1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <stdarg.h>
6 #include <stdlib.h>
7 #include <cmath>
8 
9 #if V8_TARGET_ARCH_PPC
10 
11 #include "src/assembler.h"
12 #include "src/base/bits.h"
13 #include "src/codegen.h"
14 #include "src/disasm.h"
15 #include "src/ppc/constants-ppc.h"
16 #include "src/ppc/frames-ppc.h"
17 #include "src/ppc/simulator-ppc.h"
18 
19 #if defined(USE_SIMULATOR)
20 
21 // Only build the simulator if not compiling for real PPC hardware.
22 namespace v8 {
23 namespace internal {
24 
25 // This macro provides a platform independent use of sscanf. The reason for
26 // SScanF not being implemented in a platform independent way through
27 // ::v8::internal::OS in the same way as SNPrintF is that the
28 // Windows C Run-Time Library does not provide vsscanf.
29 #define SScanF sscanf  // NOLINT
30 
31 // The PPCDebugger class is used by the simulator while debugging simulated
32 // PowerPC code.
33 class PPCDebugger {
34  public:
PPCDebugger(Simulator * sim)35   explicit PPCDebugger(Simulator* sim) : sim_(sim) {}
36   ~PPCDebugger();
37 
38   void Stop(Instruction* instr);
39   void Debug();
40 
41  private:
42   static const Instr kBreakpointInstr = (TWI | 0x1f * B21);
43   static const Instr kNopInstr = (ORI);  // ori, 0,0,0
44 
45   Simulator* sim_;
46 
47   intptr_t GetRegisterValue(int regnum);
48   double GetRegisterPairDoubleValue(int regnum);
49   double GetFPDoubleRegisterValue(int regnum);
50   bool GetValue(const char* desc, intptr_t* value);
51   bool GetFPDoubleValue(const char* desc, double* value);
52 
53   // Set or delete a breakpoint. Returns true if successful.
54   bool SetBreakpoint(Instruction* break_pc);
55   bool DeleteBreakpoint(Instruction* break_pc);
56 
57   // Undo and redo all breakpoints. This is needed to bracket disassembly and
58   // execution to skip past breakpoints when run from the debugger.
59   void UndoBreakpoints();
60   void RedoBreakpoints();
61 };
62 
63 
~PPCDebugger()64 PPCDebugger::~PPCDebugger() {}
65 
66 
67 #ifdef GENERATED_CODE_COVERAGE
68 static FILE* coverage_log = NULL;
69 
70 
InitializeCoverage()71 static void InitializeCoverage() {
72   char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
73   if (file_name != NULL) {
74     coverage_log = fopen(file_name, "aw+");
75   }
76 }
77 
78 
Stop(Instruction * instr)79 void PPCDebugger::Stop(Instruction* instr) {
80   // Get the stop code.
81   uint32_t code = instr->SvcValue() & kStopCodeMask;
82   // Retrieve the encoded address, which comes just after this stop.
83   char** msg_address =
84       reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
85   char* msg = *msg_address;
86   DCHECK(msg != NULL);
87 
88   // Update this stop description.
89   if (isWatchedStop(code) && !watched_stops_[code].desc) {
90     watched_stops_[code].desc = msg;
91   }
92 
93   if (strlen(msg) > 0) {
94     if (coverage_log != NULL) {
95       fprintf(coverage_log, "%s\n", msg);
96       fflush(coverage_log);
97     }
98     // Overwrite the instruction and address with nops.
99     instr->SetInstructionBits(kNopInstr);
100     reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr);
101   }
102   sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
103 }
104 
105 #else  // ndef GENERATED_CODE_COVERAGE
106 
InitializeCoverage()107 static void InitializeCoverage() {}
108 
109 
Stop(Instruction * instr)110 void PPCDebugger::Stop(Instruction* instr) {
111   // Get the stop code.
112   // use of kStopCodeMask not right on PowerPC
113   uint32_t code = instr->SvcValue() & kStopCodeMask;
114   // Retrieve the encoded address, which comes just after this stop.
115   char* msg =
116       *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
117   // Update this stop description.
118   if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
119     sim_->watched_stops_[code].desc = msg;
120   }
121   // Print the stop message and code if it is not the default code.
122   if (code != kMaxStopCode) {
123     PrintF("Simulator hit stop %u: %s\n", code, msg);
124   } else {
125     PrintF("Simulator hit %s\n", msg);
126   }
127   sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
128   Debug();
129 }
130 #endif
131 
132 
GetRegisterValue(int regnum)133 intptr_t PPCDebugger::GetRegisterValue(int regnum) {
134   return sim_->get_register(regnum);
135 }
136 
137 
GetRegisterPairDoubleValue(int regnum)138 double PPCDebugger::GetRegisterPairDoubleValue(int regnum) {
139   return sim_->get_double_from_register_pair(regnum);
140 }
141 
142 
GetFPDoubleRegisterValue(int regnum)143 double PPCDebugger::GetFPDoubleRegisterValue(int regnum) {
144   return sim_->get_double_from_d_register(regnum);
145 }
146 
147 
GetValue(const char * desc,intptr_t * value)148 bool PPCDebugger::GetValue(const char* desc, intptr_t* value) {
149   int regnum = Registers::Number(desc);
150   if (regnum != kNoRegister) {
151     *value = GetRegisterValue(regnum);
152     return true;
153   } else {
154     if (strncmp(desc, "0x", 2) == 0) {
155       return SScanF(desc + 2, "%" V8PRIxPTR,
156                     reinterpret_cast<uintptr_t*>(value)) == 1;
157     } else {
158       return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) ==
159              1;
160     }
161   }
162   return false;
163 }
164 
165 
GetFPDoubleValue(const char * desc,double * value)166 bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) {
167   int regnum = DoubleRegisters::Number(desc);
168   if (regnum != kNoRegister) {
169     *value = sim_->get_double_from_d_register(regnum);
170     return true;
171   }
172   return false;
173 }
174 
175 
SetBreakpoint(Instruction * break_pc)176 bool PPCDebugger::SetBreakpoint(Instruction* break_pc) {
177   // Check if a breakpoint can be set. If not return without any side-effects.
178   if (sim_->break_pc_ != NULL) {
179     return false;
180   }
181 
182   // Set the breakpoint.
183   sim_->break_pc_ = break_pc;
184   sim_->break_instr_ = break_pc->InstructionBits();
185   // Not setting the breakpoint instruction in the code itself. It will be set
186   // when the debugger shell continues.
187   return true;
188 }
189 
190 
DeleteBreakpoint(Instruction * break_pc)191 bool PPCDebugger::DeleteBreakpoint(Instruction* break_pc) {
192   if (sim_->break_pc_ != NULL) {
193     sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
194   }
195 
196   sim_->break_pc_ = NULL;
197   sim_->break_instr_ = 0;
198   return true;
199 }
200 
201 
UndoBreakpoints()202 void PPCDebugger::UndoBreakpoints() {
203   if (sim_->break_pc_ != NULL) {
204     sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
205   }
206 }
207 
208 
RedoBreakpoints()209 void PPCDebugger::RedoBreakpoints() {
210   if (sim_->break_pc_ != NULL) {
211     sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
212   }
213 }
214 
215 
Debug()216 void PPCDebugger::Debug() {
217   intptr_t last_pc = -1;
218   bool done = false;
219 
220 #define COMMAND_SIZE 63
221 #define ARG_SIZE 255
222 
223 #define STR(a) #a
224 #define XSTR(a) STR(a)
225 
226   char cmd[COMMAND_SIZE + 1];
227   char arg1[ARG_SIZE + 1];
228   char arg2[ARG_SIZE + 1];
229   char* argv[3] = {cmd, arg1, arg2};
230 
231   // make sure to have a proper terminating character if reaching the limit
232   cmd[COMMAND_SIZE] = 0;
233   arg1[ARG_SIZE] = 0;
234   arg2[ARG_SIZE] = 0;
235 
236   // Undo all set breakpoints while running in the debugger shell. This will
237   // make them invisible to all commands.
238   UndoBreakpoints();
239   // Disable tracing while simulating
240   bool trace = ::v8::internal::FLAG_trace_sim;
241   ::v8::internal::FLAG_trace_sim = false;
242 
243   while (!done && !sim_->has_bad_pc()) {
244     if (last_pc != sim_->get_pc()) {
245       disasm::NameConverter converter;
246       disasm::Disassembler dasm(converter);
247       // use a reasonably large buffer
248       v8::internal::EmbeddedVector<char, 256> buffer;
249       dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
250       PrintF("  0x%08" V8PRIxPTR "  %s\n", sim_->get_pc(), buffer.start());
251       last_pc = sim_->get_pc();
252     }
253     char* line = ReadLine("sim> ");
254     if (line == NULL) {
255       break;
256     } else {
257       char* last_input = sim_->last_debugger_input();
258       if (strcmp(line, "\n") == 0 && last_input != NULL) {
259         line = last_input;
260       } else {
261         // Ownership is transferred to sim_;
262         sim_->set_last_debugger_input(line);
263       }
264       // Use sscanf to parse the individual parts of the command line. At the
265       // moment no command expects more than two parameters.
266       int argc = SScanF(line,
267                         "%" XSTR(COMMAND_SIZE) "s "
268                         "%" XSTR(ARG_SIZE) "s "
269                         "%" XSTR(ARG_SIZE) "s",
270                         cmd, arg1, arg2);
271       if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
272         intptr_t value;
273 
274         // If at a breakpoint, proceed past it.
275         if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
276                 ->InstructionBits() == 0x7d821008) {
277           sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
278         } else {
279           sim_->ExecuteInstruction(
280               reinterpret_cast<Instruction*>(sim_->get_pc()));
281         }
282 
283         if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) {
284           for (int i = 1; i < value; i++) {
285             disasm::NameConverter converter;
286             disasm::Disassembler dasm(converter);
287             // use a reasonably large buffer
288             v8::internal::EmbeddedVector<char, 256> buffer;
289             dasm.InstructionDecode(buffer,
290                                    reinterpret_cast<byte*>(sim_->get_pc()));
291             PrintF("  0x%08" V8PRIxPTR "  %s\n", sim_->get_pc(),
292                    buffer.start());
293             sim_->ExecuteInstruction(
294                 reinterpret_cast<Instruction*>(sim_->get_pc()));
295           }
296         }
297       } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
298         // If at a breakpoint, proceed past it.
299         if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
300                 ->InstructionBits() == 0x7d821008) {
301           sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
302         } else {
303           // Execute the one instruction we broke at with breakpoints disabled.
304           sim_->ExecuteInstruction(
305               reinterpret_cast<Instruction*>(sim_->get_pc()));
306         }
307         // Leave the debugger shell.
