1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been
34 // modified significantly by Google Inc.
35 // Copyright 2014 the V8 project authors. All rights reserved.
36
37 #include "src/ppc/assembler-ppc.h"
38
39 #if V8_TARGET_ARCH_PPC
40
41 #include "src/base/bits.h"
42 #include "src/base/cpu.h"
43 #include "src/macro-assembler.h"
44 #include "src/ppc/assembler-ppc-inl.h"
45
46 namespace v8 {
47 namespace internal {
48
49 // Get the CPU features enabled by the build.
CpuFeaturesImpliedByCompiler()50 static unsigned CpuFeaturesImpliedByCompiler() {
51 unsigned answer = 0;
52 return answer;
53 }
54
55
ProbeImpl(bool cross_compile)56 void CpuFeatures::ProbeImpl(bool cross_compile) {
57 supported_ |= CpuFeaturesImpliedByCompiler();
58 cache_line_size_ = 128;
59
60 // Only use statically determined features for cross compile (snapshot).
61 if (cross_compile) return;
62
63 // Detect whether frim instruction is supported (POWER5+)
64 // For now we will just check for processors we know do not
65 // support it
66 #ifndef USE_SIMULATOR
67 // Probe for additional features at runtime.
68 base::CPU cpu;
69 #if V8_TARGET_ARCH_PPC64
70 if (cpu.part() == base::CPU::PPC_POWER8) {
71 supported_ |= (1u << FPR_GPR_MOV);
72 }
73 #endif
74 if (cpu.part() == base::CPU::PPC_POWER6 ||
75 cpu.part() == base::CPU::PPC_POWER7 ||
76 cpu.part() == base::CPU::PPC_POWER8) {
77 supported_ |= (1u << LWSYNC);
78 }
79 if (cpu.part() == base::CPU::PPC_POWER7 ||
80 cpu.part() == base::CPU::PPC_POWER8) {
81 supported_ |= (1u << ISELECT);
82 }
83 #if V8_OS_LINUX
84 if (!(cpu.part() == base::CPU::PPC_G5 || cpu.part() == base::CPU::PPC_G4)) {
85 // Assume support
86 supported_ |= (1u << FPU);
87 }
88 #elif V8_OS_AIX
89 // Assume support FP support and default cache line size
90 supported_ |= (1u << FPU);
91 #endif
92 #else // Simulator
93 supported_ |= (1u << FPU);
94 supported_ |= (1u << LWSYNC);
95 supported_ |= (1u << ISELECT);
96 #if V8_TARGET_ARCH_PPC64
97 supported_ |= (1u << FPR_GPR_MOV);
98 #endif
99 #endif
100 }
101
102
PrintTarget()103 void CpuFeatures::PrintTarget() {
104 const char* ppc_arch = NULL;
105
106 #if V8_TARGET_ARCH_PPC64
107 ppc_arch = "ppc64";
108 #else
109 ppc_arch = "ppc";
110 #endif
111
112 printf("target %s\n", ppc_arch);
113 }
114
115
PrintFeatures()116 void CpuFeatures::PrintFeatures() {
117 printf("FPU=%d\n", CpuFeatures::IsSupported(FPU));
118 }
119
120
ToRegister(int num)121 Register ToRegister(int num) {
122 DCHECK(num >= 0 && num < kNumRegisters);
123 const Register kRegisters[] = {r0, sp, r2, r3, r4, r5, r6, r7,
124 r8, r9, r10, r11, ip, r13, r14, r15,
125 r16, r17, r18, r19, r20, r21, r22, r23,
126 r24, r25, r26, r27, r28, r29, r30, fp};
127 return kRegisters[num];
128 }
129
130
131 // -----------------------------------------------------------------------------
132 // Implementation of RelocInfo
133
134 const int RelocInfo::kApplyMask = 1 << RelocInfo::INTERNAL_REFERENCE |
135 1 << RelocInfo::INTERNAL_REFERENCE_ENCODED;
136
137
IsCodedSpecially()138 bool RelocInfo::IsCodedSpecially() {
139 // The deserializer needs to know whether a pointer is specially
140 // coded. Being specially coded on PPC means that it is a lis/ori
141 // instruction sequence or is a constant pool entry, and these are
142 // always the case inside code objects.
143 return true;
144 }
145
146
IsInConstantPool()147 bool RelocInfo::IsInConstantPool() {
148 if (FLAG_enable_embedded_constant_pool) {
149 Address constant_pool = host_->constant_pool();
150 return (constant_pool && Assembler::IsConstantPoolLoadStart(pc_));
151 }
152 return false;
153 }
154
155
156 // -----------------------------------------------------------------------------
157 // Implementation of Operand and MemOperand
158 // See assembler-ppc-inl.h for inlined constructors
159
Operand(Handle<Object> handle)160 Operand::Operand(Handle<Object> handle) {
161 AllowDeferredHandleDereference using_raw_address;
162 rm_ = no_reg;
163 // Verify all Objects referred by code are NOT in new space.
164 Object* obj = *handle;
165 if (obj->IsHeapObject()) {
166 DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
167 imm_ = reinterpret_cast<intptr_t>(handle.location());
168 rmode_ = RelocInfo::EMBEDDED_OBJECT;
169 } else {
170 // no relocation needed
171 imm_ = reinterpret_cast<intptr_t>(obj);
172 rmode_ = kRelocInfo_NONEPTR;
173 }
174 }
175
176
MemOperand(Register rn,int32_t offset)177 MemOperand::MemOperand(Register rn, int32_t offset) {
178 ra_ = rn;
179 rb_ = no_reg;
180 offset_ = offset;
181 }
182
183
MemOperand(Register ra,Register rb)184 MemOperand::MemOperand(Register ra, Register rb) {
185 ra_ = ra;
186 rb_ = rb;
187 offset_ = 0;
188 }
189
190
191 // -----------------------------------------------------------------------------
192 // Specific instructions, constants, and masks.
193
194
Assembler(Isolate * isolate,void * buffer,int buffer_size)195 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
196 : AssemblerBase(isolate, buffer, buffer_size),
197 recorded_ast_id_(TypeFeedbackId::None()),
198 constant_pool_builder_(kLoadPtrMaxReachBits, kLoadDoubleMaxReachBits),
199 positions_recorder_(this) {
200 reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
201
202 no_trampoline_pool_before_ = 0;
203 trampoline_pool_blocked_nesting_ = 0;
204 constant_pool_entry_sharing_blocked_nesting_ = 0;
205 next_trampoline_check_ = kMaxInt;
206 internal_trampoline_exception_ = false;
207 last_bound_pos_ = 0;
208 optimizable_cmpi_pos_ = -1;
209 trampoline_emitted_ = FLAG_force_long_branches;
210 tracked_branch_count_ = 0;
211 ClearRecordedAstId();
212 relocations_.reserve(128);
213 }
214
215
GetCode(CodeDesc * desc)216 void Assembler::GetCode(CodeDesc* desc) {
217 // Emit constant pool if necessary.
218 int constant_pool_offset = EmitConstantPool();
219
220 EmitRelocations();
221
222 // Set up code descriptor.
223 desc->buffer = buffer_;
224 desc->buffer_size = buffer_size_;
225 desc->instr_size = pc_offset();
226 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
227 desc->constant_pool_size =
228 (constant_pool_offset ? desc->instr_size - constant_pool_offset : 0);
229 desc->origin = this;
230 }
231
232
Align(int m)233 void Assembler::Align(int m) {
234 DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
235 DCHECK((pc_offset() & (kInstrSize - 1)) == 0);
236 while ((pc_offset() & (m - 1)) != 0) {
237 nop();
238 }
239 }
240
241
CodeTargetAlign()242 void Assembler::CodeTargetAlign() { Align(8); }
243
244
GetCondition(Instr instr)245 Condition Assembler::GetCondition(Instr instr) {
246 switch (instr & kCondMask) {
247 case BT:
248 return eq;
249 case BF:
250 return ne;
251 default:
252 UNIMPLEMENTED();
253 }
254 return al;
255 }
256
257
IsLis(Instr instr)258 bool Assembler::IsLis(Instr instr) {
259 return ((instr & kOpcodeMask) == ADDIS) && GetRA(instr).is(r0);
260 }
261
262
IsLi(Instr instr)263 bool Assembler::IsLi(Instr instr) {
264 return ((instr & kOpcodeMask) == ADDI) && GetRA(instr).is(r0);
265 }
266
267
IsAddic(Instr instr)268 bool Assembler::IsAddic(Instr instr) { return (instr & kOpcodeMask) == ADDIC; }
269
270
IsOri(Instr instr)271 bool Assembler::IsOri(Instr instr) { return (instr & kOpcodeMask) == ORI; }
272
273
IsBranch(Instr instr)274 bool Assembler::IsBranch(Instr instr) { return ((instr & kOpcodeMask) == BCX); }
275
276
GetRA(Instr instr)277 Register Assembler::GetRA(Instr instr) {
278 Register reg;
279 reg.reg_code = Instruction::RAValue(instr);
280 return reg;
281 }
282
283
GetRB(Instr instr)284 Register Assembler::GetRB(Instr instr) {
285 Register reg;
286 reg.reg_code = Instruction::RBValue(instr);
287 return reg;
288 }
289
290
291 #if V8_TARGET_ARCH_PPC64
292 // This code assumes a FIXED_SEQUENCE for 64bit loads (lis/ori)
Is64BitLoadIntoR12(Instr instr1,Instr instr2,Instr instr3,Instr instr4,Instr instr5)293 bool Assembler::Is64BitLoadIntoR12(Instr instr1, Instr instr2, Instr instr3,
294 Instr instr4, Instr instr5) {
295 // Check the instructions are indeed a five part load (into r12)
296 // 3d800000 lis r12, 0
297 // 618c0000 ori r12, r12, 0
298 // 798c07c6 rldicr r12, r12, 32, 31
299 // 658c00c3 oris r12, r12, 195
300 // 618ccd40 ori r12, r12, 52544
301 return (((instr1 >> 16) == 0x3d80) && ((instr2 >> 16) == 0x618c) &&
302 (instr3 == 0x798c07c6) && ((instr4 >> 16) == 0x658c) &&
303 ((instr5 >> 16) == 0x618c));
304 }
305 #else
306 // This code assumes a FIXED_SEQUENCE for 32bit loads (lis/ori)
Is32BitLoadIntoR12(Instr instr1,Instr instr2)307 bool Assembler::Is32BitLoadIntoR12(Instr instr1, Instr instr2) {
308 // Check the instruction is indeed a two part load (into r12)
309 // 3d802553 lis r12, 9555
310 // 618c5000 ori r12, r12, 20480
311 return (((instr1 >> 16) == 0x3d80) && ((instr2 >> 16) == 0x618c));
312 }
313 #endif
314
315
IsCmpRegister(Instr instr)316 bool Assembler::IsCmpRegister(Instr instr) {
317 return (((instr & kOpcodeMask) == EXT2) &&
318 ((instr & kExt2OpcodeMask) == CMP));
319 }
320
321
IsRlwinm(Instr instr)322 bool Assembler::IsRlwinm(Instr instr) {
323 return ((instr & kOpcodeMask) == RLWINMX);
324 }
325
326
IsAndi(Instr instr)327 bool Assembler::IsAndi(Instr instr) { return ((instr & kOpcodeMask) == ANDIx); }
328
329
330 #if V8_TARGET_ARCH_PPC64
IsRldicl(Instr instr)331 bool Assembler::IsRldicl(Instr instr) {
332 return (((instr & kOpcodeMask) == EXT5) &&
333 ((instr & kExt5OpcodeMask) == RLDICL));
334 }
335 #endif
336
337
IsCmpImmediate(Instr instr)338 bool Assembler::IsCmpImmediate(Instr instr) {
339 return ((instr & kOpcodeMask) == CMPI);
340 }
341
342
IsCrSet(Instr instr)343 bool Assembler::IsCrSet(Instr instr) {
344 return (((instr & kOpcodeMask) == EXT1) &&
345 ((instr & kExt1OpcodeMask) == CREQV));
346 }
347
348
GetCmpImmediateRegister(Instr instr)349 Register Assembler::GetCmpImmediateRegister(Instr instr) {
350 DCHECK(IsCmpImmediate(instr));
351 return GetRA(instr);
352 }
353
354
GetCmpImmediateRawImmediate(Instr instr)355 int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
356 DCHECK(IsCmpImmediate(instr));
357 return instr & kOff16Mask;
358 }
359
360
361 // Labels refer to positions in the (to be) generated code.
362 // There are bound, linked, and unused labels.
363 //
364 // Bound labels refer to known positions in the already
365 // generated code. pos() is the position the label refers to.
366 //
367 // Linked labels refer to unknown positions in the code
368 // to be generated; pos() is the position of the last
369 // instruction using the label.
370
371
372 // The link chain is terminated by a negative code position (must be aligned)
373 const int kEndOfChain = -4;
374
375
376 // Dummy opcodes for unbound label mov instructions or jump table entries.
