1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/parsing/rewriter.h"
6
7 #include "src/ast/ast.h"
8 #include "src/ast/scopes.h"
9 #include "src/parsing/parser.h"
10
11 namespace v8 {
12 namespace internal {
13
14 class Processor: public AstVisitor {
15 public:
Processor(Isolate * isolate,Scope * scope,Variable * result,AstValueFactory * ast_value_factory)16 Processor(Isolate* isolate, Scope* scope, Variable* result,
17 AstValueFactory* ast_value_factory)
18 : result_(result),
19 result_assigned_(false),
20 replacement_(nullptr),
21 is_set_(false),
22 zone_(ast_value_factory->zone()),
23 scope_(scope),
24 factory_(ast_value_factory) {
25 InitializeAstVisitor(isolate);
26 }
27
Processor(Parser * parser,Scope * scope,Variable * result,AstValueFactory * ast_value_factory)28 Processor(Parser* parser, Scope* scope, Variable* result,
29 AstValueFactory* ast_value_factory)
30 : result_(result),
31 result_assigned_(false),
32 replacement_(nullptr),
33 is_set_(false),
34 scope_(scope),
35 factory_(ast_value_factory) {
36 InitializeAstVisitor(parser->stack_limit());
37 }
38
~Processor()39 ~Processor() override {}
40
41 void Process(ZoneList<Statement*>* statements);
result_assigned() const42 bool result_assigned() const { return result_assigned_; }
43
zone()44 Zone* zone() { return zone_; }
scope()45 Scope* scope() { return scope_; }
factory()46 AstNodeFactory* factory() { return &factory_; }
47
48 // Returns ".result = value"
SetResult(Expression * value)49 Expression* SetResult(Expression* value) {
50 result_assigned_ = true;
51 VariableProxy* result_proxy = factory()->NewVariableProxy(result_);
52 return factory()->NewAssignment(Token::ASSIGN, result_proxy, value,
53 RelocInfo::kNoPosition);
54 }
55
56 // Inserts '.result = undefined' in front of the given statement.
57 Statement* AssignUndefinedBefore(Statement* s);
58
59 private:
60 Variable* result_;
61
62 // We are not tracking result usage via the result_'s use
63 // counts (we leave the accurate computation to the
64 // usage analyzer). Instead we simple remember if
65 // there was ever an assignment to result_.
66 bool result_assigned_;
67
68 // When visiting a node, we "return" a replacement for that node in
69 // [replacement_]. In many cases this will just be the original node.
70 Statement* replacement_;
71
72 // To avoid storing to .result all the time, we eliminate some of
73 // the stores by keeping track of whether or not we're sure .result
74 // will be overwritten anyway. This is a bit more tricky than what I
75 // was hoping for.
76 bool is_set_;
77
78 Zone* zone_;
79 Scope* scope_;
80 AstNodeFactory factory_;
81
82 // Node visitors.
83 #define DEF_VISIT(type) void Visit##type(type* node) override;
84 AST_NODE_LIST(DEF_VISIT)
85 #undef DEF_VISIT
86
87 void VisitIterationStatement(IterationStatement* stmt);
88
89 DEFINE_AST_VISITOR_SUBCLASS_MEMBERS();
90 };
91
92
AssignUndefinedBefore(Statement * s)93 Statement* Processor::AssignUndefinedBefore(Statement* s) {
94 Expression* result_proxy = factory()->NewVariableProxy(result_);
95 Expression* undef = factory()->NewUndefinedLiteral(RelocInfo::kNoPosition);
96 Expression* assignment = factory()->NewAssignment(
97 Token::ASSIGN, result_proxy, undef, RelocInfo::kNoPosition);
98 Block* b = factory()->NewBlock(NULL, 2, false, RelocInfo::kNoPosition);
99 b->statements()->Add(
100 factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition),
101 zone());
102 b->statements()->Add(s, zone());
103 return b;
104 }
105
106
Process(ZoneList<Statement * > * statements)107 void Processor::Process(ZoneList<Statement*>* statements) {
108 for (int i = statements->length() - 1; i >= 0; --i) {
109 Visit(statements->at(i));
110 statements->Set(i, replacement_);
111 }
112 }
113
114
VisitBlock(Block * node)115 void Processor::VisitBlock(Block* node) {
116 // An initializer block is the rewritten form of a variable declaration
117 // with initialization expressions. The initializer block contains the
118 // list of assignments corresponding to the initialization expressions.
