case BC1EQZ:
1278 case BC1NEZ:
1279 return kImmediateType;
1280 default:
1281 return kRegisterType;
1282 }
1283 break;
1284 case COP1X:
1285 return kRegisterType;
1286
1287 // 26 bits immediate type instructions. e.g.: j imm26.
1288 case J:
1289 case JAL:
1290 return kJumpType;
1291
1292 default:
1293 if (checks == NORMAL) {
1294 return kImmediateType;
1295 } else {
1296 return kUnsupported;
1297 }
1298 }
1299 return kUnsupported;
1300 }
1301
1302 #undef OpcodeToBitNumber
1303 #undef FunctionFieldToBitNumber
1304 } // namespace internal
1305 } // namespace v8
1306
1307 #endif // #ifndef V8_MIPS_CONSTANTS_H_
1308