377 enum {
378 kUnboundMovLabelOffsetOpcode = 0 << 26,
379 kUnboundAddLabelOffsetOpcode = 1 << 26,
380 kUnboundMovLabelAddrOpcode = 2 << 26,
381 kUnboundJumpTableEntryOpcode = 3 << 26
382 };
383
384
target_at(int pos)385 int Assembler::target_at(int pos) {
386 Instr instr = instr_at(pos);
387 // check which type of branch this is 16 or 26 bit offset
388 int opcode = instr & kOpcodeMask;
389 int link;
390 switch (opcode) {
391 case BX:
392 link = SIGN_EXT_IMM26(instr & kImm26Mask);
393 link &= ~(kAAMask | kLKMask); // discard AA|LK bits if present
394 break;
395 case BCX:
396 link = SIGN_EXT_IMM16((instr & kImm16Mask));
397 link &= ~(kAAMask | kLKMask); // discard AA|LK bits if present
398 break;
399 case kUnboundMovLabelOffsetOpcode:
400 case kUnboundAddLabelOffsetOpcode:
401 case kUnboundMovLabelAddrOpcode:
402 case kUnboundJumpTableEntryOpcode:
403 link = SIGN_EXT_IMM26(instr & kImm26Mask);
404 link <<= 2;
405 break;
406 default:
407 DCHECK(false);
408 return -1;
409 }
410
411 if (link == 0) return kEndOfChain;
412 return pos + link;
413 }
414
415
target_at_put(int pos,int target_pos,bool * is_branch)416 void Assembler::target_at_put(int pos, int target_pos, bool* is_branch) {
417 Instr instr = instr_at(pos);
418 int opcode = instr & kOpcodeMask;
419
420 if (is_branch != nullptr) {
421 *is_branch = (opcode == BX || opcode == BCX);
422 }
423
424 switch (opcode) {
425 case BX: {
426 int imm26 = target_pos - pos;
427 CHECK(is_int26(imm26) && (imm26 & (kAAMask | kLKMask)) == 0);
428 if (imm26 == kInstrSize && !(instr & kLKMask)) {
429 // Branch to next instr without link.
430 instr = ORI; // nop: ori, 0,0,0
431 } else {
432 instr &= ((~kImm26Mask) | kAAMask | kLKMask);
433 instr |= (imm26 & kImm26Mask);
434 }
435 instr_at_put(pos, instr);
436 break;
437 }
438 case BCX: {
439 int imm16 = target_pos - pos;
440 CHECK(is_int16(imm16) && (imm16 & (kAAMask | kLKMask)) == 0);
441 if (imm16 == kInstrSize && !(instr & kLKMask)) {
442 // Branch to next instr without link.
443 instr = ORI; // nop: ori, 0,0,0
444 } else {
445 instr &= ((~kImm16Mask) | kAAMask | kLKMask);
446 instr |= (imm16 & kImm16Mask);
447 }
448 instr_at_put(pos, instr);
449 break;
450 }
451 case kUnboundMovLabelOffsetOpcode: {
452 // Load the position of the label relative to the generated code object
453 // pointer in a register.
454 Register dst = Register::from_code(instr_at(pos + kInstrSize));
455 int32_t offset = target_pos + (Code::kHeaderSize - kHeapObjectTag);
456 CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos), 2,
457 CodePatcher::DONT_FLUSH);
458 patcher.masm()->bitwise_mov32(dst, offset);
459 break;
460 }
461 case kUnboundAddLabelOffsetOpcode: {
462 // dst = base + position + immediate
463 Instr operands = instr_at(pos + kInstrSize);
464 Register dst = Register::from_code((operands >> 21) & 0x1f);
465 Register base = Register::from_code((operands >> 16) & 0x1f);
466 int32_t offset = target_pos + SIGN_EXT_IMM16(operands & kImm16Mask);
467 CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos), 2,
468 CodePatcher::DONT_FLUSH);
469 patcher.masm()->bitwise_add32(dst, base, offset);
470 break;
471 }
472 case kUnboundMovLabelAddrOpcode: {
473 // Load the address of the label in a register.
474 Register dst = Register::from_code(instr_at(pos + kInstrSize));
475 CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos),
476 kMovInstructionsNoConstantPool,
477 CodePatcher::DONT_FLUSH);
478 // Keep internal references relative until EmitRelocations.
479 patcher.masm()->bitwise_mov(dst, target_pos);
480 break;
481 }
482 case kUnboundJumpTableEntryOpcode: {
483 CodePatcher patcher(isolate(), reinterpret_cast<byte*>(buffer_ + pos),
484 kPointerSize / kInstrSize, CodePatcher::DONT_FLUSH);
485 // Keep internal references relative until EmitRelocations.
486 patcher.masm()->dp(target_pos);
487 break;
488 }
489 default:
490 DCHECK(false);
491 break;
492 }
493 }
494
495
max_reach_from(int pos)496 int Assembler::max_reach_from(int pos) {
497 Instr instr = instr_at(pos);
498 int opcode = instr & kOpcodeMask;
499
500 // check which type of branch this is 16 or 26 bit offset
501 switch (opcode) {
502 case BX:
503 return 26;
504 case BCX:
505 return 16;
506 case kUnboundMovLabelOffsetOpcode:
507 case kUnboundAddLabelOffsetOpcode:
508 case kUnboundMovLabelAddrOpcode:
509 case kUnboundJumpTableEntryOpcode:
510 return 0; // no limit on reach
511 }
512
513 DCHECK(false);
514 return 0;
515 }
516
517
bind_to(Label * L,int pos)518 void Assembler::bind_to(Label* L, int pos) {
519 DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position
520 int32_t trampoline_pos = kInvalidSlotPos;
521 bool is_branch = false;
522 while (L->is_linked()) {
523 int fixup_pos = L->pos();
524 int32_t offset = pos - fixup_pos;
525 int maxReach = max_reach_from(fixup_pos);
526 next(L); // call next before overwriting link with target at fixup_pos
527 if (maxReach && is_intn(offset, maxReach) == false) {
528 if (trampoline_pos == kInvalidSlotPos) {
529 trampoline_pos = get_trampoline_entry();
530 CHECK(trampoline_pos != kInvalidSlotPos);
531 target_at_put(trampoline_pos, pos);
532 }
533 target_at_put(fixup_pos, trampoline_pos);
534 } else {
535 target_at_put(fixup_pos, pos, &is_branch);
536 }
537 }
538 L->bind_to(pos);
539
540 if (!trampoline_emitted_ && is_branch) {
541 UntrackBranch();
542 }
543
544 // Keep track of the last bound label so we don't eliminate any instructions
545 // before a bound label.
546 if (pos > last_bound_pos_) last_bound_pos_ = pos;
547 }
548
549
bind(Label * L)550 void Assembler::bind(Label* L) {
551 DCHECK(!L->is_bound()); // label can only be bound once
552 bind_to(L, pc_offset());
553 }
554
555
next(Label * L)556 void Assembler::next(Label* L) {
557 DCHECK(L->is_linked());
558 int link = target_at(L->pos());
559 if (link == kEndOfChain) {
560 L->Unuse();
561 } else {
562 DCHECK(link >= 0);
563 L->link_to(link);
564 }
565 }
566
567
is_near(Label * L,Condition cond)568 bool Assembler::is_near(Label* L, Condition cond) {
569 DCHECK(L->is_bound());
570 if (L->is_bound() == false) return false;
571
572 int maxReach = ((cond == al) ? 26 : 16);
573 int offset = L->pos() - pc_offset();
574
575 return is_intn(offset, maxReach);
576 }
577
578
a_form(Instr instr,DoubleRegister frt,DoubleRegister fra,DoubleRegister frb,RCBit r)579 void Assembler::a_form(Instr instr, DoubleRegister frt, DoubleRegister fra,
580 DoubleRegister frb, RCBit r) {
581 emit(instr | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 | r);
582 }
583
584
d_form(Instr instr,Register rt,Register ra,const intptr_t val,bool signed_disp)585 void Assembler::d_form(Instr instr, Register rt, Register ra,
586 const intptr_t val, bool signed_disp) {
587 if (signed_disp) {
588 if (!is_int16(val)) {
589 PrintF("val = %" V8PRIdPTR ", 0x%" V8PRIxPTR "\n", val, val);
590 }
591 CHECK(is_int16(val));
592 } else {
593 if (!is_uint16(val)) {
594 PrintF("val = %" V8PRIdPTR ", 0x%" V8PRIxPTR
595 ", is_unsigned_imm16(val)=%d, kImm16Mask=0x%x\n",
596 val, val, is_uint16(val), kImm16Mask);
597 }
598 CHECK(is_uint16(val));
599 }
600 emit(instr | rt.code() * B21 | ra.code() * B16 | (kImm16Mask & val));
601 }
602
603
x_form(Instr instr,Register ra,Register rs,Register rb,RCBit r)604 void Assembler::x_form(Instr instr, Register ra, Register rs, Register rb,
605 RCBit r) {
606 emit(instr | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | r);
607 }
608
609
xo_form(Instr instr,Register rt,Register ra,Register rb,OEBit o,RCBit r)610 void Assembler::xo_form(Instr instr, Register rt, Register ra, Register rb,
611 OEBit o, RCBit r) {
612 emit(instr | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 | o | r);
613 }
614
615
md_form(Instr instr,Register ra,Register rs,int shift,int maskbit,RCBit r)616 void Assembler::md_form(Instr instr, Register ra, Register rs, int shift,
617 int maskbit, RCBit r) {
618 int sh0_4 = shift & 0x1f;
619 int sh5 = (shift >> 5) & 0x1;
620 int m0_4 = maskbit & 0x1f;
621 int m5 = (maskbit >> 5) & 0x1;
622
623 emit(instr | rs.code() * B21 | ra.code() * B16 | sh0_4 * B11 | m0_4 * B6 |
624 m5 * B5 | sh5 * B1 | r);
625 }
626
627
mds_form(Instr instr,Register ra,Register rs,Register rb,int maskbit,RCBit r)628 void Assembler::mds_form(Instr instr, Register ra, Register rs, Register rb,
629 int maskbit, RCBit r) {
630 int m0_4 = maskbit & 0x1f;
631 int m5 = (maskbit >> 5) & 0x1;
632
633 emit(instr | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | m0_4 * B6 |
634 m5 * B5 | r);
635 }
636
637
638 // Returns the next free trampoline entry.
get_trampoline_entry()639 int32_t Assembler::get_trampoline_entry() {
640 int32_t trampoline_entry = kInvalidSlotPos;
641
642 if (!internal_trampoline_exception_) {
643 trampoline_entry = trampoline_.take_slot();
644
645 if (kInvalidSlotPos == trampoline_entry) {
646 internal_trampoline_exception_ = true;
647 }
648 }
649 return trampoline_entry;
650 }
651
652
link(Label * L)653 int Assembler::link(Label* L) {
654 int position;
655 if (L->is_bound()) {
656 position = L->pos();
657 } else {
658 if (L->is_linked()) {
659 position = L->pos(); // L's link
660 } else {
661 // was: target_pos = kEndOfChain;
662 // However, using self to mark the first reference
663 // should avoid most instances of branch offset overflow. See
664 // target_at() for where this is converted back to kEndOfChain.
665 position = pc_offset();
666 }
667 L->link_to(pc_offset());
668 }
669
670 return position;
671 }
672
673
674 // Branch instructions.