308         done = true;
309       } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
310         if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
311           intptr_t value;
312           double dvalue;
313           if (strcmp(arg1, "all") == 0) {
314             for (int i = 0; i < kNumRegisters; i++) {
315               value = GetRegisterValue(i);
316               PrintF("    %3s: %08" V8PRIxPTR,
317                      Register::from_code(i).ToString(), value);
318               if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
319                   (i % 2) == 0) {
320                 dvalue = GetRegisterPairDoubleValue(i);
321                 PrintF(" (%f)\n", dvalue);
322               } else if (i != 0 && !((i + 1) & 3)) {
323                 PrintF("\n");
324               }
325             }
326             PrintF("  pc: %08" V8PRIxPTR "  lr: %08" V8PRIxPTR
327                    "  "
328                    "ctr: %08" V8PRIxPTR "  xer: %08x  cr: %08x\n",
329                    sim_->special_reg_pc_, sim_->special_reg_lr_,
330                    sim_->special_reg_ctr_, sim_->special_reg_xer_,
331                    sim_->condition_reg_);
332           } else if (strcmp(arg1, "alld") == 0) {
333             for (int i = 0; i < kNumRegisters; i++) {
334               value = GetRegisterValue(i);
335               PrintF("     %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
336                      Register::from_code(i).ToString(), value, value);
337               if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
338                   (i % 2) == 0) {
339                 dvalue = GetRegisterPairDoubleValue(i);
340                 PrintF(" (%f)\n", dvalue);
341               } else if (!((i + 1) % 2)) {
342                 PrintF("\n");
343               }
344             }
345             PrintF("   pc: %08" V8PRIxPTR "  lr: %08" V8PRIxPTR
346                    "  "
347                    "ctr: %08" V8PRIxPTR "  xer: %08x  cr: %08x\n",
348                    sim_->special_reg_pc_, sim_->special_reg_lr_,
349                    sim_->special_reg_ctr_, sim_->special_reg_xer_,
350                    sim_->condition_reg_);
351           } else if (strcmp(arg1, "allf") == 0) {
352             for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
353               dvalue = GetFPDoubleRegisterValue(i);
354               uint64_t as_words = bit_cast<uint64_t>(dvalue);
355               PrintF("%3s: %f 0x%08x %08x\n",
356                      DoubleRegister::from_code(i).ToString(), dvalue,
357                      static_cast<uint32_t>(as_words >> 32),
358                      static_cast<uint32_t>(as_words & 0xffffffff));
359             }
360           } else if (arg1[0] == 'r' &&
361                      (arg1[1] >= '0' && arg1[1] <= '9' &&
362                       (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' &&
363                                            arg1[3] == '\0')))) {
364             int regnum = strtoul(&arg1[1], 0, 10);
365             if (regnum != kNoRegister) {
366               value = GetRegisterValue(regnum);
367               PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
368                      value);
369             } else {
370               PrintF("%s unrecognized\n", arg1);
371             }
372           } else {
373             if (GetValue(arg1, &value)) {
374               PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
375                      value);
376             } else if (GetFPDoubleValue(arg1, &dvalue)) {
377               uint64_t as_words = bit_cast<uint64_t>(dvalue);
378               PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
379                      static_cast<uint32_t>(as_words >> 32),
380                      static_cast<uint32_t>(as_words & 0xffffffff));
381             } else {
382               PrintF("%s unrecognized\n", arg1);
383             }
384           }
385         } else {
386           PrintF("print <register>\n");
387         }
388       } else if ((strcmp(cmd, "po") == 0) ||
389                  (strcmp(cmd, "printobject") == 0)) {
390         if (argc == 2) {
391           intptr_t value;
392           OFStream os(stdout);
393           if (GetValue(arg1, &value)) {
394             Object* obj = reinterpret_cast<Object*>(value);
395             os << arg1 << ": \n";
396 #ifdef DEBUG
397             obj->Print(os);
398             os << "\n";
399 #else
400             os << Brief(obj) << "\n";
401 #endif
402           } else {
403             os << arg1 << " unrecognized\n";
404           }
405         } else {
406           PrintF("printobject <value>\n");
407         }
408       } else if (strcmp(cmd, "setpc") == 0) {
409         intptr_t value;
410 
411         if (!GetValue(arg1, &value)) {
412           PrintF("%s unrecognized\n", arg1);
413           continue;
414         }
415         sim_->set_pc(value);
416       } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
417         intptr_t* cur = NULL;
418         intptr_t* end = NULL;
419         int next_arg = 1;
420 
421         if (strcmp(cmd, "stack") == 0) {
422           cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
423         } else {  // "mem"
424           intptr_t value;
425           if (!GetValue(arg1, &value)) {
426             PrintF("%s unrecognized\n", arg1);
427             continue;
428           }
429           cur = reinterpret_cast<intptr_t*>(value);
430           next_arg++;
431         }
432 
433         intptr_t words;  // likely inaccurate variable name for 64bit
434         if (argc == next_arg) {
435           words = 10;
436         } else {
437           if (!GetValue(argv[next_arg], &words)) {
438             words = 10;
439           }
440         }
441         end = cur + words;
442 
443         while (cur < end) {
444           PrintF("  0x%08" V8PRIxPTR ":  0x%08" V8PRIxPTR " %10" V8PRIdPTR,
445                  reinterpret_cast<intptr_t>(cur), *cur, *cur);
446           HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
447           intptr_t value = *cur;
448           Heap* current_heap = sim_->isolate_->heap();
449           if (((value & 1) == 0) || current_heap->Contains(obj)) {
450             PrintF(" (");
451             if ((value & 1) == 0) {
452               PrintF("smi %d", PlatformSmiTagging::SmiToInt(obj));
453             } else {
454               obj->ShortPrint();
455             }
456             PrintF(")");
457           }
458           PrintF("\n");
459           cur++;
460         }
461       } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
462         disasm::NameConverter converter;
463         disasm::Disassembler dasm(converter);
464         // use a reasonably large buffer
465         v8::internal::EmbeddedVector<char, 256> buffer;
466 
467         byte* prev = NULL;
468         byte* cur = NULL;
469         byte* end = NULL;
470 
471         if (argc == 1) {
472           cur = reinterpret_cast<byte*>(sim_->get_pc());
473           end = cur + (10 * Instruction::kInstrSize);
474         } else if (argc == 2) {
475           int regnum = Registers::Number(arg1);
476           if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
477             // The argument is an address or a register name.
478             intptr_t value;
479             if (GetValue(arg1, &value)) {
480               cur = reinterpret_cast<byte*>(value);
481               // Disassemble 10 instructions at <arg1>.
482               end = cur + (10 * Instruction::kInstrSize);
483             }
484           } else {
485             // The argument is the number of instructions.
486             intptr_t value;
487             if (GetValue(arg1, &value)) {
488               cur = reinterpret_cast<byte*>(sim_->get_pc());
489               // Disassemble <arg1> instructions.
490               end = cur + (value * Instruction::kInstrSize);
491             }
492           }
493         } else {
494           intptr_t value1;
495           intptr_t value2;
496           if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
497             cur = reinterpret_cast<byte*>(value1);
498             end = cur + (value2 * Instruction::kInstrSize);
499           }
500         }
501 
502         while (cur < end) {
503           prev = cur;
504           cur += dasm.InstructionDecode(buffer, cur);
505           PrintF("  0x%08" V8PRIxPTR "  %s\n", reinterpret_cast<intptr_t>(prev),
506                  buffer.start());
507         }
508       } else if (strcmp(cmd, "gdb") == 0) {
509         PrintF("relinquishing control to gdb\n");
510         v8::base::OS::DebugBreak();
511         PrintF("regaining control from gdb\n");
512       } else if (strcmp(cmd, "break") == 0) {
513         if (argc == 2) {
514           intptr_t value;
515           if (GetValue(arg1, &value)) {
516             if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
517               PrintF("setting breakpoint failed\n");
518             }
519           } else {
520             PrintF("%s unrecognized\n", arg1);
521           }
522         } else {
523           PrintF("break <address>\n");
524         }
525       } else if (strcmp(cmd, "del") == 0) {
526         if (!DeleteBreakpoint(NULL)) {
527           PrintF("deleting breakpoint failed\n");
528         }
529       } else if (strcmp(cmd, "cr") == 0) {
530         PrintF("Condition reg: %08x\n", sim_->condition_reg_);
531       } else if (strcmp(cmd, "lr") == 0) {
532         PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_);
533       } else if (strcmp(cmd, "ctr") == 0) {
534         PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_);
535       } else if (strcmp(cmd, "xer") == 0) {
536         PrintF("XER: %08x\n", sim_->special_reg_xer_);
537       } else if (strcmp(cmd, "fpscr") == 0) {
538         PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_);
539       } else if (strcmp(cmd, "stop") == 0) {
540         intptr_t value;
541         intptr_t stop_pc =
542             sim_->get_pc() - (Instruction::kInstrSize + kPointerSize);
543         Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
544         Instruction* msg_address =
545             reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize);
546         if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
547           // Remove the current stop.
548           if (sim_->isStopInstruction(stop_instr)) {
549             stop_instr->SetInstructionBits(kNopInstr);
550             msg_address->SetInstructionBits(kNopInstr);
551           } else {
552             PrintF("Not at debugger stop.\n");
553           }
554         } else if (argc == 3) {
555           // Print information about all/the specified breakpoint(s).
556           if (strcmp(arg1, "info") == 0) {
557             if (strcmp(arg2, "all") == 0) {
558               PrintF("Stop information:\n");
559               for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
560                 sim_->PrintStopInfo(i);
561               }
562             } else if (GetValue(arg2, &value)) {
563               sim_->PrintStopInfo(value);
564             } else {
565               PrintF("Unrecognized argument.\n");
566             }
567           } else if (strcmp(arg1, "enable") == 0) {
568             // Enable all/the specified breakpoint(s).
569             if (strcmp(arg2, "all") == 0) {
570               for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
571                 sim_->EnableStop(i);
572               }
573             } else if (GetValue(arg2, &value)) {
574               sim_->EnableStop(value);
575             } else {
576               PrintF("Unrecognized argument.\n");
577             }
578           } else if (strcmp(arg1, "disable") == 0) {
579             // Disable all/the specified breakpoint(s).