119 // While unclear from the spec (ECMA-262, 3rd., 12.2), the value of
120 // a variable declaration with initialization expression is 'undefined'
121 // with some JS VMs: For instance, using smjs, print(eval('var x = 7'))
122 // returns 'undefined'. To obtain the same behavior with v8, we need
123 // to prevent rewriting in that case.
124 if (!node->ignore_completion_value()) Process(node->statements());
125 replacement_ = node;
126 }
127
128
VisitExpressionStatement(ExpressionStatement * node)129 void Processor::VisitExpressionStatement(ExpressionStatement* node) {
130 // Rewrite : <x>; -> .result = <x>;
131 if (!is_set_) {
132 node->set_expression(SetResult(node->expression()));
133 is_set_ = true;
134 }
135 replacement_ = node;
136 }
137
138
VisitIfStatement(IfStatement * node)139 void Processor::VisitIfStatement(IfStatement* node) {
140 // Rewrite both branches.
141 bool set_after = is_set_;
142 Visit(node->then_statement());
143 node->set_then_statement(replacement_);
144 bool set_in_then = is_set_;
145 is_set_ = set_after;
146 Visit(node->else_statement());
147 node->set_else_statement(replacement_);
148 is_set_ = is_set_ && set_in_then;
149 replacement_ = node;
150
151 if (FLAG_harmony_completion && !is_set_) {
152 is_set_ = true;
153 replacement_ = AssignUndefinedBefore(node);
154 }
155 }
156
157
VisitIterationStatement(IterationStatement * node)158 void Processor::VisitIterationStatement(IterationStatement* node) {
159 // Rewrite the body.
160 bool set_after = is_set_;
161 is_set_ = false; // We are in a loop, so we can't rely on [set_after].
162 Visit(node->body());
163 node->set_body(replacement_);
164 is_set_ = is_set_ && set_after;
165 replacement_ = node;
166
167 if (FLAG_harmony_completion && !is_set_) {
168 is_set_ = true;
169 replacement_ = AssignUndefinedBefore(node);
170 }
171 }
172
173
VisitDoWhileStatement(DoWhileStatement * node)174 void Processor::VisitDoWhileStatement(DoWhileStatement* node) {
175 VisitIterationStatement(node);
176 }
177
178
VisitWhileStatement(WhileStatement * node)179 void Processor::VisitWhileStatement(WhileStatement* node) {
180 VisitIterationStatement(node);
181 }
182
183
VisitForStatement(ForStatement * node)184 void Processor::VisitForStatement(ForStatement* node) {
185 VisitIterationStatement(node);
186 }
187
188
VisitForInStatement(ForInStatement * node)189 void Processor::VisitForInStatement(ForInStatement* node) {
190 VisitIterationStatement(node);
191 }
192
193
VisitForOfStatement(ForOfStatement * node)194 void Processor::VisitForOfStatement(ForOfStatement* node) {
195 VisitIterationStatement(node);
196 }
197
198
VisitTryCatchStatement(TryCatchStatement * node)199 void Processor::VisitTryCatchStatement(TryCatchStatement* node) {
200 // Rewrite both try and catch block.