675
676
bclr(BOfield bo,int condition_bit,LKBit lk)677 void Assembler::bclr(BOfield bo, int condition_bit, LKBit lk) {
678 positions_recorder()->WriteRecordedPositions();
679 emit(EXT1 | bo | condition_bit * B16 | BCLRX | lk);
680 }
681
682
bcctr(BOfield bo,int condition_bit,LKBit lk)683 void Assembler::bcctr(BOfield bo, int condition_bit, LKBit lk) {
684 positions_recorder()->WriteRecordedPositions();
685 emit(EXT1 | bo | condition_bit * B16 | BCCTRX | lk);
686 }
687
688
689 // Pseudo op - branch to link register
blr()690 void Assembler::blr() { bclr(BA, 0, LeaveLK); }
691
692
693 // Pseudo op - branch to count register -- used for "jump"
bctr()694 void Assembler::bctr() { bcctr(BA, 0, LeaveLK); }
695
696
bctrl()697 void Assembler::bctrl() { bcctr(BA, 0, SetLK); }
698
699
bc(int branch_offset,BOfield bo,int condition_bit,LKBit lk)700 void Assembler::bc(int branch_offset, BOfield bo, int condition_bit, LKBit lk) {
701 if (lk == SetLK) {
702 positions_recorder()->WriteRecordedPositions();
703 }
704 int imm16 = branch_offset;
705 CHECK(is_int16(imm16) && (imm16 & (kAAMask | kLKMask)) == 0);
706 emit(BCX | bo | condition_bit * B16 | (imm16 & kImm16Mask) | lk);
707 }
708
709
b(int branch_offset,LKBit lk)710 void Assembler::b(int branch_offset, LKBit lk) {
711 if (lk == SetLK) {
712 positions_recorder()->WriteRecordedPositions();
713 }
714 int imm26 = branch_offset;
715 CHECK(is_int26(imm26) && (imm26 & (kAAMask | kLKMask)) == 0);
716 emit(BX | (imm26 & kImm26Mask) | lk);
717 }
718
719
xori(Register dst,Register src,const Operand & imm)720 void Assembler::xori(Register dst, Register src, const Operand& imm) {
721 d_form(XORI, src, dst, imm.imm_, false);
722 }
723
724
xoris(Register ra,Register rs,const Operand & imm)725 void Assembler::xoris(Register ra, Register rs, const Operand& imm) {
726 d_form(XORIS, rs, ra, imm.imm_, false);
727 }
728
729
xor_(Register dst,Register src1,Register src2,RCBit rc)730 void Assembler::xor_(Register dst, Register src1, Register src2, RCBit rc) {
731 x_form(EXT2 | XORX, dst, src1, src2, rc);
732 }
733
734
cntlzw_(Register ra,Register rs,RCBit rc)735 void Assembler::cntlzw_(Register ra, Register rs, RCBit rc) {
736 x_form(EXT2 | CNTLZWX, ra, rs, r0, rc);
737 }
738
739
popcntw(Register ra,Register rs)740 void Assembler::popcntw(Register ra, Register rs) {
741 emit(EXT2 | POPCNTW | rs.code() * B21 | ra.code() * B16);
742 }
743
744
and_(Register ra,Register rs,Register rb,RCBit rc)745 void Assembler::and_(Register ra, Register rs, Register rb, RCBit rc) {
746 x_form(EXT2 | ANDX, ra, rs, rb, rc);
747 }
748
749
rlwinm(Register ra,Register rs,int sh,int mb,int me,RCBit rc)750 void Assembler::rlwinm(Register ra, Register rs, int sh, int mb, int me,
751 RCBit rc) {
752 sh &= 0x1f;
753 mb &= 0x1f;
754 me &= 0x1f;
755 emit(RLWINMX | rs.code() * B21 | ra.code() * B16 | sh * B11 | mb * B6 |
756 me << 1 | rc);
757 }
758
759
rlwnm(Register ra,Register rs,Register rb,int mb,int me,RCBit rc)760 void Assembler::rlwnm(Register ra, Register rs, Register rb, int mb, int me,
761 RCBit rc) {
762 mb &= 0x1f;
763 me &= 0x1f;
764 emit(RLWNMX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | mb * B6 |
765 me << 1 | rc);
766 }
767
768
rlwimi(Register ra,Register rs,int sh,int mb,int me,RCBit rc)769 void Assembler::rlwimi(Register ra, Register rs, int sh, int mb, int me,
770 RCBit rc) {
771 sh &= 0x1f;
772 mb &= 0x1f;
773 me &= 0x1f;
774 emit(RLWIMIX | rs.code() * B21 | ra.code() * B16 | sh * B11 | mb * B6 |
775 me << 1 | rc);
776 }
777
778
slwi(Register dst,Register src,const Operand & val,RCBit rc)779 void Assembler::slwi(Register dst, Register src, const Operand& val, RCBit rc) {
780 DCHECK((32 > val.imm_) && (val.imm_ >= 0));
781 rlwinm(dst, src, val.imm_, 0, 31 - val.imm_, rc);
782 }
783
784
srwi(Register dst,Register src,const Operand & val,RCBit rc)785 void Assembler::srwi(Register dst, Register src, const Operand& val, RCBit rc) {
786 DCHECK((32 > val.imm_) && (val.imm_ >= 0));
787 rlwinm(dst, src, 32 - val.imm_, val.imm_, 31, rc);
788 }
789
790
clrrwi(Register dst,Register src,const Operand & val,RCBit rc)791 void Assembler::clrrwi(Register dst, Register src, const Operand& val,
792 RCBit rc) {
793 DCHECK((32 > val.imm_) && (val.imm_ >= 0));
794 rlwinm(dst, src, 0, 0, 31 - val.imm_, rc);
795 }
796
797
clrlwi(Register dst,Register src,const Operand & val,RCBit rc)798 void Assembler::clrlwi(Register dst, Register src, const Operand& val,
799 RCBit rc) {
800 DCHECK((32 > val.imm_) && (val.imm_ >= 0));
801 rlwinm(dst, src, 0, val.imm_, 31, rc);
802 }
803
804
srawi(Register ra,Register rs,int sh,RCBit r)805 void Assembler::srawi(Register ra, Register rs, int sh, RCBit r) {
806 emit(EXT2 | SRAWIX | rs.code() * B21 | ra.code() * B16 | sh * B11 | r);
807 }
808
809
srw(Register dst,Register src1,Register src2,RCBit r)810 void Assembler::srw(Register dst, Register src1, Register src2, RCBit r) {
811 x_form(EXT2 | SRWX, dst, src1, src2, r);
812 }
813
814
slw(Register dst,Register src1,Register src2,RCBit r)815 void Assembler::slw(Register dst, Register src1, Register src2, RCBit r) {
816 x_form(EXT2 | SLWX, dst, src1, src2, r);
817 }
818
819
sraw(Register ra,Register rs,Register rb,RCBit r)820 void Assembler::sraw(Register ra, Register rs, Register rb, RCBit r) {
821 x_form(EXT2 | SRAW, ra, rs, rb, r);
822 }
823
824
rotlw(Register ra,Register rs,Register rb,RCBit r)825 void Assembler::rotlw(Register ra, Register rs, Register rb, RCBit r) {
826 rlwnm(ra, rs, rb, 0, 31, r);
827 }
828
829
rotlwi(Register ra,Register rs,int sh,RCBit r)830 void Assembler::rotlwi(Register ra, Register rs, int sh, RCBit r) {
831 rlwinm(ra, rs, sh, 0, 31, r);
832 }
833
834
rotrwi(Register ra,Register rs,int sh,RCBit r)835 void Assembler::rotrwi(Register ra, Register rs, int sh, RCBit r) {
836 rlwinm(ra, rs, 32 - sh, 0, 31, r);
837 }
838
839
subi(Register dst,Register src,const Operand & imm)840 void Assembler::subi(Register dst, Register src, const Operand& imm) {
841 addi(dst, src, Operand(-(imm.imm_)));
842 }
843
addc(Register dst,Register src1,Register src2,OEBit o,RCBit r)844 void Assembler::addc(Register dst, Register src1, Register src2, OEBit o,
845 RCBit r) {
846 xo_form(EXT2 | ADDCX, dst, src1, src2, o, r);
847 }
848
849
addze(Register dst,Register src1,OEBit o,RCBit r)850 void Assembler::addze(Register dst, Register src1, OEBit o, RCBit r) {
851 // a special xo_form
852 emit(EXT2 | ADDZEX | dst.code() * B21 | src1.code() * B16 | o | r);
853 }
854
855
sub(Register dst,Register src1,Register src2,OEBit o,RCBit r)856 void Assembler::sub(Register dst, Register src1, Register src2, OEBit o,
857 RCBit r) {
858 xo_form(EXT2 | SUBFX, dst, src2, src1, o, r);
859 }
860
861
subfc(Register dst,Register src1,Register src2,OEBit o,RCBit r)862 void Assembler::subfc(Register dst, Register src1, Register src2, OEBit o,
863 RCBit r) {
864 xo_form(EXT2 | SUBFCX, dst, src2, src1, o, r);
865 }
866
867
subfic(Register dst,Register src,const Operand & imm)868 void Assembler::subfic(Register dst, Register src, const Operand& imm) {
869 d_form(SUBFIC, dst, src, imm.imm_, true);
870 }
871
872
add(Register dst,Register src1,Register src2,OEBit o,RCBit r)873 void Assembler::add(Register dst, Register src1, Register src2, OEBit o,
874 RCBit r) {
875 xo_form(EXT2 | ADDX, dst, src1, src2, o, r);
876 }
877
878
879 // Multiply low word
mullw(Register dst,Register src1,Register src2,OEBit o,RCBit r)880 void Assembler::mullw(Register dst, Register src1, Register src2, OEBit o,
881 RCBit r) {
882 xo_form(EXT2 | MULLW, dst, src1, src2, o, r);
883 }
884
885
886 // Multiply hi word
mulhw(Register dst,Register src1,Register src2,RCBit r)887 void Assembler::mulhw(Register dst, Register src1, Register src2, RCBit r) {
888 xo_form(EXT2 | MULHWX, dst, src1, src2, LeaveOE, r);
889 }
890
891
892 // Multiply hi word unsigned
mulhwu(Register dst,Register src1,Register src2,RCBit r)893 void Assembler::mulhwu(Register dst, Register src1, Register src2, RCBit r) {
894 xo_form(EXT2 | MULHWUX, dst, src1, src2, LeaveOE, r);
895 }
896
897
898 // Divide word
divw(Register dst,Register src1,Register src2,OEBit o,RCBit r)899 void Assembler::divw(Register dst, Register src1, Register src2, OEBit o,
900 RCBit r) {
901 xo_form(EXT2 | DIVW, dst, src1, src2, o, r);
902 }
903
904
905 // Divide word unsigned
divwu(Register dst,Register src1,Register src2,OEBit o,RCBit r)906 void Assembler::divwu(Register dst, Register src1, Register src2, OEBit o,
907 RCBit r) {
908 xo_form(EXT2 | DIVWU, dst, src1, src2, o, r);
909 }
910
911
addi(Register dst,Register src,const Operand & imm)912 void Assembler::addi(Register dst, Register src, const Operand& imm) {
913 DCHECK(!src.is(r0)); // use li instead to show intent
914 d_form(ADDI, dst, src, imm.imm_, true);
915 }
916
917
addis(Register dst,Register src,const Operand & imm)918 void Assembler::addis(Register dst, Register src, const Operand& imm) {
919 DCHECK(!src.is(r0)); // use lis instead to show intent
920 d_form(ADDIS, dst, src, imm.imm_, true);
921 }
922
923
addic(Register dst,Register src,const Operand & imm)924 void Assembler::addic(Register dst, Register src, const Operand& imm) {
925 d_form(ADDIC, dst, src, imm.imm_, true);
926 }
927
928
andi(Register ra,Register rs,const Operand & imm)929 void Assembler::andi(Register ra, Register rs, const Operand& imm) {
930 d_form(ANDIx, rs, ra, imm.imm_, false);
931 }
932
933
andis(Register ra,Register rs,const Operand & imm)934 void Assembler::andis(Register ra, Register rs, const Operand& imm) {
935 d_form(ANDISx, rs, ra, imm.imm_, false);
936 }
937
938
nor(Register dst,Register src1,Register src2,RCBit r)939 void Assembler::nor(Register dst, Register src1, Register src2, RCBit r) {
940 x_form(EXT2 | NORX, dst, src1, src2, r);
941 }
942
943
notx(Register dst,Register src,RCBit r)944 void Assembler::notx(Register dst, Register src, RCBit r) {
945 x_form(EXT2 | NORX, dst, src, src, r);
946 }
947
948
ori(Register ra,Register rs,const Operand & imm)949 void Assembler::ori(Register ra, Register rs, const Operand& imm) {
950 d_form(ORI, rs, ra, imm.imm_, false);
951 }
952
953
oris(Register dst,Register src,const Operand & imm)954 void Assembler::oris(Register dst, Register src, const Operand& imm) {
955 d_form(ORIS, src, dst, imm.imm_, false);
956 }
957
958
orx(Register dst,Register src1,Register src2,RCBit rc)959 void Assembler::orx(Register dst, Register src1, Register src2, RCBit rc) {
960 x_form(EXT2 | ORX, dst, src1, src2, rc);
961 }
962
963
orc(Register dst,Register src1,Register src2,RCBit rc)964 void Assembler::orc(Register dst, Register src1, Register src2, RCBit rc) {
965 x_form(EXT2 | ORC, dst, src1, src2, rc);
966 }
967
968
cmpi(Register src1,const Operand & src2,CRegister cr)969 void Assembler::cmpi(Register src1, const Operand& src2, CRegister cr) {
970 intptr_t imm16 = src2.imm_;
971 #if V8_TARGET_ARCH_PPC64
972 int L = 1;
973 #else
974 int L = 0;
975 #endif
976 DCHECK(is_int16(imm16));
977 DCHECK(cr.code() >= 0 && cr.code() <= 7);
978 imm16 &= kImm16Mask;
979 emit(CMPI | cr.code() * B23 | L * B21 | src1.code() * B16 | imm16);
980 }
981
982
cmpli(Register src1,const Operand & src2,CRegister cr)983 void Assembler::cmpli(Register src1, const Operand& src2, CRegister cr) {
984 uintptr_t uimm16 = src2.imm_;
985 #if V8_TARGET_ARCH_PPC64
986 int L = 1;
987 #else
988 int L = 0;
989 #endif
990 DCHECK(is_uint16(uimm16));
991 DCHECK(cr.code() >= 0 && cr.code() <= 7);
992 uimm16 &= kImm16Mask;
993 emit(CMPLI | cr.code() * B23 | L * B21 | src1.code() * B16 | uimm16);
994 }
995
996
cmp(Register src1,Register src2,CRegister cr)997 void Assembler::cmp(Register src1, Register src2, CRegister cr) {
998 #if V8_TARGET_ARCH_PPC64
999 int L = 1;
1000 #else
1001 int L = 0;
1002 #endif
1003 DCHECK(cr.code() >= 0 && cr.code() <= 7);
1004 emit(EXT2 | CMP | cr.code() * B23 | L * B21 | src1.code() * B16 |
1005 src2.code() * B11);
1006 }
1007
1008
cmpl(Register src1,Register src2,CRegister cr)1009 void Assembler::cmpl(Register src1, Register src2, CRegister cr) {
1010 #if V8_TARGET_ARCH_PPC64
1011 int L = 1;
1012 #else
1013 int L = 0;
1014 #endif
1015 DCHECK(cr.code() >= 0 && cr.code() <= 7);
1016 emit(EXT2 | CMPL | cr.code() * B23 | L * B21 | src1.code() * B16 |
1017 src2.code() * B11);
1018 }
1019
1020
cmpwi(Register src1,const Operand & src2,CRegister cr)1021 void Assembler::cmpwi(Register src1, const Operand& src2, CRegister cr) {
1022 intptr_t imm16 = src2.imm_;
1023 int L = 0;
1024 int pos = pc_offset();
1025 DCHECK(is_int16(imm16));
1026 DCHECK(cr.code() >= 0 && cr.code() <= 7);
1027 imm16 &= kImm16Mask;
1028
1029 // For cmpwi against 0, save postition and cr for later examination
1030 // of potential optimization.