580             if (strcmp(arg2, "all") == 0) {
581               for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
582                 sim_->DisableStop(i);
583               }
584             } else if (GetValue(arg2, &value)) {
585               sim_->DisableStop(value);
586             } else {
587               PrintF("Unrecognized argument.\n");
588             }
589           }
590         } else {
591           PrintF("Wrong usage. Use help command for more information.\n");
592         }
593       } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
594         ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
595         PrintF("Trace of executed instructions is %s\n",
596                ::v8::internal::FLAG_trace_sim ? "on" : "off");
597       } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
598         PrintF("cont\n");
599         PrintF("  continue execution (alias 'c')\n");
600         PrintF("stepi [num instructions]\n");
601         PrintF("  step one/num instruction(s) (alias 'si')\n");
602         PrintF("print <register>\n");
603         PrintF("  print register content (alias 'p')\n");
604         PrintF("  use register name 'all' to display all integer registers\n");
605         PrintF(
606             "  use register name 'alld' to display integer registers "
607             "with decimal values\n");
608         PrintF("  use register name 'rN' to display register number 'N'\n");
609         PrintF("  add argument 'fp' to print register pair double values\n");
610         PrintF(
611             "  use register name 'allf' to display floating-point "
612             "registers\n");
613         PrintF("printobject <register>\n");
614         PrintF("  print an object from a register (alias 'po')\n");
615         PrintF("cr\n");
616         PrintF("  print condition register\n");
617         PrintF("lr\n");
618         PrintF("  print link register\n");
619         PrintF("ctr\n");
620         PrintF("  print ctr register\n");
621         PrintF("xer\n");
622         PrintF("  print XER\n");
623         PrintF("fpscr\n");
624         PrintF("  print FPSCR\n");
625         PrintF("stack [<num words>]\n");
626         PrintF("  dump stack content, default dump 10 words)\n");
627         PrintF("mem <address> [<num words>]\n");
628         PrintF("  dump memory content, default dump 10 words)\n");
629         PrintF("disasm [<instructions>]\n");
630         PrintF("disasm [<address/register>]\n");
631         PrintF("disasm [[<address/register>] <instructions>]\n");
632         PrintF("  disassemble code, default is 10 instructions\n");
633         PrintF("  from pc (alias 'di')\n");
634         PrintF("gdb\n");
635         PrintF("  enter gdb\n");
636         PrintF("break <address>\n");
637         PrintF("  set a break point on the address\n");
638         PrintF("del\n");
639         PrintF("  delete the breakpoint\n");
640         PrintF("trace (alias 't')\n");
641         PrintF("  toogle the tracing of all executed statements\n");
642         PrintF("stop feature:\n");
643         PrintF("  Description:\n");
644         PrintF("    Stops are debug instructions inserted by\n");
645         PrintF("    the Assembler::stop() function.\n");
646         PrintF("    When hitting a stop, the Simulator will\n");
647         PrintF("    stop and and give control to the PPCDebugger.\n");
648         PrintF("    The first %d stop codes are watched:\n",
649                Simulator::kNumOfWatchedStops);
650         PrintF("    - They can be enabled / disabled: the Simulator\n");
651         PrintF("      will / won't stop when hitting them.\n");
652         PrintF("    - The Simulator keeps track of how many times they \n");
653         PrintF("      are met. (See the info command.) Going over a\n");
654         PrintF("      disabled stop still increases its counter. \n");
655         PrintF("  Commands:\n");
656         PrintF("    stop info all/<code> : print infos about number <code>\n");
657         PrintF("      or all stop(s).\n");
658         PrintF("    stop enable/disable all/<code> : enables / disables\n");
659         PrintF("      all or number <code> stop(s)\n");
660         PrintF("    stop unstop\n");
661         PrintF("      ignore the stop instruction at the current location\n");
662         PrintF("      from now on\n");
663       } else {
664         PrintF("Unknown command: %s\n", cmd);
665       }
666     }
667   }
668 
669   // Add all the breakpoints back to stop execution and enter the debugger
670   // shell when hit.
671   RedoBreakpoints();
672   // Restore tracing
673   ::v8::internal::FLAG_trace_sim = trace;
674 
675 #undef COMMAND_SIZE
676 #undef ARG_SIZE
677 
678 #undef STR
679 #undef XSTR
680 }
681 
682 
ICacheMatch(void * one,void * two)683 static bool ICacheMatch(void* one, void* two) {
684   DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
685   DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
686   return one == two;
687 }
688 
689 
ICacheHash(void * key)690 static uint32_t ICacheHash(void* key) {
691   return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
692 }
693 
694 
AllOnOnePage(uintptr_t start,int size)695 static bool AllOnOnePage(uintptr_t start, int size) {
696   intptr_t start_page = (start & ~CachePage::kPageMask);
697   intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
698   return start_page == end_page;
699 }
700 
701 
set_last_debugger_input(char * input)702 void Simulator::set_last_debugger_input(char* input) {
703   DeleteArray(last_debugger_input_);
704   last_debugger_input_ = input;
705 }
706 
707 
FlushICache(v8::internal::HashMap * i_cache,void * start_addr,size_t size)708 void Simulator::FlushICache(v8::internal::HashMap* i_cache, void* start_addr,
709                             size_t size) {
710   intptr_t start = reinterpret_cast<intptr_t>(start_addr);
711   int intra_line = (start & CachePage::kLineMask);
712   start -= intra_line;
713   size += intra_line;
714   size = ((size - 1) | CachePage::kLineMask) + 1;
715   int offset = (start & CachePage::kPageMask);
716   while (!AllOnOnePage(start, size - 1)) {
717     int bytes_to_flush = CachePage::kPageSize - offset;
718     FlushOnePage(i_cache, start, bytes_to_flush);
719     start += bytes_to_flush;
720     size -= bytes_to_flush;
721     DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
722     offset = 0;
723   }
724   if (size != 0) {
725     FlushOnePage(i_cache, start, size);
726   }
727 }
728 
729 
GetCachePage(v8::internal::HashMap * i_cache,void * page)730 CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
731   v8::internal::HashMap::Entry* entry =
732       i_cache->LookupOrInsert(page, ICacheHash(page));
733   if (entry->value == NULL) {
734     CachePage* new_page = new CachePage();
735     entry->value = new_page;
736   }
737   return reinterpret_cast<CachePage*>(entry->value);
738 }
739 
740 
741 // Flush from start up to and not including start + size.
FlushOnePage(v8::internal::HashMap * i_cache,intptr_t start,int size)742 void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
743                              int size) {
744   DCHECK(size <= CachePage::kPageSize);
745   DCHECK(AllOnOnePage(start, size - 1));
746   DCHECK((start & CachePage::kLineMask) == 0);
747   DCHECK((size & CachePage::kLineMask) == 0);
748   void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
749   int offset = (start & CachePage::kPageMask);
750   CachePage* cache_page = GetCachePage(i_cache, page);
751   char* valid_bytemap = cache_page->ValidityByte(offset);
752   memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
753 }
754 
755 
CheckICache(v8::internal::HashMap * i_cache,Instruction * instr)756 void Simulator::CheckICache(v8::internal::HashMap* i_cache,
757                             Instruction* instr) {
758   intptr_t address = reinterpret_cast<intptr_t>(instr);
759   void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
760   void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
761   int offset = (address & CachePage::kPageMask);
762   CachePage* cache_page = GetCachePage(i_cache, page);
763   char* cache_valid_byte = cache_page->ValidityByte(offset);
764   bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
765   char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
766   if (cache_hit) {
767     // Check that the data in memory matches the contents of the I-cache.
768     CHECK_EQ(0,
769              memcmp(reinterpret_cast<void*>(instr),
770                     cache_page->CachedData(offset), Instruction::kInstrSize));
771   } else {
772     // Cache miss.  Load memory into the cache.
773     memcpy(cached_line, line, CachePage::kLineLength);
774     *cache_valid_byte = CachePage::LINE_VALID;
775   }
776 }
777 
778 
Initialize(Isolate * isolate)779 void Simulator::Initialize(Isolate* isolate) {
780   if (isolate->simulator_initialized()) return;
781   isolate->set_simulator_initialized(true);
782   ::v8::internal::ExternalReference::set_redirector(isolate,
783                                                     &RedirectExternalReference);
784 }
785 
786 
Simulator(Isolate * isolate)787 Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
788   i_cache_ = isolate_->simulator_i_cache();
789   if (i_cache_ == NULL) {
790     i_cache_ = new v8::internal::HashMap(&ICacheMatch);
791     isolate_->set_simulator_i_cache(i_cache_);
792   }
793   Initialize(isolate);
794 // Set up simulator support first. Some of this information is needed to
795 // setup the architecture state.
796 #if V8_TARGET_ARCH_PPC64
797   size_t stack_size = FLAG_sim_stack_size * KB;
798 #else
799   size_t stack_size = MB;  // allocate 1MB for stack
800 #endif
801   stack_size += 2 * stack_protection_size_;
802   stack_ = reinterpret_cast<char*>(malloc(stack_size));
803   pc_modified_ = false;
804   icount_ = 0;
805   break_pc_ = NULL;
806   break_instr_ = 0;
807 
808   // Set up architecture state.
809   // All registers are initialized to zero to start with.
810   for (int i = 0; i < kNumGPRs; i++) {
811     registers_[i] = 0;
812   }
813   condition_reg_ = 0;
814   fp_condition_reg_ = 0;
815   special_reg_pc_ = 0;
816   special_reg_lr_ = 0;
817   special_reg_ctr_ = 0;
818 
819   // Initializing FP registers.
820   for (int i = 0; i < kNumFPRs; i++) {
821     fp_registers_[i] = 0.0;
822   }
823 
824   // The sp is initialized to point to the bottom (high address) of the
825   // allocated stack area. To be safe in potential stack underflows we leave
826   // some buffer below.
827   registers_[sp] =
828       reinterpret_cast<intptr_t>(stack_) + stack_size - stack_protection_size_;
829   InitializeCoverage();
830 
831   last_debugger_input_ = NULL;
832 }
833 
834 
~Simulator()835 Simulator::~Simulator() { free(stack_); }
836 
837 
838 // When the generated code calls an external reference we need to catch that in
839 // the simulator.  The external reference will be a function compiled for the
840 // host architecture.  We need to call that function instead of trying to
841 // execute it with the simulator.  We do that by redirecting the external
842 // reference to a svc (Supervisor Call) instruction that is handled by
843 // the simulator.  We write the original destination of the jump just at a known
844 // offset from the svc instruction so the simulator knows what to call.