201 bool set_after = is_set_;
202 Visit(node->try_block());
203 node->set_try_block(static_cast<Block*>(replacement_));
204 bool set_in_try = is_set_;
205 is_set_ = set_after;
206 Visit(node->catch_block());
207 node->set_catch_block(static_cast<Block*>(replacement_));
208 is_set_ = is_set_ && set_in_try;
209 replacement_ = node;
210
211 if (FLAG_harmony_completion && !is_set_) {
212 is_set_ = true;
213 replacement_ = AssignUndefinedBefore(node);
214 }
215 }
216
217
VisitTryFinallyStatement(TryFinallyStatement * node)218 void Processor::VisitTryFinallyStatement(TryFinallyStatement* node) {
219 // Rewrite both try and finally block (in reverse order).
220 bool set_after = is_set_;
221 is_set_ = true; // Don't normally need to assign in finally block.
222 Visit(node->finally_block());
223 node->set_finally_block(replacement_->AsBlock());
224 { // Save .result value at the beginning of the finally block and restore it
225 // at the end again: ".backup = .result; ...; .result = .backup"
226 // This is necessary because the finally block does not normally contribute
227 // to the completion value.
228 Variable* backup = scope()->NewTemporary(
229 factory()->ast_value_factory()->dot_result_string());
230 Expression* backup_proxy = factory()->NewVariableProxy(backup);
231 Expression* result_proxy = factory()->NewVariableProxy(result_);
232 Expression* save = factory()->NewAssignment(
233 Token::ASSIGN, backup_proxy, result_proxy, RelocInfo::kNoPosition);
234 Expression* restore = factory()->NewAssignment(
235 Token::ASSIGN, result_proxy, backup_proxy, RelocInfo::kNoPosition);
236 node->finally_block()->statements()->InsertAt(
237 0, factory()->NewExpressionStatement(save, RelocInfo::kNoPosition),
238 zone());
239 node->finally_block()->statements()->Add(
240 factory()->NewExpressionStatement(restore, RelocInfo::kNoPosition),
241 zone());
242 }
243 is_set_ = set_after;
244 Visit(node->try_block());
245 node->set_try_block(replacement_->AsBlock());
246 replacement_ = node;
247
248 if (FLAG_harmony_completion && !is_set_) {
249 is_set_ = true;
250 replacement_ = AssignUndefinedBefore(node);
251 }
252 }
253
254
VisitSwitchStatement(SwitchStatement * node)255 void Processor::VisitSwitchStatement(SwitchStatement* node) {
256 // Rewrite statements in all case clauses (in reverse order).
257 ZoneList<CaseClause*>* clauses = node->cases();
258 bool set_after = is_set_;
259 for (int i = clauses->length() - 1; i >= 0; --i) {
260 CaseClause* clause = clauses->at(i);
261 Process(clause->statements());
262 }
263 is_set_ = is_set_ && set_after;
264 replacement_ = node;
265
266 if (FLAG_harmony_completion && !is_set_) {
267 is_set_ = true;
268 replacement_ = AssignUndefinedBefore(node);
269 }
270 }
271
272
VisitContinueStatement(ContinueStatement * node)273 void Processor::VisitContinueStatement(ContinueStatement* node) {
274 is_set_ = false;
275 replacement_ = node;
276 }
277
278
VisitBreakStatement(BreakStatement * node)279 void Processor::VisitBreakStatement(BreakStatement* node) {
280 is_set_ = false;
281 replacement_ = node;
282 }
283
284
VisitWithStatement(WithStatement * node)285 void Processor::VisitWithStatement(WithStatement* node) {
286 Visit(node->statement());
287 node->set_statement(replacement_);
288 replacement_ = node;
289
290 if (FLAG_harmony_completion && !is_set_) {
291 is_set_ = true;
292 replacement_ = AssignUndefinedBefore(node);
293 }
294 }
295
296
VisitSloppyBlockFunctionStatement(SloppyBlockFunctionStatement * node)297 void Processor::VisitSloppyBlockFunctionStatement(
298 SloppyBlockFunctionStatement* node) {
299 Visit(node->statement());
300 node->set_statement(replacement_);
301 replacement_ = node;
302 }
303
304
VisitEmptyStatement(EmptyStatement * node)305 void Processor::VisitEmptyStatement(EmptyStatement* node) {
306 replacement_ = node;
307 }
308
309
VisitReturnStatement(ReturnStatement * node)310 void Processor::VisitReturnStatement(ReturnStatement* node) {
311 is_set_ = true;
312 replacement_ = node;
313 }
314
315
VisitDebuggerStatement(DebuggerStatement * node)316 void Processor::VisitDebuggerStatement(DebuggerStatement* node) {
317 replacement_ = node;
318 }
319
320
321 // Expressions are never visited.