1031 if (imm16 == 0 && pos > 0 && last_bound_pos_ != pos) {
1032 optimizable_cmpi_pos_ = pos;
1033 cmpi_cr_ = cr;
1034 }
1035 emit(CMPI | cr.code() * B23 | L * B21 | src1.code() * B16 | imm16);
1036 }
1037
1038
cmplwi(Register src1,const Operand & src2,CRegister cr)1039 void Assembler::cmplwi(Register src1, const Operand& src2, CRegister cr) {
1040 uintptr_t uimm16 = src2.imm_;
1041 int L = 0;
1042 DCHECK(is_uint16(uimm16));
1043 DCHECK(cr.code() >= 0 && cr.code() <= 7);
1044 uimm16 &= kImm16Mask;
1045 emit(CMPLI | cr.code() * B23 | L * B21 | src1.code() * B16 | uimm16);
1046 }
1047
1048
cmpw(Register src1,Register src2,CRegister cr)1049 void Assembler::cmpw(Register src1, Register src2, CRegister cr) {
1050 int L = 0;
1051 DCHECK(cr.code() >= 0 && cr.code() <= 7);
1052 emit(EXT2 | CMP | cr.code() * B23 | L * B21 | src1.code() * B16 |
1053 src2.code() * B11);
1054 }
1055
1056
cmplw(Register src1,Register src2,CRegister cr)1057 void Assembler::cmplw(Register src1, Register src2, CRegister cr) {
1058 int L = 0;
1059 DCHECK(cr.code() >= 0 && cr.code() <= 7);
1060 emit(EXT2 | CMPL | cr.code() * B23 | L * B21 | src1.code() * B16 |
1061 src2.code() * B11);
1062 }
1063
1064
isel(Register rt,Register ra,Register rb,int cb)1065 void Assembler::isel(Register rt, Register ra, Register rb, int cb) {
1066 emit(EXT2 | ISEL | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1067 cb * B6);
1068 }
1069
1070
1071 // Pseudo op - load immediate
li(Register dst,const Operand & imm)1072 void Assembler::li(Register dst, const Operand& imm) {
1073 d_form(ADDI, dst, r0, imm.imm_, true);
1074 }
1075
1076
lis(Register dst,const Operand & imm)1077 void Assembler::lis(Register dst, const Operand& imm) {
1078 d_form(ADDIS, dst, r0, imm.imm_, true);
1079 }
1080
1081
1082 // Pseudo op - move register
mr(Register dst,Register src)1083 void Assembler::mr(Register dst, Register src) {
1084 // actually or(dst, src, src)
1085 orx(dst, src, src);
1086 }
1087
1088
lbz(Register dst,const MemOperand & src)1089 void Assembler::lbz(Register dst, const MemOperand& src) {
1090 DCHECK(!src.ra_.is(r0));
1091 d_form(LBZ, dst, src.ra(), src.offset(), true);
1092 }
1093
1094
lbzx(Register rt,const MemOperand & src)1095 void Assembler::lbzx(Register rt, const MemOperand& src) {
1096 Register ra = src.ra();
1097 Register rb = src.rb();
1098 DCHECK(!ra.is(r0));
1099 emit(EXT2 | LBZX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1100 LeaveRC);
1101 }
1102
1103
lbzux(Register rt,const MemOperand & src)1104 void Assembler::lbzux(Register rt, const MemOperand& src) {
1105 Register ra = src.ra();
1106 Register rb = src.rb();
1107 DCHECK(!ra.is(r0));
1108 emit(EXT2 | LBZUX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1109 LeaveRC);
1110 }
1111
1112
lhz(Register dst,const MemOperand & src)1113 void Assembler::lhz(Register dst, const MemOperand& src) {
1114 DCHECK(!src.ra_.is(r0));
1115 d_form(LHZ, dst, src.ra(), src.offset(), true);
1116 }
1117
1118
lhzx(Register rt,const MemOperand & src)1119 void Assembler::lhzx(Register rt, const MemOperand& src) {
1120 Register ra = src.ra();
1121 Register rb = src.rb();
1122 DCHECK(!ra.is(r0));
1123 emit(EXT2 | LHZX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1124 LeaveRC);
1125 }
1126
1127
lhzux(Register rt,const MemOperand & src)1128 void Assembler::lhzux(Register rt, const MemOperand& src) {
1129 Register ra = src.ra();
1130 Register rb = src.rb();
1131 DCHECK(!ra.is(r0));
1132 emit(EXT2 | LHZUX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1133 LeaveRC);
1134 }
1135
1136
lhax(Register rt,const MemOperand & src)1137 void Assembler::lhax(Register rt, const MemOperand& src) {
1138 Register ra = src.ra();
1139 Register rb = src.rb();
1140 DCHECK(!ra.is(r0));
1141 emit(EXT2 | LHAX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11);
1142 }
1143
1144
lwz(Register dst,const MemOperand & src)1145 void Assembler::lwz(Register dst, const MemOperand& src) {
1146 DCHECK(!src.ra_.is(r0));
1147 d_form(LWZ, dst, src.ra(), src.offset(), true);
1148 }
1149
1150
lwzu(Register dst,const MemOperand & src)1151 void Assembler::lwzu(Register dst, const MemOperand& src) {
1152 DCHECK(!src.ra_.is(r0));
1153 d_form(LWZU, dst, src.ra(), src.offset(), true);
1154 }
1155
1156
lwzx(Register rt,const MemOperand & src)1157 void Assembler::lwzx(Register rt, const MemOperand& src) {
1158 Register ra = src.ra();
1159 Register rb = src.rb();
1160 DCHECK(!ra.is(r0));
1161 emit(EXT2 | LWZX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1162 LeaveRC);
1163 }
1164
1165
lwzux(Register rt,const MemOperand & src)1166 void Assembler::lwzux(Register rt, const MemOperand& src) {
1167 Register ra = src.ra();
1168 Register rb = src.rb();
1169 DCHECK(!ra.is(r0));
1170 emit(EXT2 | LWZUX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1171 LeaveRC);
1172 }
1173
1174
lha(Register dst,const MemOperand & src)1175 void Assembler::lha(Register dst, const MemOperand& src) {
1176 DCHECK(!src.ra_.is(r0));
1177 d_form(LHA, dst, src.ra(), src.offset(), true);
1178 }
1179
1180
lwa(Register dst,const MemOperand & src)1181 void Assembler::lwa(Register dst, const MemOperand& src) {
1182 #if V8_TARGET_ARCH_PPC64
1183 int offset = src.offset();
1184 DCHECK(!src.ra_.is(r0));
1185 CHECK(!(offset & 3) && is_int16(offset));
1186 offset = kImm16Mask & offset;
1187 emit(LD | dst.code() * B21 | src.ra().code() * B16 | offset | 2);
1188 #else
1189 lwz(dst, src);
1190 #endif
1191 }
1192
1193
lwax(Register rt,const MemOperand & src)1194 void Assembler::lwax(Register rt, const MemOperand& src) {
1195 #if V8_TARGET_ARCH_PPC64
1196 Register ra = src.ra();
1197 Register rb = src.rb();
1198 DCHECK(!ra.is(r0));
1199 emit(EXT2 | LWAX | rt.code() * B21 | ra.code() * B16 | rb.code() * B11);
1200 #else
1201 lwzx(rt, src);
1202 #endif
1203 }
1204
1205
stb(Register dst,const MemOperand & src)1206 void Assembler::stb(Register dst, const MemOperand& src) {
1207 DCHECK(!src.ra_.is(r0));
1208 d_form(STB, dst, src.ra(), src.offset(), true);
1209 }
1210
1211
stbx(Register rs,const MemOperand & src)1212 void Assembler::stbx(Register rs, const MemOperand& src) {
1213 Register ra = src.ra();
1214 Register rb = src.rb();
1215 DCHECK(!ra.is(r0));
1216 emit(EXT2 | STBX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1217 LeaveRC);
1218 }
1219
1220
stbux(Register rs,const MemOperand & src)1221 void Assembler::stbux(Register rs, const MemOperand& src) {
1222 Register ra = src.ra();
1223 Register rb = src.rb();
1224 DCHECK(!ra.is(r0));
1225 emit(EXT2 | STBUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1226 LeaveRC);
1227 }
1228
1229
sth(Register dst,const MemOperand & src)1230 void Assembler::sth(Register dst, const MemOperand& src) {
1231 DCHECK(!src.ra_.is(r0));
1232 d_form(STH, dst, src.ra(), src.offset(), true);
1233 }
1234
1235
sthx(Register rs,const MemOperand & src)1236 void Assembler::sthx(Register rs, const MemOperand& src) {
1237 Register ra = src.ra();
1238 Register rb = src.rb();
1239 DCHECK(!ra.is(r0));
1240 emit(EXT2 | STHX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1241 LeaveRC);
1242 }
1243
1244
sthux(Register rs,const MemOperand & src)1245 void Assembler::sthux(Register rs, const MemOperand& src) {
1246 Register ra = src.ra();
1247 Register rb = src.rb();
1248 DCHECK(!ra.is(r0));
1249 emit(EXT2 | STHUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1250 LeaveRC);
1251 }
1252
1253
stw(Register dst,const MemOperand & src)1254 void Assembler::stw(Register dst, const MemOperand& src) {
1255 DCHECK(!src.ra_.is(r0));
1256 d_form(STW, dst, src.ra(), src.offset(), true);
1257 }
1258
1259
stwu(Register dst,const MemOperand & src)1260 void Assembler::stwu(Register dst, const MemOperand& src) {
1261 DCHECK(!src.ra_.is(r0));
1262 d_form(STWU, dst, src.ra(), src.offset(), true);
1263 }
1264
1265
stwx(Register rs,const MemOperand & src)1266 void Assembler::stwx(Register rs, const MemOperand& src) {
1267 Register ra = src.ra();
1268 Register rb = src.rb();
1269 DCHECK(!ra.is(r0));
1270 emit(EXT2 | STWX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1271 LeaveRC);
1272 }
1273
1274
stwux(Register rs,const MemOperand & src)1275 void Assembler::stwux(Register rs, const MemOperand& src) {
1276 Register ra = src.ra();
1277 Register rb = src.rb();
1278 DCHECK(!ra.is(r0));
1279 emit(EXT2 | STWUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1280 LeaveRC);
1281 }
1282
1283
extsb(Register rs,Register ra,RCBit rc)1284 void Assembler::extsb(Register rs, Register ra, RCBit rc) {
1285 emit(EXT2 | EXTSB | ra.code() * B21 | rs.code() * B16 | rc);
1286 }
1287
1288
extsh(Register rs,Register ra,RCBit rc)1289 void Assembler::extsh(Register rs, Register ra, RCBit rc) {
1290 emit(EXT2 | EXTSH | ra.code() * B21 | rs.code() * B16 | rc);
1291 }
1292
1293
extsw(Register rs,Register ra,RCBit rc)1294 void Assembler::extsw(Register rs, Register ra, RCBit rc) {
1295 #if V8_TARGET_ARCH_PPC64
1296 emit(EXT2 | EXTSW | ra.code() * B21 | rs.code() * B16 | rc);
1297 #else
1298 // nop on 32-bit
1299 DCHECK(rs.is(ra) && rc == LeaveRC);
1300 #endif
1301 }
1302
1303
neg(Register rt,Register ra,OEBit o,RCBit r)1304 void Assembler::neg(Register rt, Register ra, OEBit o, RCBit r) {