845 class Redirection {
846  public:
Redirection(Isolate * isolate,void * external_function,ExternalReference::Type type)847   Redirection(Isolate* isolate, void* external_function,
848               ExternalReference::Type type)
849       : external_function_(external_function),
850         swi_instruction_(rtCallRedirInstr | kCallRtRedirected),
851         type_(type),
852         next_(NULL) {
853     next_ = isolate->simulator_redirection();
854     Simulator::current(isolate)->FlushICache(
855         isolate->simulator_i_cache(),
856         reinterpret_cast<void*>(&swi_instruction_), Instruction::kInstrSize);
857     isolate->set_simulator_redirection(this);
858   }
859 
address_of_swi_instruction()860   void* address_of_swi_instruction() {
861     return reinterpret_cast<void*>(&swi_instruction_);
862   }
863 
external_function()864   void* external_function() { return external_function_; }
type()865   ExternalReference::Type type() { return type_; }
866 
Get(Isolate * isolate,void * external_function,ExternalReference::Type type)867   static Redirection* Get(Isolate* isolate, void* external_function,
868                           ExternalReference::Type type) {
869     Redirection* current = isolate->simulator_redirection();
870     for (; current != NULL; current = current->next_) {
871       if (current->external_function_ == external_function) {
872         DCHECK_EQ(current->type(), type);
873         return current;
874       }
875     }
876     return new Redirection(isolate, external_function, type);
877   }
878 
FromSwiInstruction(Instruction * swi_instruction)879   static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
880     char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
881     char* addr_of_redirection =
882         addr_of_swi - offsetof(Redirection, swi_instruction_);
883     return reinterpret_cast<Redirection*>(addr_of_redirection);
884   }
885 
ReverseRedirection(intptr_t reg)886   static void* ReverseRedirection(intptr_t reg) {
887     Redirection* redirection = FromSwiInstruction(
888         reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg)));
889     return redirection->external_function();
890   }
891 
DeleteChain(Redirection * redirection)892   static void DeleteChain(Redirection* redirection) {
893     while (redirection != nullptr) {
894       Redirection* next = redirection->next_;
895       delete redirection;
896       redirection = next;
897     }
898   }
899 
900  private:
901   void* external_function_;
902   uint32_t swi_instruction_;
903   ExternalReference::Type type_;
904   Redirection* next_;
905 };
906 
907 
908 // static
TearDown(HashMap * i_cache,Redirection * first)909 void Simulator::TearDown(HashMap* i_cache, Redirection* first) {
910   Redirection::DeleteChain(first);
911   if (i_cache != nullptr) {
912     for (HashMap::Entry* entry = i_cache->Start(); entry != nullptr;
913          entry = i_cache->Next(entry)) {
914       delete static_cast<CachePage*>(entry->value);
915     }
916     delete i_cache;
917   }
918 }
919 
920 
RedirectExternalReference(Isolate * isolate,void * external_function,ExternalReference::Type type)921 void* Simulator::RedirectExternalReference(Isolate* isolate,
922                                            void* external_function,
923                                            ExternalReference::Type type) {
924   Redirection* redirection = Redirection::Get(isolate, external_function, type);
925   return redirection->address_of_swi_instruction();
926 }
927 
928 
929 // Get the active Simulator for the current thread.
current(Isolate * isolate)930 Simulator* Simulator::current(Isolate* isolate) {
931   v8::internal::Isolate::PerIsolateThreadData* isolate_data =
932       isolate->FindOrAllocatePerThreadDataForThisThread();
933   DCHECK(isolate_data != NULL);
934 
935   Simulator* sim = isolate_data->simulator();
936   if (sim == NULL) {
937     // TODO(146): delete the simulator object when a thread/isolate goes away.
938     sim = new Simulator(isolate);
939     isolate_data->set_simulator(sim);
940   }
941   return sim;
942 }
943 
944 
945 // Sets the register in the architecture state.
set_register(int reg,intptr_t value)946 void Simulator::set_register(int reg, intptr_t value) {
947   DCHECK((reg >= 0) && (reg < kNumGPRs));
948   registers_[reg] = value;
949 }
950 
951 
952 // Get the register from the architecture state.
get_register(int reg) const953 intptr_t Simulator::get_register(int reg) const {
954   DCHECK((reg >= 0) && (reg < kNumGPRs));
955   // Stupid code added to avoid bug in GCC.
956   // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
957   if (reg >= kNumGPRs) return 0;
958   // End stupid code.
959   return registers_[reg];
960 }
961 
962 
get_double_from_register_pair(int reg)963 double Simulator::get_double_from_register_pair(int reg) {
964   DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));
965 
966   double dm_val = 0.0;
967 #if !V8_TARGET_ARCH_PPC64  // doesn't make sense in 64bit mode
968   // Read the bits from the unsigned integer register_[] array
969   // into the double precision floating point value and return it.
970   char buffer[sizeof(fp_registers_[0])];
971   memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
972   memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
973 #endif
974   return (dm_val);
975 }
976 
977 
978 // Raw access to the PC register.
set_pc(intptr_t value)979 void Simulator::set_pc(intptr_t value) {
980   pc_modified_ = true;
981   special_reg_pc_ = value;
982 }
983 
984 
has_bad_pc() const985 bool Simulator::has_bad_pc() const {
986   return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
987 }
988 
989 
990 // Raw access to the PC register without the special adjustment when reading.
get_pc() const991 intptr_t Simulator::get_pc() const { return special_reg_pc_; }
992 
993 
994 // Runtime FP routines take:
995 // - two double arguments
996 // - one double argument and zero or one integer arguments.
997 // All are consructed here from d1, d2 and r3.
GetFpArgs(double * x,double * y,intptr_t * z)998 void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
999   *x = get_double_from_d_register(1);
1000   *y = get_double_from_d_register(2);
1001   *z = get_register(3);
1002 }
1003 
1004 
1005 // The return value is in d1.
SetFpResult(const double & result)1006 void Simulator::SetFpResult(const double& result) {
1007   set_d_register_from_double(1, result);
1008 }
1009 
1010 
TrashCallerSaveRegisters()1011 void Simulator::TrashCallerSaveRegisters() {
1012 // We don't trash the registers with the return value.
1013 #if 0  // A good idea to trash volatile registers, needs to be done
1014   registers_[2] = 0x50Bad4U;
1015   registers_[3] = 0x50Bad4U;
1016   registers_[12] = 0x50Bad4U;
1017 #endif
1018 }
1019 
1020 
ReadWU(intptr_t addr,Instruction * instr)1021 uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) {
1022   uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
1023   return *ptr;
1024 }
1025 
1026 
ReadW(intptr_t addr,Instruction * instr)1027 int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) {
1028   int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1029   return *ptr;
1030 }
1031 
1032 
WriteW(intptr_t addr,uint32_t value,Instruction * instr)1033 void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) {
1034   uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
1035   *ptr = value;
1036   return;
1037 }
1038 
1039 
WriteW(intptr_t addr,int32_t value,Instruction * instr)1040 void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) {
1041   int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1042   *ptr = value;
1043   return;
1044 }
1045 
1046 
ReadHU(intptr_t addr,Instruction * instr)1047 uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) {
1048   uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1049   return *ptr;
1050 }
1051 
1052 
ReadH(intptr_t addr,Instruction * instr)1053 int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) {
1054   int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1055   return *ptr;
1056 }
1057 
1058 
WriteH(intptr_t addr,uint16_t value,Instruction * instr)1059 void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) {
1060   uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1061   *ptr = value;
1062   return;
1063 }
1064 
1065 
WriteH(intptr_t addr,int16_t value,Instruction * instr)1066 void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) {
1067   int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1068   *ptr = value;
1069   return;
1070 }
1071 
1072 
ReadBU(intptr_t addr)1073 uint8_t Simulator::ReadBU(intptr_t addr) {
1074   uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1075   return *ptr;
1076 }
1077 
1078 
ReadB(intptr_t addr)1079 int8_t Simulator::ReadB(intptr_t addr) {
1080   int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1081   return *ptr;
1082 }
1083 
1084 
WriteB(intptr_t addr,uint8_t value)1085 void Simulator::WriteB(intptr_t addr, uint8_t value) {
1086   uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1087   *ptr = value;
1088 }
1089 
1090 
WriteB(intptr_t addr,int8_t value)1091 void Simulator::WriteB(intptr_t addr, int8_t value) {
1092   int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1093   *ptr = value;
1094 }
1095 
1096 
ReadDW(intptr_t addr)1097 intptr_t* Simulator::ReadDW(intptr_t addr) {
1098   intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
1099   return ptr;
1100 }
1101 
1102 
WriteDW(intptr_t addr,int64_t value)1103 void Simulator::WriteDW(intptr_t addr, int64_t value) {
1104   int64_t* ptr = reinterpret_cast<int64_t*>(addr);
1105   *ptr = value;
1106   return;
1107 }
1108 
1109 
1110 // Returns the limit of the stack area to enable checking for stack overflows.
StackLimit(uintptr_t c_limit) const1111 uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
1112   // The simulator uses a separate JS stack. If we have exhausted the C stack,
1113   // we also drop down the JS limit to reflect the exhaustion on the JS stack.
1114   if (GetCurrentStackPosition() < c_limit) {
1115     return reinterpret_cast<uintptr_t>(get_sp());
1116   }
1117 
1118   // Otherwise the limit is the JS stack. Leave a safety margin to prevent
1119   // overrunning the stack when pushing values.
1120   return reinterpret_cast<uintptr_t>(stack_) + stack_protection_size_;
1121 }
1122 
1123 
1124 // Unsupported instructions use Format to print an error and stop execution.
Format(Instruction * instr,const char * format)1125 void Simulator::Format(Instruction* instr, const char* format) {
1126   PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
1127          reinterpret_cast<intptr_t>(instr), format);
1128   UNIMPLEMENTED();
1129 }
1130 
1131 
1132 // Calculate C flag value for additions.
CarryFrom(int32_t left,int32_t right,int32_t carry)1133 bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
1134   uint32_t uleft = static_cast<uint32_t>(left);
1135   uint32_t uright = static_cast<uint32_t>(right);
1136   uint32_t urest = 0xffffffffU - uleft;
1137 
1138   return (uright > urest) ||
1139          (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
1140 }
1141 
1142 
1143 // Calculate C flag value for subtractions.
BorrowFrom(int32_t left,int32_t right)1144 bool Simulator::BorrowFrom(int32_t left, int32_t right) {
1145   uint32_t uleft = static_cast<uint32_t>(left);
1146   uint32_t uright = static_cast<uint32_t>(right);
1147 
1148   return (uright > uleft);
1149 }
1150 
1151 
1152 // Calculate V flag value for additions and subtractions.
OverflowFrom(int32_t alu_out,int32_t left,int32_t right,bool addition)1153 bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
1154                              bool addition) {
1155   bool overflow;
1156   if (addition) {
1157     // operands have the same sign
1158     overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
1159                // and operands and result have different sign
1160                &&
1161                ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1162   } else {
1163     // operands have different signs
1164     overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
1165                // and first operand and result have different signs
1166                &&
1167                ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1168   }
1169   return overflow;
1170 }
1171 
1172 
1173 #if V8_TARGET_ARCH_PPC64
1174 struct ObjectPair {
1175   intptr_t x;
1176   intptr_t y;
1177 };
1178 
1179 
decodeObjectPair(ObjectPair * pair,intptr_t * x,intptr_t * y)1180 static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
1181   *x = pair->x;
1182   *y = pair->y;
1183 }
1184 #else
1185 typedef uint64_t ObjectPair;
1186 
1187 
decodeObjectPair(ObjectPair * pair,intptr_t * x,intptr_t * y)1188 static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
1189 #if V8_TARGET_BIG_ENDIAN
1190   *x = static_cast<int32_t>(*pair >> 32);
1191   *y = static_cast<int32_t>(*pair);
1192 #else
1193   *x = static_cast<int32_t>(*pair);
1194   *y = static_cast<int32_t>(*pair >> 32);
1195 #endif
1196 }
1197 #endif
1198 
1199 // Calls into the V8 runtime are based on this very simple interface.