322 #define DEF_VISIT(type) \
323 void Processor::Visit##type(type* expr) { UNREACHABLE(); }
324 EXPRESSION_NODE_LIST(DEF_VISIT)
325 #undef DEF_VISIT
326
327
328 // Declarations are never visited.
329 #define DEF_VISIT(type) \
330 void Processor::Visit##type(type* expr) { UNREACHABLE(); }
DECLARATION_NODE_LIST(DEF_VISIT)331 DECLARATION_NODE_LIST(DEF_VISIT)
332 #undef DEF_VISIT
333
334
335 // Assumes code has been parsed. Mutates the AST, so the AST should not
336 // continue to be used in the case of failure.
337 bool Rewriter::Rewrite(ParseInfo* info) {
338 FunctionLiteral* function = info->literal();
339 DCHECK(function != NULL);
340 Scope* scope = function->scope();
341 DCHECK(scope != NULL);
342 if (!scope->is_script_scope() && !scope->is_eval_scope()) return true;
343
344 ZoneList<Statement*>* body = function->body();
345 if (!body->is_empty()) {
346 Variable* result =
347 scope->NewTemporary(info->ast_value_factory()->dot_result_string());
348 // The name string must be internalized at this point.
349 DCHECK(!result->name().is_null());
350 Processor processor(info->isolate(), scope, result,
351 info->ast_value_factory());
352 processor.Process(body);
353 if (processor.HasStackOverflow()) return false;
354
355 if (processor.result_assigned()) {
356 DCHECK(function->end_position() != RelocInfo::kNoPosition);
357 // Set the position of the assignment statement one character past the
358 // source code, such that it definitely is not in the source code range
359 // of an immediate inner scope. For example in
360 // eval('with ({x:1}) x = 1');
361 // the end position of the function generated for executing the eval code
362 // coincides with the end of the with scope which is the position of '1'.
363 int pos = function->end_position();
364 VariableProxy* result_proxy =
365 processor.factory()->NewVariableProxy(result, pos);
366 Statement* result_statement =
367 processor.factory()->NewReturnStatement(result_proxy, pos);
368 body->Add(result_statement, info->zone());
369 }
370 }
371
372 return true;
373 }
374
375
Rewrite(Parser * parser,DoExpression * expr,AstValueFactory * factory)376 bool Rewriter::Rewrite(Parser* parser, DoExpression* expr,
377 AstValueFactory* factory) {
378 Block* block = expr->block();
379 Scope* scope = block->scope();
380 ZoneList<Statement*>* body = block->statements();
381 VariableProxy* result = expr->result();
382 Variable* result_var = result->var();
383
384 if (!body->is_empty()) {
385 Processor processor(parser, scope, result_var, factory);
386 processor.Process(body);
387 if (processor.HasStackOverflow()) return false;
388
389 if (!processor.result_assigned()) {
390 AstNodeFactory* node_factory = processor.factory();
391 Expression* undef =
392 node_factory->NewUndefinedLiteral(RelocInfo::kNoPosition);
393 Statement* completion = node_factory->NewExpressionStatement(
394 processor.SetResult(undef), expr->position());
395 body->Add(completion, factory->zone());
396 }
397 }
398 return true;
399 }
400
401
402 } // namespace internal
403 } // namespace v8
404