1305 emit(EXT2 | NEGX | rt.code() * B21 | ra.code() * B16 | o | r);
1306 }
1307
1308
andc(Register dst,Register src1,Register src2,RCBit rc)1309 void Assembler::andc(Register dst, Register src1, Register src2, RCBit rc) {
1310 x_form(EXT2 | ANDCX, dst, src1, src2, rc);
1311 }
1312
1313
1314 #if V8_TARGET_ARCH_PPC64
1315 // 64bit specific instructions
ld(Register rd,const MemOperand & src)1316 void Assembler::ld(Register rd, const MemOperand& src) {
1317 int offset = src.offset();
1318 DCHECK(!src.ra_.is(r0));
1319 CHECK(!(offset & 3) && is_int16(offset));
1320 offset = kImm16Mask & offset;
1321 emit(LD | rd.code() * B21 | src.ra().code() * B16 | offset);
1322 }
1323
1324
ldx(Register rd,const MemOperand & src)1325 void Assembler::ldx(Register rd, const MemOperand& src) {
1326 Register ra = src.ra();
1327 Register rb = src.rb();
1328 DCHECK(!ra.is(r0));
1329 emit(EXT2 | LDX | rd.code() * B21 | ra.code() * B16 | rb.code() * B11);
1330 }
1331
1332
ldu(Register rd,const MemOperand & src)1333 void Assembler::ldu(Register rd, const MemOperand& src) {
1334 int offset = src.offset();
1335 DCHECK(!src.ra_.is(r0));
1336 CHECK(!(offset & 3) && is_int16(offset));
1337 offset = kImm16Mask & offset;
1338 emit(LD | rd.code() * B21 | src.ra().code() * B16 | offset | 1);
1339 }
1340
1341
ldux(Register rd,const MemOperand & src)1342 void Assembler::ldux(Register rd, const MemOperand& src) {
1343 Register ra = src.ra();
1344 Register rb = src.rb();
1345 DCHECK(!ra.is(r0));
1346 emit(EXT2 | LDUX | rd.code() * B21 | ra.code() * B16 | rb.code() * B11);
1347 }
1348
1349
std(Register rs,const MemOperand & src)1350 void Assembler::std(Register rs, const MemOperand& src) {
1351 int offset = src.offset();
1352 DCHECK(!src.ra_.is(r0));
1353 CHECK(!(offset & 3) && is_int16(offset));
1354 offset = kImm16Mask & offset;
1355 emit(STD | rs.code() * B21 | src.ra().code() * B16 | offset);
1356 }
1357
1358
stdx(Register rs,const MemOperand & src)1359 void Assembler::stdx(Register rs, const MemOperand& src) {
1360 Register ra = src.ra();
1361 Register rb = src.rb();
1362 DCHECK(!ra.is(r0));
1363 emit(EXT2 | STDX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11);
1364 }
1365
1366
stdu(Register rs,const MemOperand & src)1367 void Assembler::stdu(Register rs, const MemOperand& src) {
1368 int offset = src.offset();
1369 DCHECK(!src.ra_.is(r0));
1370 CHECK(!(offset & 3) && is_int16(offset));
1371 offset = kImm16Mask & offset;
1372 emit(STD | rs.code() * B21 | src.ra().code() * B16 | offset | 1);
1373 }
1374
1375
stdux(Register rs,const MemOperand & src)1376 void Assembler::stdux(Register rs, const MemOperand& src) {
1377 Register ra = src.ra();
1378 Register rb = src.rb();
1379 DCHECK(!ra.is(r0));
1380 emit(EXT2 | STDUX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11);
1381 }
1382
1383
rldic(Register ra,Register rs,int sh,int mb,RCBit r)1384 void Assembler::rldic(Register ra, Register rs, int sh, int mb, RCBit r) {
1385 md_form(EXT5 | RLDIC, ra, rs, sh, mb, r);
1386 }
1387
1388
rldicl(Register ra,Register rs,int sh,int mb,RCBit r)1389 void Assembler::rldicl(Register ra, Register rs, int sh, int mb, RCBit r) {
1390 md_form(EXT5 | RLDICL, ra, rs, sh, mb, r);
1391 }
1392
1393
rldcl(Register ra,Register rs,Register rb,int mb,RCBit r)1394 void Assembler::rldcl(Register ra, Register rs, Register rb, int mb, RCBit r) {
1395 mds_form(EXT5 | RLDCL, ra, rs, rb, mb, r);
1396 }
1397
1398
rldicr(Register ra,Register rs,int sh,int me,RCBit r)1399 void Assembler::rldicr(Register ra, Register rs, int sh, int me, RCBit r) {
1400 md_form(EXT5 | RLDICR, ra, rs, sh, me, r);
1401 }
1402
1403
sldi(Register dst,Register src,const Operand & val,RCBit rc)1404 void Assembler::sldi(Register dst, Register src, const Operand& val, RCBit rc) {
1405 DCHECK((64 > val.imm_) && (val.imm_ >= 0));
1406 rldicr(dst, src, val.imm_, 63 - val.imm_, rc);
1407 }
1408
1409
srdi(Register dst,Register src,const Operand & val,RCBit rc)1410 void Assembler::srdi(Register dst, Register src, const Operand& val, RCBit rc) {
1411 DCHECK((64 > val.imm_) && (val.imm_ >= 0));
1412 rldicl(dst, src, 64 - val.imm_, val.imm_, rc);
1413 }
1414
1415
clrrdi(Register dst,Register src,const Operand & val,RCBit rc)1416 void Assembler::clrrdi(Register dst, Register src, const Operand& val,
1417 RCBit rc) {
1418 DCHECK((64 > val.imm_) && (val.imm_ >= 0));
1419 rldicr(dst, src, 0, 63 - val.imm_, rc);
1420 }
1421
1422
clrldi(Register dst,Register src,const Operand & val,RCBit rc)1423 void Assembler::clrldi(Register dst, Register src, const Operand& val,
1424 RCBit rc) {
1425 DCHECK((64 > val.imm_) && (val.imm_ >= 0));
1426 rldicl(dst, src, 0, val.imm_, rc);
1427 }
1428
1429
rldimi(Register ra,Register rs,int sh,int mb,RCBit r)1430 void Assembler::rldimi(Register ra, Register rs, int sh, int mb, RCBit r) {
1431 md_form(EXT5 | RLDIMI, ra, rs, sh, mb, r);
1432 }
1433
1434
sradi(Register ra,Register rs,int sh,RCBit r)1435 void Assembler::sradi(Register ra, Register rs, int sh, RCBit r) {
1436 int sh0_4 = sh & 0x1f;
1437 int sh5 = (sh >> 5) & 0x1;
1438
1439 emit(EXT2 | SRADIX | rs.code() * B21 | ra.code() * B16 | sh0_4 * B11 |
1440 sh5 * B1 | r);
1441 }
1442
1443
srd(Register dst,Register src1,Register src2,RCBit r)1444 void Assembler::srd(Register dst, Register src1, Register src2, RCBit r) {
1445 x_form(EXT2 | SRDX, dst, src1, src2, r);
1446 }
1447
1448
sld(Register dst,Register src1,Register src2,RCBit r)1449 void Assembler::sld(Register dst, Register src1, Register src2, RCBit r) {
1450 x_form(EXT2 | SLDX, dst, src1, src2, r);
1451 }
1452
1453
srad(Register ra,Register rs,Register rb,RCBit r)1454 void Assembler::srad(Register ra, Register rs, Register rb, RCBit r) {
1455 x_form(EXT2 | SRAD, ra, rs, rb, r);
1456 }
1457
1458
rotld(Register ra,Register rs,Register rb,RCBit r)1459 void Assembler::rotld(Register ra, Register rs, Register rb, RCBit r) {
1460 rldcl(ra, rs, rb, 0, r);
1461 }
1462
1463
rotldi(Register ra,Register rs,int sh,RCBit r)1464 void Assembler::rotldi(Register ra, Register rs, int sh, RCBit r) {
1465 rldicl(ra, rs, sh, 0, r);
1466 }
1467
1468
rotrdi(Register ra,Register rs,int sh,RCBit r)1469 void Assembler::rotrdi(Register ra, Register rs, int sh, RCBit r) {
1470 rldicl(ra, rs, 64 - sh, 0, r);
1471 }
1472
1473
cntlzd_(Register ra,Register rs,RCBit rc)1474 void Assembler::cntlzd_(Register ra, Register rs, RCBit rc) {
1475 x_form(EXT2 | CNTLZDX, ra, rs, r0, rc);
1476 }
1477
1478
popcntd(Register ra,Register rs)1479 void Assembler::popcntd(Register ra, Register rs) {
1480 emit(EXT2 | POPCNTD | rs.code() * B21 | ra.code() * B16);
1481 }
1482
1483
mulld(Register dst,Register src1,Register src2,OEBit o,RCBit r)1484 void Assembler::mulld(Register dst, Register src1, Register src2, OEBit o,
1485 RCBit r) {
1486 xo_form(EXT2 | MULLD, dst, src1, src2, o, r);
1487 }
1488
1489
divd(Register dst,Register src1,Register src2,OEBit o,RCBit r)1490 void Assembler::divd(Register dst, Register src1, Register src2, OEBit o,
1491 RCBit r) {
1492 xo_form(EXT2 | DIVD, dst, src1, src2, o, r);
1493 }
1494
1495
divdu(Register dst,Register src1,Register src2,OEBit o,RCBit r)1496 void Assembler::divdu(Register dst, Register src1, Register src2, OEBit o,
1497 RCBit r) {
1498 xo_form(EXT2 | DIVDU, dst, src1, src2, o, r);
1499 }
1500 #endif
1501
1502
1503 // Function descriptor for AIX.
1504 // Code address skips the function descriptor "header".
1505 // TOC and static chain are ignored and set to 0.
function_descriptor()1506 void Assembler::function_descriptor() {
1507 #if ABI_USES_FUNCTION_DESCRIPTORS
1508 Label instructions;
1509 DCHECK(pc_offset() == 0);
1510 emit_label_addr(&instructions);
1511 dp(0);
1512 dp(0);
1513 bind(&instructions);
1514 #endif
1515 }
1516
1517
instructions_required_for_mov(Register dst,const Operand & src) const1518 int Assembler::instructions_required_for_mov(Register dst,
1519 const Operand& src) const {
1520 bool canOptimize =
1521 !(src.must_output_reloc_info(this) || is_trampoline_pool_blocked());
1522 if (use_constant_pool_for_mov(dst, src, canOptimize)) {
1523 if (ConstantPoolAccessIsInOverflow()) {
1524 return kMovInstructionsConstantPool + 1;
1525 }
1526 return kMovInstructionsConstantPool;
1527 }
1528 DCHECK(!canOptimize);
1529 return kMovInstructionsNoConstantPool;
1530 }
1531
1532
use_constant_pool_for_mov(Register dst,const Operand & src,bool canOptimize) const1533 bool Assembler::use_constant_pool_for_mov(Register dst, const Operand& src,
1534 bool canOptimize) const {
1535 if (!FLAG_enable_embedded_constant_pool || !is_constant_pool_available()) {
1536 // If there is no constant pool available, we must use a mov
1537 // immediate sequence.
1538 return false;
1539 }
1540
1541 intptr_t value = src.immediate();
1542 #if V8_TARGET_ARCH_PPC64
1543 bool allowOverflow = !((canOptimize && is_int32(value)) || dst.is(r0));
1544 #else
1545 bool allowOverflow = !(canOptimize || dst.is(r0));
1546 #endif
1547 if (canOptimize && is_int16(value)) {
1548 // Prefer a single-instruction load-immediate.
1549 return false;
1550 }
1551 if (!allowOverflow && ConstantPoolAccessIsInOverflow()) {
1552 // Prefer non-relocatable two-instruction bitwise-mov32 over
1553 // overflow sequence.