1200 // Note: To be able to return two values from some calls the code in
1201 // runtime.cc uses the ObjectPair which is essentially two pointer
1202 // values stuffed into a structure. With the code below we assume that
1203 // all runtime calls return this pair. If they don't, the r4 result
1204 // register contains a bogus value, which is fine because it is
1205 // caller-saved.
1206 typedef ObjectPair (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
1207                                            intptr_t arg2, intptr_t arg3,
1208                                            intptr_t arg4, intptr_t arg5);
1209 
1210 // These prototypes handle the four types of FP calls.
1211 typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
1212 typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
1213 typedef double (*SimulatorRuntimeFPCall)(double darg0);
1214 typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0);
1215 
1216 // This signature supports direct call in to API function native callback
1217 // (refer to InvocationCallback in v8.h).
1218 typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0);
1219 typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1);
1220 
1221 // This signature supports direct call to accessor getter callback.
1222 typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1);
1223 typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0,
1224                                                     intptr_t arg1, void* arg2);
1225 
1226 // Software interrupt instructions are used by the simulator to call into the
1227 // C-based V8 runtime.
SoftwareInterrupt(Instruction * instr)1228 void Simulator::SoftwareInterrupt(Instruction* instr) {
1229   int svc = instr->SvcValue();
1230   switch (svc) {
1231     case kCallRtRedirected: {
1232       // Check if stack is aligned. Error if not aligned is reported below to
1233       // include information on the function called.
1234       bool stack_aligned =
1235           (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
1236           0;
1237       Redirection* redirection = Redirection::FromSwiInstruction(instr);
1238       const int kArgCount = 6;
1239       int arg0_regnum = 3;
1240 #if !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
1241       intptr_t result_buffer = 0;
1242       if (redirection->type() == ExternalReference::BUILTIN_OBJECTPAIR_CALL) {
1243         result_buffer = get_register(r3);
1244         arg0_regnum++;
1245       }
1246 #endif
1247       intptr_t arg[kArgCount];
1248       for (int i = 0; i < kArgCount; i++) {
1249         arg[i] = get_register(arg0_regnum + i);
1250       }
1251       bool fp_call =
1252           (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
1253           (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
1254           (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
1255           (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
1256       // This is dodgy but it works because the C entry stubs are never moved.
1257       // See comment in codegen-arm.cc and bug 1242173.
1258       intptr_t saved_lr = special_reg_lr_;
1259       intptr_t external =
1260           reinterpret_cast<intptr_t>(redirection->external_function());
1261       if (fp_call) {
1262         double dval0, dval1;  // one or two double parameters
1263         intptr_t ival;        // zero or one integer parameters
1264         int iresult = 0;      // integer return value
1265         double dresult = 0;   // double return value
1266         GetFpArgs(&dval0, &dval1, &ival);
1267         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1268           SimulatorRuntimeCall generic_target =
1269               reinterpret_cast<SimulatorRuntimeCall>(external);
1270           switch (redirection->type()) {
1271             case ExternalReference::BUILTIN_FP_FP_CALL:
1272             case ExternalReference::BUILTIN_COMPARE_CALL:
1273               PrintF("Call to host function at %p with args %f, %f",
1274                      FUNCTION_ADDR(generic_target), dval0, dval1);
1275               break;
1276             case ExternalReference::BUILTIN_FP_CALL:
1277               PrintF("Call to host function at %p with arg %f",
1278                      FUNCTION_ADDR(generic_target), dval0);
1279               break;
1280             case ExternalReference::BUILTIN_FP_INT_CALL:
1281               PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
1282                      FUNCTION_ADDR(generic_target), dval0, ival);
1283               break;
1284             default:
1285               UNREACHABLE();
1286               break;
1287           }
1288           if (!stack_aligned) {
1289             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1290                    get_register(sp));
1291           }
1292           PrintF("\n");
1293         }
1294         CHECK(stack_aligned);
1295         switch (redirection->type()) {
1296           case ExternalReference::BUILTIN_COMPARE_CALL: {
1297             SimulatorRuntimeCompareCall target =
1298                 reinterpret_cast<SimulatorRuntimeCompareCall>(external);
1299             iresult = target(dval0, dval1);
1300             set_register(r3, iresult);
1301             break;
1302           }
1303           case ExternalReference::BUILTIN_FP_FP_CALL: {
1304             SimulatorRuntimeFPFPCall target =
1305                 reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
1306             dresult = target(dval0, dval1);
1307             SetFpResult(dresult);
1308             break;
1309           }
1310           case ExternalReference::BUILTIN_FP_CALL: {
1311             SimulatorRuntimeFPCall target =
1312                 reinterpret_cast<SimulatorRuntimeFPCall>(external);
1313             dresult = target(dval0);
1314             SetFpResult(dresult);
1315             break;
1316           }
1317           case ExternalReference::BUILTIN_FP_INT_CALL: {
1318             SimulatorRuntimeFPIntCall target =
1319                 reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
1320             dresult = target(dval0, ival);
1321             SetFpResult(dresult);
1322             break;
1323           }
1324           default:
1325             UNREACHABLE();
1326             break;
1327         }
1328         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1329           switch (redirection->type()) {
1330             case ExternalReference::BUILTIN_COMPARE_CALL:
1331               PrintF("Returned %08x\n", iresult);
1332               break;
1333             case ExternalReference::BUILTIN_FP_FP_CALL:
1334             case ExternalReference::BUILTIN_FP_CALL:
1335             case ExternalReference::BUILTIN_FP_INT_CALL:
1336               PrintF("Returned %f\n", dresult);
1337               break;
1338             default:
1339               UNREACHABLE();
1340               break;
1341           }
1342         }
1343       } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
1344         // See callers of MacroAssembler::CallApiFunctionAndReturn for
1345         // explanation of register usage.
1346         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1347           PrintF("Call to host function at %p args %08" V8PRIxPTR,
1348                  reinterpret_cast<void*>(external), arg[0]);
1349           if (!stack_aligned) {
1350             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1351                    get_register(sp));
1352           }
1353           PrintF("\n");
1354         }
1355         CHECK(stack_aligned);
1356         SimulatorRuntimeDirectApiCall target =
1357             reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
1358         target(arg[0]);
1359       } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
1360         // See callers of MacroAssembler::CallApiFunctionAndReturn for
1361         // explanation of register usage.
1362         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1363           PrintF("Call to host function at %p args %08" V8PRIxPTR
1364                  " %08" V8PRIxPTR,
1365                  reinterpret_cast<void*>(external), arg[0], arg[1]);
1366           if (!stack_aligned) {
1367             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1368                    get_register(sp));
1369           }
1370           PrintF("\n");
1371         }
1372         CHECK(stack_aligned);
1373         SimulatorRuntimeProfilingApiCall target =
1374             reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
1375         target(arg[0], Redirection::ReverseRedirection(arg[1]));
1376       } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
1377         // See callers of MacroAssembler::CallApiFunctionAndReturn for
1378         // explanation of register usage.
1379         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1380           PrintF("Call to host function at %p args %08" V8PRIxPTR
1381                  " %08" V8PRIxPTR,
1382                  reinterpret_cast<void*>(external), arg[0], arg[1]);
1383           if (!stack_aligned) {
1384             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1385                    get_register(sp));
1386           }
1387           PrintF("\n");
1388         }
1389         CHECK(stack_aligned);
1390         SimulatorRuntimeDirectGetterCall target =
1391             reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
1392 #if !ABI_PASSES_HANDLES_IN_REGS
1393         arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
1394 #endif
1395         target(arg[0], arg[1]);
1396       } else if (redirection->type() ==
1397                  ExternalReference::PROFILING_GETTER_CALL) {
1398         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1399           PrintF("Call to host function at %p args %08" V8PRIxPTR
1400                  " %08" V8PRIxPTR " %08" V8PRIxPTR,
1401                  reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]);
1402           if (!stack_aligned) {
1403             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1404                    get_register(sp));
1405           }
1406           PrintF("\n");
1407         }
1408         CHECK(stack_aligned);
1409         SimulatorRuntimeProfilingGetterCall target =
1410             reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
1411 #if !ABI_PASSES_HANDLES_IN_REGS
1412         arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
1413 #endif
1414         target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2]));
1415       } else {
1416         // builtin call.
1417         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1418           SimulatorRuntimeCall target =
1419               reinterpret_cast<SimulatorRuntimeCall>(external);
1420           PrintF(
1421               "Call to host function at %p,\n"
1422               "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
1423               ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR,
1424               FUNCTION_ADDR(target), arg[0], arg[1], arg[2], arg[3], arg[4],
1425               arg[5]);
1426           if (!stack_aligned) {
1427             PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1428                    get_register(sp));
1429           }
1430           PrintF("\n");
1431         }
1432         CHECK(stack_aligned);
1433         DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
1434         SimulatorRuntimeCall target =
1435             reinterpret_cast<SimulatorRuntimeCall>(external);
1436         ObjectPair result =
1437             target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
1438         intptr_t x;
1439         intptr_t y;
1440         decodeObjectPair(&result, &x, &y);
1441         if (::v8::internal::FLAG_trace_sim) {
1442           PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y);
1443         }
1444         set_register(r3, x);
1445         set_register(r4, y);
1446       }
1447       set_pc(saved_lr);
1448       break;
1449     }
1450     case kBreakpoint: {
1451       PPCDebugger dbg(this);
1452       dbg.Debug();
1453       break;
1454     }
1455     // stop uses all codes greater than 1 << 23.
1456     default: {
1457       if (svc >= (1 << 23)) {
1458         uint32_t code = svc & kStopCodeMask;
1459         if (isWatchedStop(code)) {
1460           IncreaseStopCounter(code);
1461         }
1462         // Stop if it is enabled, otherwise go on jumping over the stop
1463         // and the message address.
1464         if (isEnabledStop(code)) {
1465           PPCDebugger dbg(this);
1466           dbg.Stop(instr);
1467         } else {
1468           set_pc(get_pc() + Instruction::kInstrSize + kPointerSize);
1469         }
1470       } else {
1471         // This is not a valid svc code.
1472         UNREACHABLE();
1473         break;
1474       }
1475     }
1476   }
1477 }
1478 
1479 
1480 // Stop helper functions.
isStopInstruction(Instruction * instr)1481 bool Simulator::isStopInstruction(Instruction* instr) {
1482   return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
1483 }
1484 
1485 
isWatchedStop(uint32_t code)1486 bool Simulator::isWatchedStop(uint32_t code) {
1487   DCHECK(code <= kMaxStopCode);
1488   return code < kNumOfWatchedStops;
1489 }
1490 
1491 
isEnabledStop(uint32_t code)1492 bool Simulator::isEnabledStop(uint32_t code) {
1493   DCHECK(code <= kMaxStopCode);
1494   // Unwatched stops are always enabled.