1554 return false;
1555 }
1556
1557 return true;
1558 }
1559
1560
EnsureSpaceFor(int space_needed)1561 void Assembler::EnsureSpaceFor(int space_needed) {
1562 if (buffer_space() <= (kGap + space_needed)) {
1563 GrowBuffer(space_needed);
1564 }
1565 }
1566
1567
must_output_reloc_info(const Assembler * assembler) const1568 bool Operand::must_output_reloc_info(const Assembler* assembler) const {
1569 if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
1570 if (assembler != NULL && assembler->predictable_code_size()) return true;
1571 return assembler->serializer_enabled();
1572 } else if (RelocInfo::IsNone(rmode_)) {
1573 return false;
1574 }
1575 return true;
1576 }
1577
1578
1579 // Primarily used for loading constants
1580 // This should really move to be in macro-assembler as it
1581 // is really a pseudo instruction
1582 // Some usages of this intend for a FIXED_SEQUENCE to be used
1583 // Todo - break this dependency so we can optimize mov() in general
1584 // and only use the generic version when we require a fixed sequence
mov(Register dst,const Operand & src)1585 void Assembler::mov(Register dst, const Operand& src) {
1586 intptr_t value = src.immediate();
1587 bool relocatable = src.must_output_reloc_info(this);
1588 bool canOptimize;
1589
1590 canOptimize =
1591 !(relocatable || (is_trampoline_pool_blocked() && !is_int16(value)));
1592
1593 if (use_constant_pool_for_mov(dst, src, canOptimize)) {
1594 DCHECK(is_constant_pool_available());
1595 if (relocatable) {
1596 RecordRelocInfo(src.rmode_);
1597 }
1598 ConstantPoolEntry::Access access = ConstantPoolAddEntry(src.rmode_, value);
1599 #if V8_TARGET_ARCH_PPC64
1600 if (access == ConstantPoolEntry::OVERFLOWED) {
1601 addis(dst, kConstantPoolRegister, Operand::Zero());
1602 ld(dst, MemOperand(dst, 0));
1603 } else {
1604 ld(dst, MemOperand(kConstantPoolRegister, 0));
1605 }
1606 #else
1607 if (access == ConstantPoolEntry::OVERFLOWED) {
1608 addis(dst, kConstantPoolRegister, Operand::Zero());
1609 lwz(dst, MemOperand(dst, 0));
1610 } else {
1611 lwz(dst, MemOperand(kConstantPoolRegister, 0));
1612 }
1613 #endif
1614 return;
1615 }
1616
1617 if (canOptimize) {
1618 if (is_int16(value)) {
1619 li(dst, Operand(value));
1620 } else {
1621 uint16_t u16;
1622 #if V8_TARGET_ARCH_PPC64
1623 if (is_int32(value)) {
1624 #endif
1625 lis(dst, Operand(value >> 16));
1626 #if V8_TARGET_ARCH_PPC64
1627 } else {
1628 if (is_int48(value)) {
1629 li(dst, Operand(value >> 32));
1630 } else {
1631 lis(dst, Operand(value >> 48));
1632 u16 = ((value >> 32) & 0xffff);
1633 if (u16) {
1634 ori(dst, dst, Operand(u16));
1635 }
1636 }
1637 sldi(dst, dst, Operand(32));
1638 u16 = ((value >> 16) & 0xffff);
1639 if (u16) {
1640 oris(dst, dst, Operand(u16));
1641 }
1642 }
1643 #endif
1644 u16 = (value & 0xffff);
1645 if (u16) {
1646 ori(dst, dst, Operand(u16));
1647 }
1648 }
1649 return;
1650 }
1651
1652 DCHECK(!canOptimize);
1653 if (relocatable) {
1654 RecordRelocInfo(src.rmode_);
1655 }
1656 bitwise_mov(dst, value);
1657 }
1658
1659
bitwise_mov(Register dst,intptr_t value)1660 void Assembler::bitwise_mov(Register dst, intptr_t value) {
1661 BlockTrampolinePoolScope block_trampoline_pool(this);
1662 #if V8_TARGET_ARCH_PPC64
1663 int32_t hi_32 = static_cast<int32_t>(value >> 32);
1664 int32_t lo_32 = static_cast<int32_t>(value);
1665 int hi_word = static_cast<int>(hi_32 >> 16);
1666 int lo_word = static_cast<int>(hi_32 & 0xffff);
1667 lis(dst, Operand(SIGN_EXT_IMM16(hi_word)));
1668 ori(dst, dst, Operand(lo_word));
1669 sldi(dst, dst, Operand(32));
1670 hi_word = static_cast<int>(((lo_32 >> 16) & 0xffff));
1671 lo_word = static_cast<int>(lo_32 & 0xffff);
1672 oris(dst, dst, Operand(hi_word));
1673 ori(dst, dst, Operand(lo_word));
1674 #else
1675 int hi_word = static_cast<int>(value >> 16);
1676 int lo_word = static_cast<int>(value & 0xffff);
1677 lis(dst, Operand(SIGN_EXT_IMM16(hi_word)));
1678 ori(dst, dst, Operand(lo_word));
1679 #endif
1680 }
1681
1682
bitwise_mov32(Register dst,int32_t value)1683 void Assembler::bitwise_mov32(Register dst, int32_t value) {
1684 BlockTrampolinePoolScope block_trampoline_pool(this);
1685 int hi_word = static_cast<int>(value >> 16);
1686 int lo_word = static_cast<int>(value & 0xffff);
1687 lis(dst, Operand(SIGN_EXT_IMM16(hi_word)));
1688 ori(dst, dst, Operand(lo_word));
1689 }
1690
1691
bitwise_add32(Register dst,Register src,int32_t value)1692 void Assembler::bitwise_add32(Register dst, Register src, int32_t value) {
1693 BlockTrampolinePoolScope block_trampoline_pool(this);
1694 if (is_int16(value)) {
1695 addi(dst, src, Operand(value));
1696 nop();
1697 } else {
1698 int hi_word = static_cast<int>(value >> 16);
1699 int lo_word = static_cast<int>(value & 0xffff);
1700 if (lo_word & 0x8000) hi_word++;
1701 addis(dst, src, Operand(SIGN_EXT_IMM16(hi_word)));
1702 addic(dst, dst, Operand(SIGN_EXT_IMM16(lo_word)));
1703 }
1704 }
1705
1706
mov_label_offset(Register dst,Label * label)1707 void Assembler::mov_label_offset(Register dst, Label* label) {
1708 int position = link(label);
1709 if (label->is_bound()) {
1710 // Load the position of the label relative to the generated code object.
1711 mov(dst, Operand(position + Code::kHeaderSize - kHeapObjectTag));
1712 } else {
1713 // Encode internal reference to unbound label. We use a dummy opcode
1714 // such that it won't collide with any opcode that might appear in the
1715 // label's chain. Encode the destination register in the 2nd instruction.
1716 int link = position - pc_offset();
1717 DCHECK_EQ(0, link & 3);
1718 link >>= 2;
1719 DCHECK(is_int26(link));
1720
1721 // When the label is bound, these instructions will be patched
1722 // with a 2 instruction mov sequence that will load the
1723 // destination register with the position of the label from the
1724 // beginning of the code.
1725 //
1726 // target_at extracts the link and target_at_put patches the instructions.
1727 BlockTrampolinePoolScope block_trampoline_pool(this);
1728 emit(kUnboundMovLabelOffsetOpcode | (link & kImm26Mask));
1729 emit(dst.code());
1730 }
1731 }
1732
1733
add_label_offset(Register dst,Register base,Label * label,int delta)1734 void Assembler::add_label_offset(Register dst, Register base, Label* label,
1735 int delta) {
1736 int position = link(label);
1737 if (label->is_bound()) {
1738 // dst = base + position + delta
1739 position += delta;
1740 bitwise_add32(dst, base, position);
1741 } else {
1742 // Encode internal reference to unbound label. We use a dummy opcode
1743 // such that it won't collide with any opcode that might appear in the
1744 // label's chain. Encode the operands in the 2nd instruction.
1745 int link = position - pc_offset();
1746 DCHECK_EQ(0, link & 3);
1747 link >>= 2;
1748 DCHECK(is_int26(link));
1749 DCHECK(is_int16(delta));
1750
1751 BlockTrampolinePoolScope block_trampoline_pool(this);
1752 emit(kUnboundAddLabelOffsetOpcode | (link & kImm26Mask));
1753 emit(dst.code() * B21 | base.code() * B16 | (delta & kImm16Mask));
1754 }
1755 }
1756
1757
mov_label_addr(Register dst,Label * label)1758 void Assembler::mov_label_addr(Register dst, Label* label) {
1759 CheckBuffer();
1760 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE_ENCODED);
1761 int position = link(label);
1762 if (label->is_bound()) {
1763 // Keep internal references relative until EmitRelocations.
1764 bitwise_mov(dst, position);
1765 } else {
1766 // Encode internal reference to unbound label. We use a dummy opcode
1767 // such that it won't collide with any opcode that might appear in the
1768 // label's chain. Encode the destination register in the 2nd instruction.
1769 int link = position - pc_offset();
1770 DCHECK_EQ(0, link & 3);
1771 link >>= 2;
1772 DCHECK(is_int26(link));
1773
1774 // When the label is bound, these instructions will be patched
1775 // with a multi-instruction mov sequence that will load the
1776 // destination register with the address of the label.
1777 //
1778 // target_at extracts the link and target_at_put patches the instructions.
1779 BlockTrampolinePoolScope block_trampoline_pool(this);
1780 emit(kUnboundMovLabelAddrOpcode | (link & kImm26Mask));
1781 emit(dst.code());
1782 DCHECK(kMovInstructionsNoConstantPool >= 2);
1783 for (int i = 0; i < kMovInstructionsNoConstantPool - 2; i++) nop();
1784 }
1785 }
1786
1787
emit_label_addr(Label * label)1788 void Assembler::emit_label_addr(Label* label) {
1789 CheckBuffer();
1790 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
1791 int position = link(label);
1792 if (label->is_bound()) {
1793 // Keep internal references relative until EmitRelocations.
1794 dp(position);
1795 } else {
1796 // Encode internal reference to unbound label. We use a dummy opcode
1797 // such that it won't collide with any opcode that might appear in the
1798 // label's chain.
1799 int link = position - pc_offset();
1800 DCHECK_EQ(0, link & 3);
1801 link >>= 2;
1802 DCHECK(is_int26(link));
1803
1804 // When the label is bound, the instruction(s) will be patched
1805 // as a jump table entry containing the label address. target_at extracts
1806 // the link and target_at_put patches the instruction(s).
1807 BlockTrampolinePoolScope block_trampoline_pool(this);
1808 emit(kUnboundJumpTableEntryOpcode | (link & kImm26Mask));
1809 #if V8_TARGET_ARCH_PPC64
1810 nop();
1811 #endif
1812 }
1813 }
1814
1815
1816 // Special register instructions
crxor(int bt,int ba,int bb)1817 void Assembler::crxor(int bt, int ba, int bb) {
1818 emit(EXT1 | CRXOR | bt * B21 | ba * B16 | bb * B11);
1819 }
1820
1821
creqv(int bt,int ba,int bb)1822 void Assembler::creqv(int bt, int ba, int bb) {
1823 emit(EXT1 | CREQV | bt * B21 | ba * B16 | bb * B11);
1824 }
1825
1826
mflr(Register dst)1827 void Assembler::mflr(Register dst) {
1828 emit(EXT2 | MFSPR | dst.code() * B21 | 256 << 11); // Ignore RC bit
1829 }
1830
1831
mtlr(Register src)1832 void Assembler::mtlr(Register src) {
1833 emit(EXT2 | MTSPR | src.code() * B21 | 256 << 11); // Ignore RC bit
1834 }
1835
1836
mtctr(Register src)1837 void Assembler::mtctr(Register src) {
1838 emit(EXT2 | MTSPR | src.code() * B21 | 288 << 11); // Ignore RC bit
1839 }
1840
1841
mtxer(Register src)1842 void Assembler::mtxer(Register src) {
1843 emit(EXT2 | MTSPR | src.code() * B21 | 32 << 11);
1844 }
1845
1846
mcrfs(CRegister cr,FPSCRBit bit)1847 void Assembler::mcrfs(CRegister cr, FPSCRBit bit) {
1848 DCHECK(static_cast<int>(bit) < 32);
1849 int bf = cr.code();
1850 int bfa = bit / CRWIDTH;
1851 emit(EXT4 | MCRFS | bf * B23 | bfa * B18);
1852 }
1853
1854
mfcr(Register dst)1855 void Assembler::mfcr(Register dst) { emit(EXT2 | MFCR | dst.code() * B21); }
1856
1857
1858 #if V8_TARGET_ARCH_PPC64
mffprd(Register dst,DoubleRegister src)1859 void Assembler::mffprd(Register dst, DoubleRegister src) {
1860 emit(EXT2 | MFVSRD | src.code() * B21 | dst.code() * B16);
1861 }
1862
1863
mffprwz(Register dst,DoubleRegister src)1864 void Assembler::mffprwz(Register dst, DoubleRegister src) {
1865 emit(EXT2 | MFVSRWZ | src.code() * B21 | dst.code() * B16);
1866 }
1867
1868
mtfprd(DoubleRegister dst,Register src)1869 void Assembler::mtfprd(DoubleRegister dst, Register src) {
1870 emit(EXT2 | MTVSRD | dst.code() * B21 | src.code() * B16);
1871 }
1872
1873
mtfprwz(DoubleRegister dst,Register src)1874 void Assembler::mtfprwz(DoubleRegister dst, Register src) {
1875 emit(EXT2 | MTVSRWZ | dst.code() * B21 | src.code() * B16);
1876 }
1877
1878
mtfprwa(DoubleRegister dst,Register src)1879 void Assembler::mtfprwa(DoubleRegister dst, Register src) {
1880 emit(EXT2 | MTVSRWA | dst.code() * B21 | src.code() * B16);
1881 }
1882 #endif
1883
1884
1885 // Exception-generating instructions and debugging support.