1495   return !isWatchedStop(code) ||
1496          !(watched_stops_[code].count & kStopDisabledBit);
1497 }
1498 
1499 
EnableStop(uint32_t code)1500 void Simulator::EnableStop(uint32_t code) {
1501   DCHECK(isWatchedStop(code));
1502   if (!isEnabledStop(code)) {
1503     watched_stops_[code].count &= ~kStopDisabledBit;
1504   }
1505 }
1506 
1507 
DisableStop(uint32_t code)1508 void Simulator::DisableStop(uint32_t code) {
1509   DCHECK(isWatchedStop(code));
1510   if (isEnabledStop(code)) {
1511     watched_stops_[code].count |= kStopDisabledBit;
1512   }
1513 }
1514 
1515 
IncreaseStopCounter(uint32_t code)1516 void Simulator::IncreaseStopCounter(uint32_t code) {
1517   DCHECK(code <= kMaxStopCode);
1518   DCHECK(isWatchedStop(code));
1519   if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
1520     PrintF(
1521         "Stop counter for code %i has overflowed.\n"
1522         "Enabling this code and reseting the counter to 0.\n",
1523         code);
1524     watched_stops_[code].count = 0;
1525     EnableStop(code);
1526   } else {
1527     watched_stops_[code].count++;
1528   }
1529 }
1530 
1531 
1532 // Print a stop status.
PrintStopInfo(uint32_t code)1533 void Simulator::PrintStopInfo(uint32_t code) {
1534   DCHECK(code <= kMaxStopCode);
1535   if (!isWatchedStop(code)) {
1536     PrintF("Stop not watched.");
1537   } else {
1538     const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
1539     int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
1540     // Don't print the state of unused breakpoints.
1541     if (count != 0) {
1542       if (watched_stops_[code].desc) {
1543         PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
1544                state, count, watched_stops_[code].desc);
1545       } else {
1546         PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
1547                count);
1548       }
1549     }
1550   }
1551 }
1552 
1553 
SetCR0(intptr_t result,bool setSO)1554 void Simulator::SetCR0(intptr_t result, bool setSO) {
1555   int bf = 0;
1556   if (result < 0) {
1557     bf |= 0x80000000;
1558   }
1559   if (result > 0) {
1560     bf |= 0x40000000;
1561   }
1562   if (result == 0) {
1563     bf |= 0x20000000;
1564   }
1565   if (setSO) {
1566     bf |= 0x10000000;
1567   }
1568   condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
1569 }
1570 
1571 
ExecuteBranchConditional(Instruction * instr,BCType type)1572 void Simulator::ExecuteBranchConditional(Instruction* instr, BCType type) {
1573   int bo = instr->Bits(25, 21) << 21;
1574   int condition_bit = instr->Bits(20, 16);
1575   int condition_mask = 0x80000000 >> condition_bit;
1576   switch (bo) {
1577     case DCBNZF:  // Decrement CTR; branch if CTR != 0 and condition false
1578     case DCBEZF:  // Decrement CTR; branch if CTR == 0 and condition false
1579       UNIMPLEMENTED();
1580     case BF: {  // Branch if condition false
1581       if (condition_reg_ & condition_mask) return;
1582       break;
1583     }
1584     case DCBNZT:  // Decrement CTR; branch if CTR != 0 and condition true
1585     case DCBEZT:  // Decrement CTR; branch if CTR == 0 and condition true
1586       UNIMPLEMENTED();
1587     case BT: {  // Branch if condition true
1588       if (!(condition_reg_ & condition_mask)) return;
1589       break;
1590     }
1591     case DCBNZ:  // Decrement CTR; branch if CTR != 0
1592     case DCBEZ:  // Decrement CTR; branch if CTR == 0
1593       special_reg_ctr_ -= 1;
1594       if ((special_reg_ctr_ == 0) != (bo == DCBEZ)) return;
1595       break;
1596     case BA: {                   // Branch always
1597       break;
1598     }
1599     default:
1600       UNIMPLEMENTED();  // Invalid encoding
1601   }
1602 
1603   intptr_t old_pc = get_pc();
1604 
1605   switch (type) {
1606     case BC_OFFSET: {
1607       int offset = (instr->Bits(15, 2) << 18) >> 16;
1608       set_pc(old_pc + offset);
1609       break;
1610     }
1611     case BC_LINK_REG:
1612       set_pc(special_reg_lr_);
1613       break;
1614     case BC_CTR_REG:
1615       set_pc(special_reg_ctr_);
1616       break;
1617   }
1618 
1619   if (instr->Bit(0) == 1) {  // LK flag set
1620     special_reg_lr_ = old_pc + 4;
1621   }
1622 }
1623 
1624 
1625 // Handle execution based on instruction types.
ExecuteExt1(Instruction * instr)1626 void Simulator::ExecuteExt1(Instruction* instr) {
1627   switch (instr->Bits(10, 1) << 1) {
1628     case MCRF:
1629       UNIMPLEMENTED();  // Not used by V8.
1630     case BCLRX:
1631       ExecuteBranchConditional(instr, BC_LINK_REG);
1632       break;
1633     case BCCTRX:
1634       ExecuteBranchConditional(instr, BC_CTR_REG);
1635       break;
1636     case CRNOR:
1637     case RFI:
1638     case CRANDC:
1639       UNIMPLEMENTED();
1640     case ISYNC: {
1641       // todo - simulate isync
1642       break;
1643     }
1644     case CRXOR: {
1645       int bt = instr->Bits(25, 21);
1646       int ba = instr->Bits(20, 16);
1647       int bb = instr->Bits(15, 11);
1648       int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
1649       int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
1650       int bt_val = ba_val ^ bb_val;
1651       bt_val = bt_val << (31 - bt);  // shift bit to correct destination
1652       condition_reg_ &= ~(0x80000000 >> bt);
1653       condition_reg_ |= bt_val;
1654       break;
1655     }
1656     case CREQV: {
1657       int bt = instr->Bits(25, 21);
1658       int ba = instr->Bits(20, 16);
1659       int bb = instr->Bits(15, 11);
1660       int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
1661       int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
1662       int bt_val = 1 - (ba_val ^ bb_val);
1663       bt_val = bt_val << (31 - bt);  // shift bit to correct destination
1664       condition_reg_ &= ~(0x80000000 >> bt);
1665       condition_reg_ |= bt_val;
1666       break;
1667     }
1668     case CRNAND:
1669     case CRAND:
1670     case CRORC:
1671     case CROR:
1672     default: {
1673       UNIMPLEMENTED();  // Not used by V8.
1674     }
1675   }
1676 }
1677 
1678 
ExecuteExt2_10bit(Instruction * instr)1679 bool Simulator::ExecuteExt2_10bit(Instruction* instr) {
1680   bool found = true;
1681 
1682   int opcode = instr->Bits(10, 1) << 1;
1683   switch (opcode) {
1684     case SRWX: {
1685       int rs = instr->RSValue();
1686       int ra = instr->RAValue();
1687       int rb = instr->RBValue();
1688       uint32_t rs_val = get_register(rs);
1689       uintptr_t rb_val = get_register(rb);
1690       intptr_t result = rs_val >> (rb_val & 0x3f);
1691       set_register(ra, result);
1692       if (instr->Bit(0)) {  // RC bit set
1693         SetCR0(result);
1694       }
1695       break;
1696     }
1697 #if V8_TARGET_ARCH_PPC64
1698     case SRDX: {
1699       int rs = instr->RSValue();
1700       int ra = instr->RAValue();
1701       int rb = instr->RBValue();
1702       uintptr_t rs_val = get_register(rs);
1703       uintptr_t rb_val = get_register(rb);
1704       intptr_t result = rs_val >> (rb_val & 0x7f);
1705       set_register(ra, result);
1706       if (instr->Bit(0)) {  // RC bit set
1707         SetCR0(result);
1708       }
1709       break;
1710     }
1711 #endif
1712     case SRAW: {
1713       int rs = instr->RSValue();
1714       int ra = instr->RAValue();
1715       int rb = instr->RBValue();
1716       int32_t rs_val = get_register(rs);
1717       intptr_t rb_val = get_register(rb);
1718       intptr_t result = rs_val >> (rb_val & 0x3f);
1719       set_register(ra, result);
1720       if (instr->Bit(0)) {  // RC bit set
1721         SetCR0(result);
1722       }
1723       break;
1724     }
1725 #if V8_TARGET_ARCH_PPC64
1726     case SRAD: {
1727       int rs = instr->RSValue();
1728       int ra = instr->RAValue();
1729       int rb = instr->RBValue();
1730       intptr_t rs_val = get_register(rs);
1731       intptr_t rb_val = get_register(rb);
1732       intptr_t result = rs_val >> (rb_val & 0x7f);
1733       set_register(ra, result);
1734       if (instr->Bit(0)) {  // RC bit set
1735         SetCR0(result);
1736       }
1737       break;
1738     }
1739 #endif
1740     case SRAWIX: {
1741       int ra = instr->RAValue();
1742       int rs = instr->RSValue();
1743       int sh = instr->Bits(15, 11);
1744       int32_t rs_val = get_register(rs);
1745       intptr_t result = rs_val >> sh;
1746       set_register(ra, result);
1747       if (instr->Bit(0)) {  // RC bit set
1748         SetCR0(result);
1749       }
1750       break;
1751     }
1752 #if V8_TARGET_ARCH_PPC64
1753     case EXTSW: {
1754       const int shift = kBitsPerPointer - 32;
1755       int ra = instr->RAValue();
1756       int rs = instr->RSValue();
1757       intptr_t rs_val = get_register(rs);
1758       intptr_t ra_val = (rs_val << shift) >> shift;
1759       set_register(ra, ra_val);
1760       if (instr->Bit(0)) {  // RC bit set
1761         SetCR0(ra_val);
1762       }
1763       break;
1764     }
1765 #endif
1766     case EXTSH: {
1767       const int shift = kBitsPerPointer - 16;
1768       int ra = instr->RAValue();
1769       int rs = instr->RSValue();
1770       intptr_t rs_val = get_register(rs);
1771       intptr_t ra_val = (rs_val << shift) >> shift;
1772       set_register(ra, ra_val);
1773       if (instr->Bit(0)) {  // RC bit set
1774         SetCR0(ra_val);
1775       }
1776       break;
1777     }
1778     case EXTSB: {
1779       const int shift = kBitsPerPointer - 8;
1780       int ra = instr->RAValue();
1781       int rs = instr->RSValue();
1782       intptr_t rs_val = get_register(rs);
1783       intptr_t ra_val = (rs_val << shift) >> shift;
1784       set_register(ra, ra_val);
1785       if (instr->Bit(0)) {  // RC bit set
1786         SetCR0(ra_val);
1787       }
1788       break;
1789     }
1790     case LFSUX:
1791     case LFSX: {
1792       int frt = instr->RTValue();
1793       int ra = instr->RAValue();
1794       int rb = instr->RBValue();
1795       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1796       intptr_t rb_val = get_register(rb);
1797       int32_t val = ReadW(ra_val + rb_val, instr);
1798       float* fptr = reinterpret_cast<float*>(&val);
1799       set_d_register_from_double(frt, static_cast<double>(*fptr));
1800       if (opcode == LFSUX) {
1801         DCHECK(ra != 0);
1802         set_register(ra, ra_val + rb_val);
1803       }
1804       break;
1805     }
1806     case LFDUX:
1807     case LFDX: {
1808       int frt = instr->RTValue();
1809       int ra = instr->RAValue();
1810       int rb = instr->RBValue();
1811       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1812       intptr_t rb_val = get_register(rb);
1813       int64_t* dptr = reinterpret_cast<int64_t*>(ReadDW(ra_val + rb_val));
1814       set_d_register(frt, *dptr);
1815       if (opcode == LFDUX) {
1816         DCHECK(ra != 0);
1817         set_register(ra, ra_val + rb_val);
1818       }
1819       break;
1820     }
1821     case STFSUX: {
1822       case STFSX:
1823         int frs = instr->RSValue();
1824         int ra = instr->RAValue();
1825         int rb = instr->RBValue();
1826         intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1827         intptr_t rb_val = get_register(rb);
1828         float frs_val = static_cast<float>(get_double_from_d_register(frs));
1829         int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
1830         WriteW(ra_val + rb_val, *p, instr);
1831         if (opcode == STFSUX) {
1832           DCHECK(ra != 0);
1833           set_register(ra, ra_val + rb_val);
1834         }
1835         break;
1836     }
1837     case STFDUX: {
1838       case STFDX:
1839         int frs = instr->RSValue();
1840         int ra = instr->RAValue();
1841         int rb = instr->RBValue();
1842         intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1843         intptr_t rb_val = get_register(rb);
1844         int64_t frs_val = get_d_register(frs);
1845         WriteDW(ra_val + rb_val, frs_val);
1846         if (opcode == STFDUX) {
1847           DCHECK(ra != 0);
1848           set_register(ra, ra_val + rb_val);
1849         }
1850         break;
1851     }
1852     case POPCNTW: {
1853       int rs = instr->RSValue();
1854       int ra = instr->RAValue();
1855       uintptr_t rs_val = get_register(rs);
1856       uintptr_t count = 0;
1857       int n = 0;
1858       uintptr_t bit = 0x80000000;
1859       for (; n < 32; n++) {
1860         if (bit & rs_val) count++;
1861         bit >>= 1;
1862       }
1863       set_register(ra, count);
1864       break;
1865     }
1866 #if V8_TARGET_ARCH_PPC64
1867     case POPCNTD: {
1868       int rs = instr->RSValue();
1869       int ra = instr->RAValue();
1870       uintptr_t rs_val = get_register(rs);
1871       uintptr_t count = 0;
1872       int n = 0;
1873       uintptr_t bit = 0x8000000000000000UL;
1874       for (; n < 64; n++) {
1875         if (bit & rs_val) count++;
1876         bit >>= 1;
1877       }
1878       set_register(ra, count);
1879       break;
1880     }
1881 #endif
1882     case SYNC: {
1883       // todo - simulate sync
1884       break;
1885     }
1886     case ICBI: {
1887       // todo - simulate icbi
1888       break;
1889     }
1890     default: {
1891       found = false;
1892       break;
1893     }
1894   }
1895 
1896   if (found) return found;
1897 
1898   found = true;
1899   opcode = instr->Bits(10, 2) << 2;
1900   switch (opcode) {
1901     case SRADIX: {
1902       int ra = instr->RAValue();
1903       int rs = instr->RSValue();
1904       int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
1905       intptr_t rs_val = get_register(rs);
1906       intptr_t result = rs_val >> sh;
1907       set_register(ra, result);
1908       if (instr->Bit(0)) {  // RC bit set
1909         SetCR0(result);
1910       }
1911       break;
1912     }
1913     default: {
1914       found = false;
1915       break;
1916     }
1917   }
1918 
1919   return found;
1920 }
1921 
1922 
ExecuteExt2_9bit_part1(Instruction * instr)1923 bool Simulator::ExecuteExt2_9bit_part1(Instruction* instr) {
1924   bool found = true;
1925 
1926   int opcode = instr->Bits(9, 1) << 1;
1927   switch (opcode) {
1928     case TW: {
1929       // used for call redirection in simulation mode
1930       SoftwareInterrupt(instr);
1931       break;
1932     }
1933     case CMP: {
1934       int ra = instr->RAValue();
1935       int rb = instr->RBValue();
1936       int cr = instr->Bits(25, 23);
1937       uint32_t bf = 0;
1938 #if V8_TARGET_ARCH_PPC64
1939       int L = instr->Bit(21);
1940       if (L) {
1941 #endif
1942         intptr_t ra_val = get_register(ra);
1943         intptr_t rb_val = get_register(rb);
1944         if (ra_val < rb_val) {
1945           bf |= 0x80000000;
1946         }
1947         if (ra_val > rb_val) {
1948           bf |= 0x40000000;
1949         }
1950         if (ra_val == rb_val) {
1951           bf |= 0x20000000;
1952         }
1953 #if V8_TARGET_ARCH_PPC64
1954       } else {
1955         int32_t ra_val = get_register(ra);
1956         int32_t rb_val = get_register(rb);
1957         if (ra_val < rb_val) {
1958           bf |= 0x80000000;
1959         }
1960         if (ra_val > rb_val) {
1961           bf |= 0x40000000;
1962         }
1963         if (ra_val == rb_val) {
1964           bf |= 0x20000000;
1965         }
1966       }
1967 #endif
1968       uint32_t condition_mask = 0xF0000000U >> (cr * 4);
1969       uint32_t condition = bf >> (cr * 4);
1970       condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
1971       break;
1972     }
1973     case SUBFCX: {
1974       int rt = instr->RTValue();
1975       int ra = instr->RAValue();
1976       int rb = instr->RBValue();
1977       // int oe = instr->Bit(10);
1978       uintptr_t ra_val = get_register(ra);
1979       uintptr_t rb_val = get_register(rb);
1980       uintptr_t alu_out = ~ra_val + rb_val + 1;
1981       set_register(rt, alu_out);
1982       // If the sign of rb and alu_out don't match, carry = 0
1983       if ((alu_out ^ rb_val) & 0x80000000) {
1984         special_reg_xer_ &= ~0xF0000000;
1985       } else {
1986         special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
1987       }
1988       if (instr->Bit(0)) {  // RC bit set
1989         SetCR0(alu_out);
1990       }
1991       // todo - handle OE bit
1992       break;
1993     }
1994     case ADDCX: {
1995       int rt = instr->RTValue();
1996       int ra = instr->RAValue();
1997       int rb = instr->RBValue();
1998       // int oe = instr->Bit(10);
1999       uintptr_t ra_val = get_register(ra);
2000       uintptr_t rb_val = get_register(rb);
2001       uintptr_t alu_out = ra_val + rb_val;
2002       // Check overflow
2003       if (~ra_val < rb_val) {
2004         special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
2005       } else {
2006         special_reg_xer_ &= ~0xF0000000;
2007       }
2008       set_register(rt, alu_out);
2009       if (instr->Bit(0)) {  // RC bit set
2010         SetCR0(static_cast<intptr_t>(alu_out));
2011       }
2012       // todo - handle OE bit
2013       break;
2014     }
2015     case MULHWX: {
2016       int rt = instr->RTValue();
2017       int ra = instr->RAValue();
2018       int rb = instr->RBValue();
2019       int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
2020       int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
2021       int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val;
2022       alu_out >>= 32;
2023       set_register(rt, alu_out);
2024       if (instr->Bit(0)) {  // RC bit set
2025         SetCR0(static_cast<intptr_t>(alu_out));
2026       }
2027       break;
2028     }
2029     case MULHWUX: {
2030       int rt = instr->RTValue();
2031       int ra = instr->RAValue();
2032       int rb = instr->RBValue();
2033       uint32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
2034       uint32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
2035       uint64_t alu_out = (uint64_t)ra_val * (uint64_t)rb_val;
2036       alu_out >>= 32;
2037       set_register(rt, alu_out);
2038       if (instr->Bit(0)) {  // RC bit set
2039         SetCR0(static_cast<intptr_t>(alu_out));
2040       }
2041       break;
2042     }
2043     case NEGX: {
2044       int rt = instr->RTValue();
2045       int ra = instr->RAValue();
2046       intptr_t ra_val = get_register(ra);
2047       intptr_t alu_out = 1 + ~ra_val;
2048 #if V8_TARGET_ARCH_PPC64
2049       intptr_t one = 1;  // work-around gcc
2050       intptr_t kOverflowVal = (one << 63);
2051 #else
2052       intptr_t kOverflowVal = kMinInt;
2053 #endif
2054       set_register(rt, alu_out);
2055       if (instr->Bit(10)) {  // OE bit set
2056         if (ra_val == kOverflowVal) {
2057           special_reg_xer_ |= 0xC0000000;  // set SO,OV
2058         } else {
2059           special_reg_xer_ &= ~0x40000000;  // clear OV
2060         }
2061       }
2062       if (instr->Bit(0)) {  // RC bit set
2063         bool setSO = (special_reg_xer_ & 0x80000000);
2064         SetCR0(alu_out, setSO);
2065       }
2066       break;
2067     }
2068     case SLWX: {
2069       int rs = instr->RSValue();
2070       int ra = instr->RAValue();
2071       int rb = instr->RBValue();
2072       uint32_t rs_val = get_register(rs);
2073       uintptr_t rb_val = get_register(rb);
2074       uint32_t result = rs_val << (rb_val & 0x3f);
2075       set_register(ra, result);
2076       if (instr->Bit(0)) {  // RC bit set
2077         SetCR0(result);
2078       }
2079       break;
2080     }
2081 #if V8_TARGET_ARCH_PPC64
2082     case SLDX: {
2083       int rs = instr->RSValue();
2084       int ra = instr->RAValue();
2085       int rb = instr->RBValue();
2086       uintptr_t rs_val = get_register(rs);
2087       uintptr_t rb_val = get_register(rb);
2088       uintptr_t result = rs_val << (rb_val & 0x7f);
2089       set_register(ra, result);
2090       if (instr->Bit(0)) {  // RC bit set
2091         SetCR0(result);
2092       }
2093       break;
2094     }
2095     case MFVSRD: {
2096       DCHECK(!instr->Bit(0));
2097       int frt = instr->RTValue();
2098       int ra = instr->RAValue();
2099       int64_t frt_val = get_d_register(frt);
2100       set_register(ra, frt_val);