1886 // Stops with a non-negative code less than kNumOfWatchedStops support
1887 // enabling/disabling and a counter feature. See simulator-ppc.h .
stop(const char * msg,Condition cond,int32_t code,CRegister cr)1888 void Assembler::stop(const char* msg, Condition cond, int32_t code,
1889 CRegister cr) {
1890 if (cond != al) {
1891 Label skip;
1892 b(NegateCondition(cond), &skip, cr);
1893 bkpt(0);
1894 bind(&skip);
1895 } else {
1896 bkpt(0);
1897 }
1898 }
1899
1900
bkpt(uint32_t imm16)1901 void Assembler::bkpt(uint32_t imm16) { emit(0x7d821008); }
1902
1903
dcbf(Register ra,Register rb)1904 void Assembler::dcbf(Register ra, Register rb) {
1905 emit(EXT2 | DCBF | ra.code() * B16 | rb.code() * B11);
1906 }
1907
1908
sync()1909 void Assembler::sync() { emit(EXT2 | SYNC); }
1910
1911
lwsync()1912 void Assembler::lwsync() { emit(EXT2 | SYNC | 1 * B21); }
1913
1914
icbi(Register ra,Register rb)1915 void Assembler::icbi(Register ra, Register rb) {
1916 emit(EXT2 | ICBI | ra.code() * B16 | rb.code() * B11);
1917 }
1918
1919
isync()1920 void Assembler::isync() { emit(EXT1 | ISYNC); }
1921
1922
1923 // Floating point support
1924
lfd(const DoubleRegister frt,const MemOperand & src)1925 void Assembler::lfd(const DoubleRegister frt, const MemOperand& src) {
1926 int offset = src.offset();
1927 Register ra = src.ra();
1928 DCHECK(!ra.is(r0));
1929 CHECK(is_int16(offset));
1930 int imm16 = offset & kImm16Mask;
1931 // could be x_form instruction with some casting magic
1932 emit(LFD | frt.code() * B21 | ra.code() * B16 | imm16);
1933 }
1934
1935
lfdu(const DoubleRegister frt,const MemOperand & src)1936 void Assembler::lfdu(const DoubleRegister frt, const MemOperand& src) {
1937 int offset = src.offset();
1938 Register ra = src.ra();
1939 DCHECK(!ra.is(r0));
1940 CHECK(is_int16(offset));
1941 int imm16 = offset & kImm16Mask;
1942 // could be x_form instruction with some casting magic
1943 emit(LFDU | frt.code() * B21 | ra.code() * B16 | imm16);
1944 }
1945
1946
lfdx(const DoubleRegister frt,const MemOperand & src)1947 void Assembler::lfdx(const DoubleRegister frt, const MemOperand& src) {
1948 Register ra = src.ra();
1949 Register rb = src.rb();
1950 DCHECK(!ra.is(r0));
1951 emit(EXT2 | LFDX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1952 LeaveRC);
1953 }
1954
1955
lfdux(const DoubleRegister frt,const MemOperand & src)1956 void Assembler::lfdux(const DoubleRegister frt, const MemOperand& src) {
1957 Register ra = src.ra();
1958 Register rb = src.rb();
1959 DCHECK(!ra.is(r0));
1960 emit(EXT2 | LFDUX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1961 LeaveRC);
1962 }
1963
1964
lfs(const DoubleRegister frt,const MemOperand & src)1965 void Assembler::lfs(const DoubleRegister frt, const MemOperand& src) {
1966 int offset = src.offset();
1967 Register ra = src.ra();
1968 CHECK(is_int16(offset));
1969 DCHECK(!ra.is(r0));
1970 int imm16 = offset & kImm16Mask;
1971 // could be x_form instruction with some casting magic
1972 emit(LFS | frt.code() * B21 | ra.code() * B16 | imm16);
1973 }
1974
1975
lfsu(const DoubleRegister frt,const MemOperand & src)1976 void Assembler::lfsu(const DoubleRegister frt, const MemOperand& src) {
1977 int offset = src.offset();
1978 Register ra = src.ra();
1979 CHECK(is_int16(offset));
1980 DCHECK(!ra.is(r0));
1981 int imm16 = offset & kImm16Mask;
1982 // could be x_form instruction with some casting magic
1983 emit(LFSU | frt.code() * B21 | ra.code() * B16 | imm16);
1984 }
1985
1986
lfsx(const DoubleRegister frt,const MemOperand & src)1987 void Assembler::lfsx(const DoubleRegister frt, const MemOperand& src) {
1988 Register ra = src.ra();
1989 Register rb = src.rb();
1990 DCHECK(!ra.is(r0));
1991 emit(EXT2 | LFSX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
1992 LeaveRC);
1993 }
1994
1995
lfsux(const DoubleRegister frt,const MemOperand & src)1996 void Assembler::lfsux(const DoubleRegister frt, const MemOperand& src) {
1997 Register ra = src.ra();
1998 Register rb = src.rb();
1999 DCHECK(!ra.is(r0));
2000 emit(EXT2 | LFSUX | frt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
2001 LeaveRC);
2002 }
2003
2004
stfd(const DoubleRegister frs,const MemOperand & src)2005 void Assembler::stfd(const DoubleRegister frs, const MemOperand& src) {
2006 int offset = src.offset();
2007 Register ra = src.ra();
2008 CHECK(is_int16(offset));
2009 DCHECK(!ra.is(r0));
2010 int imm16 = offset & kImm16Mask;
2011 // could be x_form instruction with some casting magic
2012 emit(STFD | frs.code() * B21 | ra.code() * B16 | imm16);
2013 }
2014
2015
stfdu(const DoubleRegister frs,const MemOperand & src)2016 void Assembler::stfdu(const DoubleRegister frs, const MemOperand& src) {
2017 int offset = src.offset();
2018 Register ra = src.ra();
2019 CHECK(is_int16(offset));
2020 DCHECK(!ra.is(r0));
2021 int imm16 = offset & kImm16Mask;
2022 // could be x_form instruction with some casting magic
2023 emit(STFDU | frs.code() * B21 | ra.code() * B16 | imm16);
2024 }
2025
2026
stfdx(const DoubleRegister frs,const MemOperand & src)2027 void Assembler::stfdx(const DoubleRegister frs, const MemOperand& src) {
2028 Register ra = src.ra();
2029 Register rb = src.rb();
2030 DCHECK(!ra.is(r0));
2031 emit(EXT2 | STFDX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
2032 LeaveRC);
2033 }
2034
2035
stfdux(const DoubleRegister frs,const MemOperand & src)2036 void Assembler::stfdux(const DoubleRegister frs, const MemOperand& src) {
2037 Register ra = src.ra();
2038 Register rb = src.rb();
2039 DCHECK(!ra.is(r0));
2040 emit(EXT2 | STFDUX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
2041 LeaveRC);
2042 }
2043
2044
stfs(const DoubleRegister frs,const MemOperand & src)2045 void Assembler::stfs(const DoubleRegister frs, const MemOperand& src) {
2046 int offset = src.offset();
2047 Register ra = src.ra();
2048 CHECK(is_int16(offset));
2049 DCHECK(!ra.is(r0));
2050 int imm16 = offset & kImm16Mask;
2051 // could be x_form instruction with some casting magic
2052 emit(STFS | frs.code() * B21 | ra.code() * B16 | imm16);
2053 }
2054
2055
stfsu(const DoubleRegister frs,const MemOperand & src)2056 void Assembler::stfsu(const DoubleRegister frs, const MemOperand& src) {
2057 int offset = src.offset();
2058 Register ra = src.ra();
2059 CHECK(is_int16(offset));
2060 DCHECK(!ra.is(r0));
2061 int imm16 = offset & kImm16Mask;
2062 // could be x_form instruction with some casting magic
2063 emit(STFSU | frs.code() * B21 | ra.code() * B16 | imm16);
2064 }
2065
2066
stfsx(const DoubleRegister frs,const MemOperand & src)2067 void Assembler::stfsx(const DoubleRegister frs, const MemOperand& src) {
2068 Register ra = src.ra();
2069 Register rb = src.rb();
2070 DCHECK(!ra.is(r0));
2071 emit(EXT2 | STFSX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
2072 LeaveRC);
2073 }
2074
2075
stfsux(const DoubleRegister frs,const MemOperand & src)2076 void Assembler::stfsux(const DoubleRegister frs, const MemOperand& src) {
2077 Register ra = src.ra();
2078 Register rb = src.rb();
2079 DCHECK(!ra.is(r0));
2080 emit(EXT2 | STFSUX | frs.code() * B21 | ra.code() * B16 | rb.code() * B11 |
2081 LeaveRC);
2082 }
2083
2084
fsub(const DoubleRegister frt,const DoubleRegister fra,const DoubleRegister frb,RCBit rc)2085 void Assembler::fsub(const DoubleRegister frt, const DoubleRegister fra,
2086 const DoubleRegister frb, RCBit rc) {
2087 a_form(EXT4 | FSUB, frt, fra, frb, rc);
2088 }
2089
2090
fadd(const DoubleRegister frt,const DoubleRegister fra,const DoubleRegister frb,RCBit rc)2091 void Assembler::fadd(const DoubleRegister frt, const DoubleRegister fra,
2092 const DoubleRegister frb, RCBit rc) {
2093 a_form(EXT4 | FADD, frt, fra, frb, rc);
2094 }
2095
2096
fmul(const DoubleRegister frt,const DoubleRegister fra,const DoubleRegister frc,RCBit rc)2097 void Assembler::fmul(const DoubleRegister frt, const DoubleRegister fra,
2098 const DoubleRegister frc, RCBit rc) {
2099 emit(EXT4 | FMUL | frt.code() * B21 | fra.code() * B16 | frc.code() * B6 |
2100 rc);
2101 }
2102
2103
fdiv(const DoubleRegister frt,const DoubleRegister fra,const DoubleRegister frb,RCBit rc)2104 void Assembler::fdiv(const DoubleRegister frt, const DoubleRegister fra,
2105 const DoubleRegister frb, RCBit rc) {
2106 a_form(EXT4 | FDIV, frt, fra, frb, rc);
2107 }
2108
2109
fcmpu(const DoubleRegister fra,const DoubleRegister frb,CRegister cr)2110 void Assembler::fcmpu(const DoubleRegister fra, const DoubleRegister frb,
2111 CRegister cr) {
2112 DCHECK(cr.code() >= 0 && cr.code() <= 7);
2113 emit(EXT4 | FCMPU | cr.code() * B23 | fra.code() * B16 | frb.code() * B11);
2114 }
2115
2116
fmr(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2117 void Assembler::fmr(const DoubleRegister frt, const DoubleRegister frb,
2118 RCBit rc) {
2119 emit(EXT4 | FMR | frt.code() * B21 | frb.code() * B11 | rc);
2120 }
2121
2122
fctiwz(const DoubleRegister frt,const DoubleRegister frb)2123 void Assembler::fctiwz(const DoubleRegister frt, const DoubleRegister frb) {
2124 emit(EXT4 | FCTIWZ | frt.code() * B21 | frb.code() * B11);
2125 }
2126
2127
fctiw(const DoubleRegister frt,const DoubleRegister frb)2128 void Assembler::fctiw(const DoubleRegister frt, const DoubleRegister frb) {
2129 emit(EXT4 | FCTIW | frt.code() * B21 | frb.code() * B11);
2130 }
2131
2132
frin(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2133 void Assembler::frin(const DoubleRegister frt, const DoubleRegister frb,
2134 RCBit rc) {
2135 emit(EXT4 | FRIN | frt.code() * B21 | frb.code() * B11 | rc);
2136 }
2137
2138
friz(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2139 void Assembler::friz(const DoubleRegister frt, const DoubleRegister frb,
2140 RCBit rc) {
2141 emit(EXT4 | FRIZ | frt.code() * B21 | frb.code() * B11 | rc);
2142 }
2143
2144
frip(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2145 void Assembler::frip(const DoubleRegister frt, const DoubleRegister frb,
2146 RCBit rc) {
2147 emit(EXT4 | FRIP | frt.code() * B21 | frb.code() * B11 | rc);
2148 }
2149
2150
frim(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2151 void Assembler::frim(const DoubleRegister frt, const DoubleRegister frb,
2152 RCBit rc) {
2153 emit(EXT4 | FRIM | frt.code() * B21 | frb.code() * B11 | rc);
2154 }
2155
2156
frsp(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2157 void Assembler::frsp(const DoubleRegister frt, const DoubleRegister frb,
2158 RCBit rc) {
2159 emit(EXT4 | FRSP | frt.code() * B21 | frb.code() * B11 | rc);
2160 }
2161
2162
fcfid(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2163 void Assembler::fcfid(const DoubleRegister frt, const DoubleRegister frb,
2164 RCBit rc) {
2165 emit(EXT4 | FCFID | frt.code() * B21 | frb.code() * B11 | rc);
2166 }
2167
2168
fcfidu(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2169 void Assembler::fcfidu(const DoubleRegister frt, const DoubleRegister frb,
2170 RCBit rc) {
2171 emit(EXT4 | FCFIDU | frt.code() * B21 | frb.code() * B11 | rc);
2172 }
2173
2174
fcfidus(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2175 void Assembler::fcfidus(const DoubleRegister frt, const DoubleRegister frb,
2176 RCBit rc) {
2177 emit(EXT3 | FCFIDU | frt.code() * B21 | frb.code() * B11 | rc);
2178 }
2179
2180
fcfids(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2181 void Assembler::fcfids(const DoubleRegister frt, const DoubleRegister frb,
2182 RCBit rc) {
2183 emit(EXT3 | FCFID | frt.code() * B21 | frb.code() * B11 | rc);
2184 }
2185
2186
fctid(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2187 void Assembler::fctid(const DoubleRegister frt, const DoubleRegister frb,
2188 RCBit rc) {
2189 emit(EXT4 | FCTID | frt.code() * B21 | frb.code() * B11 | rc);
2190 }
2191
2192
fctidz(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2193 void Assembler::fctidz(const DoubleRegister frt, const DoubleRegister frb,
2194 RCBit rc) {
2195 emit(EXT4 | FCTIDZ | frt.code() * B21 | frb.code() * B11 | rc);
2196 }
2197
2198
fctidu(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2199 void Assembler::fctidu(const DoubleRegister frt, const DoubleRegister frb,
2200 RCBit rc) {
2201 emit(EXT4 | FCTIDU | frt.code() * B21 | frb.code() * B11 | rc);
2202 }
2203
2204
fctiduz(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2205 void Assembler::fctiduz(const DoubleRegister frt, const DoubleRegister frb,
2206 RCBit rc) {
2207 emit(EXT4 | FCTIDUZ | frt.code() * B21 | frb.code() * B11 | rc);
2208 }
2209
2210
fsel(const DoubleRegister frt,const DoubleRegister fra,const DoubleRegister frc,const DoubleRegister frb,RCBit rc)2211 void Assembler::fsel(const DoubleRegister frt, const DoubleRegister fra,
2212 const DoubleRegister frc, const DoubleRegister frb,
2213 RCBit rc) {
2214 emit(EXT4 | FSEL | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 |
2215 frc.code() * B6 | rc);
2216 }
2217
2218
fneg(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2219 void Assembler::fneg(const DoubleRegister frt, const DoubleRegister frb,
2220 RCBit rc) {
2221 emit(EXT4 | FNEG | frt.code() * B21 | frb.code() * B11 | rc);
2222 }
2223
2224
mtfsb0(FPSCRBit bit,RCBit rc)2225 void Assembler::mtfsb0(FPSCRBit bit, RCBit rc) {
2226 DCHECK(static_cast<int>(bit) < 32);
2227 int bt = bit;
2228 emit(EXT4 | MTFSB0 | bt * B21 | rc);
2229 }
2230
2231
mtfsb1(FPSCRBit bit,RCBit rc)2232 void Assembler::mtfsb1(FPSCRBit bit, RCBit rc) {
2233 DCHECK(static_cast<int>(bit) < 32);
2234 int bt = bit;
2235 emit(EXT4 | MTFSB1 | bt * B21 | rc);
2236 }
2237
2238
mtfsfi(int bf,int immediate,RCBit rc)2239 void Assembler::mtfsfi(int bf, int immediate, RCBit rc) {
2240 emit(EXT4 | MTFSFI | bf * B23 | immediate * B12 | rc);
2241 }
2242
2243
mffs(const DoubleRegister frt,RCBit rc)2244 void Assembler::mffs(const DoubleRegister frt, RCBit rc) {
2245 emit(EXT4 | MFFS | frt.code() * B21 | rc);
2246 }
2247
2248
mtfsf(const DoubleRegister frb,bool L,int FLM,bool W,RCBit rc)2249 void Assembler::mtfsf(const DoubleRegister frb, bool L, int FLM, bool W,
2250 RCBit rc) {
2251 emit(EXT4 | MTFSF | frb.code() * B11 | W * B16 | FLM * B17 | L * B25 | rc);
2252 }
2253
2254
fsqrt(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2255 void Assembler::fsqrt(const DoubleRegister frt, const DoubleRegister frb,
2256 RCBit rc) {
2257 emit(EXT4 | FSQRT | frt.code() * B21 | frb.code() * B11 | rc);
2258 }
2259
2260
fabs(const DoubleRegister frt,const DoubleRegister frb,RCBit rc)2261 void Assembler::fabs(const DoubleRegister frt, const DoubleRegister frb,
2262 RCBit rc) {
2263 emit(EXT4 | FABS | frt.code() * B21 | frb.code() * B11 | rc);
2264 }
2265
2266
fmadd(const DoubleRegister frt,const DoubleRegister fra,const DoubleRegister frc,const DoubleRegister frb,RCBit rc)2267 void Assembler::fmadd(const DoubleRegister frt, const DoubleRegister fra,
2268 const DoubleRegister frc, const DoubleRegister frb,
2269 RCBit rc) {
2270 emit(EXT4 | FMADD | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 |
2271 frc.code() * B6 | rc);
2272 }
2273
2274
fmsub(const DoubleRegister frt,const DoubleRegister fra,const DoubleRegister frc,const DoubleRegister frb,RCBit rc)2275 void Assembler::fmsub(const DoubleRegister frt, const DoubleRegister fra,
2276 const DoubleRegister frc, const DoubleRegister frb,
2277 RCBit rc) {
2278 emit(EXT4 | FMSUB | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 |
2279 frc.code() * B6 | rc);
2280 }
2281
2282
2283 // Pseudo instructions.
nop(int type)2284 void Assembler::nop(int type) {
2285 Register reg = r0;
2286 switch (type) {
2287 case NON_MARKING_NOP:
2288 reg = r0;
2289 break;
2290 case GROUP_ENDING_NOP:
2291 reg = r2;
2292 break;
2293 case DEBUG_BREAK_NOP:
2294 reg = r3;
2295 break;
2296 default:
2297 UNIMPLEMENTED();
2298 }
2299
2300 ori(reg, reg, Operand::Zero());
2301 }
2302
2303
IsNop(Instr instr,int type)2304 bool Assembler::IsNop(Instr instr, int type) {
2305 int reg = 0;
2306 switch (type) {
2307 case NON_MARKING_NOP:
2308 reg = 0;
2309 break;
2310 case GROUP_ENDING_NOP:
2311 reg = 2;
2312 break;
2313 case DEBUG_BREAK_NOP:
2314 reg = 3;
2315 break;
2316 default:
2317 UNIMPLEMENTED();
2318 }
2319 return instr == (ORI | reg * B21 | reg * B16);
2320 }
2321
2322
GrowBuffer(int needed)2323 void Assembler::GrowBuffer(int needed) {
2324 if (!own_buffer_) FATAL("external code buffer is too small");
2325
2326 // Compute new buffer size.
2327 CodeDesc desc; // the new buffer
2328 if (buffer_size_ < 4 * KB) {
2329 desc.buffer_size = 4 * KB;
2330 } else if (buffer_size_ < 1 * MB) {
2331 desc.buffer_size = 2 * buffer_size_;
2332 } else {
2333 desc.buffer_size = buffer_size_ + 1 * MB;
2334 }
2335 int space = buffer_space() + (desc.buffer_size - buffer_size_);
2336 if (space < needed) {
2337 desc.buffer_size += needed - space;
2338 }
2339 CHECK_GT(desc.buffer_size, 0); // no overflow
2340
2341 // Set up new buffer.
2342 desc.buffer = NewArray<byte>(desc.buffer_size);
2343 desc.origin = this;
2344
2345 desc.instr_size = pc_offset();
2346 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
2347
2348 // Copy the data.
2349 intptr_t pc_delta = desc.buffer - buffer_;
2350 intptr_t rc_delta =
2351 (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
2352 memmove(desc.buffer, buffer_, desc.instr_size);
2353 memmove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
2354 desc.reloc_size);
2355
2356 // Switch buffers.
2357 DeleteArray(buffer_);
2358 buffer_ = desc.buffer;
2359 buffer_size_ = desc.buffer_size;
2360 pc_ += pc_delta;
2361 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2362 reloc_info_writer.last_pc() + pc_delta);
2363
2364 // Nothing else to do here since we keep all internal references and
2365 // deferred relocation entries relative to the buffer (until
2366 // EmitRelocations).
2367 }
2368
2369
db(uint8_t data)2370 void Assembler::db(uint8_t data) {
2371 CheckBuffer();
2372 *reinterpret_cast<uint8_t*>(pc_) = data;
2373 pc_ += sizeof(uint8_t);
2374 }
2375
2376
dd(uint32_t data)2377 void Assembler::dd(uint32_t data) {
2378 CheckBuffer();
2379 *reinterpret_cast<uint32_t*>(pc_) = data;
2380 pc_ += sizeof(uint32_t);
2381 }
2382
2383
dq(uint64_t value)2384 void Assembler::dq(uint64_t value) {
2385 CheckBuffer();
2386 *reinterpret_cast<uint64_t*>(pc_) = value;
2387 pc_ += sizeof(uint64_t);
2388 }
2389
2390
dp(uintptr_t data)2391 void Assembler::dp(uintptr_t data) {
2392 CheckBuffer();
2393 *reinterpret_cast<uintptr_t*>(pc_) = data;
2394 pc_ += sizeof(uintptr_t);
2395 }
2396
2397
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)2398 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2399 if (RelocInfo::IsNone(rmode) ||
2400 // Don't record external references unless the heap will be serialized.
2401 (rmode == RelocInfo::EXTERNAL_REFERENCE && !serializer_enabled() &&
2402 !emit_debug_code())) {
2403 return;
2404 }
2405 if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
2406 data = RecordedAstId().ToInt();
2407 ClearRecordedAstId();
2408 }
2409 DeferredRelocInfo rinfo(pc_offset(), rmode, data);
2410 relocations_.push_back(rinfo);
2411 }
2412
2413
EmitRelocations()2414 void Assembler::EmitRelocations() {
2415 EnsureSpaceFor(relocations_.size() * kMaxRelocSize);
2416
2417 for (std::vector<DeferredRelocInfo>::iterator it = relocations_.begin();
2418 it != relocations_.end(); it++) {
2419 RelocInfo::Mode rmode = it->rmode();
2420 Address pc = buffer_ + it->position();
2421 Code* code = NULL;
2422 RelocInfo rinfo(isolate(), pc, rmode, it->data(), code);
2423
2424 // Fix up internal references now that they are guaranteed to be bound.
2425 if (RelocInfo::IsInternalReference(rmode)) {
2426 // Jump table entry
2427 intptr_t pos = reinterpret_cast<intptr_t>(Memory::Address_at(pc));
2428 Memory::Address_at(pc) = buffer_ + pos;
2429 } else if (RelocInfo::IsInternalReferenceEncoded(rmode)) {
2430 // mov sequence
2431 intptr_t pos = reinterpret_cast<intptr_t>(target_address_at(pc, code));
2432 set_target_address_at(isolate(), pc, code, buffer_ + pos,
2433 SKIP_ICACHE_FLUSH);
2434 }
2435
2436 reloc_info_writer.Write(&rinfo);
2437 }
2438
2439 reloc_info_writer.Finish();
2440 }
2441
2442
BlockTrampolinePoolFor(int instructions)2443 void Assembler::BlockTrampolinePoolFor(int instructions) {
2444 BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
2445 }
2446
2447
CheckTrampolinePool()2448 void Assembler::CheckTrampolinePool() {
2449 // Some small sequences of instructions must not be broken up by the
2450 // insertion of a trampoline pool; such sequences are protected by setting
2451 // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
2452 // which are both checked here. Also, recursive calls to CheckTrampolinePool
2453 // are blocked by trampoline_pool_blocked_nesting_.
2454 if (trampoline_pool_blocked_nesting_ > 0) return;
2455 if (pc_offset() < no_trampoline_pool_before_) {
2456 next_trampoline_check_ = no_trampoline_pool_before_;
2457 return;
2458 }
2459
2460 DCHECK(!trampoline_emitted_);
2461 if (tracked_branch_count_ > 0) {
2462 int size = tracked_branch_count_ * kInstrSize;
2463
2464 // As we are only going to emit trampoline once, we need to prevent any
2465 // further emission.
2466 trampoline_emitted_ = true;
2467 next_trampoline_check_ = kMaxInt;
2468
2469 // First we emit jump, then we emit trampoline pool.
2470 b(size + kInstrSize, LeaveLK);
2471 for (int i = size; i > 0; i -= kInstrSize) {
2472 b(i, LeaveLK);
2473 }
2474
2475 trampoline_ = Trampoline(pc_offset() - size, tracked_branch_count_);
2476 }
2477 }
2478
2479
2480 } // namespace internal
2481 } // namespace v8
2482
2483 #endif // V8_TARGET_ARCH_PPC
2484