2101       break;
2102     }
2103     case MFVSRWZ: {
2104       DCHECK(!instr->Bit(0));
2105       int frt = instr->RTValue();
2106       int ra = instr->RAValue();
2107       int64_t frt_val = get_d_register(frt);
2108       set_register(ra, static_cast<uint32_t>(frt_val));
2109       break;
2110     }
2111     case MTVSRD: {
2112       DCHECK(!instr->Bit(0));
2113       int frt = instr->RTValue();
2114       int ra = instr->RAValue();
2115       int64_t ra_val = get_register(ra);
2116       set_d_register(frt, ra_val);
2117       break;
2118     }
2119     case MTVSRWA: {
2120       DCHECK(!instr->Bit(0));
2121       int frt = instr->RTValue();
2122       int ra = instr->RAValue();
2123       int64_t ra_val = static_cast<int32_t>(get_register(ra));
2124       set_d_register(frt, ra_val);
2125       break;
2126     }
2127     case MTVSRWZ: {
2128       DCHECK(!instr->Bit(0));
2129       int frt = instr->RTValue();
2130       int ra = instr->RAValue();
2131       uint64_t ra_val = static_cast<uint32_t>(get_register(ra));
2132       set_d_register(frt, ra_val);
2133       break;
2134     }
2135 #endif
2136     default: {
2137       found = false;
2138       break;
2139     }
2140   }
2141 
2142   return found;
2143 }
2144 
2145 
ExecuteExt2_9bit_part2(Instruction * instr)2146 bool Simulator::ExecuteExt2_9bit_part2(Instruction* instr) {
2147   bool found = true;
2148   int opcode = instr->Bits(9, 1) << 1;
2149   switch (opcode) {
2150     case CNTLZWX: {
2151       int rs = instr->RSValue();
2152       int ra = instr->RAValue();
2153       uintptr_t rs_val = get_register(rs);
2154       uintptr_t count = 0;
2155       int n = 0;
2156       uintptr_t bit = 0x80000000;
2157       for (; n < 32; n++) {
2158         if (bit & rs_val) break;
2159         count++;
2160         bit >>= 1;
2161       }
2162       set_register(ra, count);
2163       if (instr->Bit(0)) {  // RC Bit set
2164         int bf = 0;
2165         if (count > 0) {
2166           bf |= 0x40000000;
2167         }
2168         if (count == 0) {
2169           bf |= 0x20000000;
2170         }
2171         condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
2172       }
2173       break;
2174     }
2175 #if V8_TARGET_ARCH_PPC64
2176     case CNTLZDX: {
2177       int rs = instr->RSValue();
2178       int ra = instr->RAValue();
2179       uintptr_t rs_val = get_register(rs);
2180       uintptr_t count = 0;
2181       int n = 0;
2182       uintptr_t bit = 0x8000000000000000UL;
2183       for (; n < 64; n++) {
2184         if (bit & rs_val) break;
2185         count++;
2186         bit >>= 1;
2187       }
2188       set_register(ra, count);
2189       if (instr->Bit(0)) {  // RC Bit set
2190         int bf = 0;
2191         if (count > 0) {
2192           bf |= 0x40000000;
2193         }
2194         if (count == 0) {
2195           bf |= 0x20000000;
2196         }
2197         condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
2198       }
2199       break;
2200     }
2201 #endif
2202     case ANDX: {
2203       int rs = instr->RSValue();
2204       int ra = instr->RAValue();
2205       int rb = instr->RBValue();
2206       intptr_t rs_val = get_register(rs);
2207       intptr_t rb_val = get_register(rb);
2208       intptr_t alu_out = rs_val & rb_val;
2209       set_register(ra, alu_out);
2210       if (instr->Bit(0)) {  // RC Bit set
2211         SetCR0(alu_out);
2212       }
2213       break;
2214     }
2215     case ANDCX: {
2216       int rs = instr->RSValue();
2217       int ra = instr->RAValue();
2218       int rb = instr->RBValue();
2219       intptr_t rs_val = get_register(rs);
2220       intptr_t rb_val = get_register(rb);
2221       intptr_t alu_out = rs_val & ~rb_val;
2222       set_register(ra, alu_out);
2223       if (instr->Bit(0)) {  // RC Bit set
2224         SetCR0(alu_out);
2225       }
2226       break;
2227     }
2228     case CMPL: {
2229       int ra = instr->RAValue();
2230       int rb = instr->RBValue();
2231       int cr = instr->Bits(25, 23);
2232       uint32_t bf = 0;
2233 #if V8_TARGET_ARCH_PPC64
2234       int L = instr->Bit(21);
2235       if (L) {
2236 #endif
2237         uintptr_t ra_val = get_register(ra);
2238         uintptr_t rb_val = get_register(rb);
2239         if (ra_val < rb_val) {
2240           bf |= 0x80000000;
2241         }
2242         if (ra_val > rb_val) {
2243           bf |= 0x40000000;
2244         }
2245         if (ra_val == rb_val) {
2246           bf |= 0x20000000;
2247         }
2248 #if V8_TARGET_ARCH_PPC64
2249       } else {
2250         uint32_t ra_val = get_register(ra);
2251         uint32_t rb_val = get_register(rb);
2252         if (ra_val < rb_val) {
2253           bf |= 0x80000000;
2254         }
2255         if (ra_val > rb_val) {
2256           bf |= 0x40000000;
2257         }
2258         if (ra_val == rb_val) {
2259           bf |= 0x20000000;
2260         }
2261       }
2262 #endif
2263       uint32_t condition_mask = 0xF0000000U >> (cr * 4);
2264       uint32_t condition = bf >> (cr * 4);
2265       condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
2266       break;
2267     }
2268     case SUBFX: {
2269       int rt = instr->RTValue();
2270       int ra = instr->RAValue();
2271       int rb = instr->RBValue();
2272       // int oe = instr->Bit(10);
2273       intptr_t ra_val = get_register(ra);
2274       intptr_t rb_val = get_register(rb);
2275       intptr_t alu_out = rb_val - ra_val;
2276       // todo - figure out underflow
2277       set_register(rt, alu_out);
2278       if (instr->Bit(0)) {  // RC Bit set
2279         SetCR0(alu_out);
2280       }
2281       // todo - handle OE bit
2282       break;
2283     }
2284     case ADDZEX: {
2285       int rt = instr->RTValue();
2286       int ra = instr->RAValue();
2287       intptr_t ra_val = get_register(ra);
2288       if (special_reg_xer_ & 0x20000000) {
2289         ra_val += 1;
2290       }
2291       set_register(rt, ra_val);
2292       if (instr->Bit(0)) {  // RC bit set
2293         SetCR0(ra_val);
2294       }
2295       // todo - handle OE bit
2296       break;
2297     }
2298     case NORX: {
2299       int rs = instr->RSValue();
2300       int ra = instr->RAValue();
2301       int rb = instr->RBValue();
2302       intptr_t rs_val = get_register(rs);
2303       intptr_t rb_val = get_register(rb);
2304       intptr_t alu_out = ~(rs_val | rb_val);
2305       set_register(ra, alu_out);
2306       if (instr->Bit(0)) {  // RC bit set
2307         SetCR0(alu_out);
2308       }
2309       break;
2310     }
2311     case MULLW: {
2312       int rt = instr->RTValue();
2313       int ra = instr->RAValue();
2314       int rb = instr->RBValue();
2315       int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
2316       int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
2317       int32_t alu_out = ra_val * rb_val;
2318       set_register(rt, alu_out);
2319       if (instr->Bit(0)) {  // RC bit set
2320         SetCR0(alu_out);
2321       }
2322       // todo - handle OE bit
2323       break;
2324     }
2325 #if V8_TARGET_ARCH_PPC64
2326     case MULLD: {
2327       int rt = instr->RTValue();
2328       int ra = instr->RAValue();
2329       int rb = instr->RBValue();
2330       int64_t ra_val = get_register(ra);
2331       int64_t rb_val = get_register(rb);
2332       int64_t alu_out = ra_val * rb_val;
2333       set_register(rt, alu_out);
2334       if (instr->Bit(0)) {  // RC bit set
2335         SetCR0(alu_out);
2336       }
2337       // todo - handle OE bit
2338       break;
2339     }
2340 #endif
2341     case DIVW: {
2342       int rt = instr->RTValue();
2343       int ra = instr->RAValue();
2344       int rb = instr->RBValue();
2345       int32_t ra_val = get_register(ra);
2346       int32_t rb_val = get_register(rb);
2347       bool overflow = (ra_val == kMinInt && rb_val == -1);
2348       // result is undefined if divisor is zero or if operation
2349       // is 0x80000000 / -1.
2350       int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val;
2351       set_register(rt, alu_out);
2352       if (instr->Bit(10)) {  // OE bit set
2353         if (overflow) {
2354           special_reg_xer_ |= 0xC0000000;  // set SO,OV
2355         } else {
2356           special_reg_xer_ &= ~0x40000000;  // clear OV
2357         }
2358       }
2359       if (instr->Bit(0)) {  // RC bit set
2360         bool setSO = (special_reg_xer_ & 0x80000000);
2361         SetCR0(alu_out, setSO);
2362       }
2363       break;
2364     }
2365     case DIVWU: {
2366       int rt = instr->RTValue();
2367       int ra = instr->RAValue();
2368       int rb = instr->RBValue();
2369       uint32_t ra_val = get_register(ra);
2370       uint32_t rb_val = get_register(rb);
2371       bool overflow = (rb_val == 0);
2372       // result is undefined if divisor is zero
2373       uint32_t alu_out = (overflow) ? -1 : ra_val / rb_val;
2374       set_register(rt, alu_out);
2375       if (instr->Bit(10)) {  // OE bit set
2376         if (overflow) {
2377           special_reg_xer_ |= 0xC0000000;  // set SO,OV
2378         } else {
2379           special_reg_xer_ &= ~0x40000000;  // clear OV
2380         }
2381       }
2382       if (instr->Bit(0)) {  // RC bit set
2383         bool setSO = (special_reg_xer_ & 0x80000000);
2384         SetCR0(alu_out, setSO);
2385       }
2386       break;
2387     }
2388 #if V8_TARGET_ARCH_PPC64
2389     case DIVD: {
2390       int rt = instr->RTValue();
2391       int ra = instr->RAValue();
2392       int rb = instr->RBValue();
2393       int64_t ra_val = get_register(ra);
2394       int64_t rb_val = get_register(rb);
2395       int64_t one = 1;  // work-around gcc
2396       int64_t kMinLongLong = (one << 63);
2397       // result is undefined if divisor is zero or if operation
2398       // is 0x80000000_00000000 / -1.
2399       int64_t alu_out =
2400           (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1))
2401               ? -1
2402               : ra_val / rb_val;
2403       set_register(rt, alu_out);
2404       if (instr->Bit(0)) {  // RC bit set
2405         SetCR0(alu_out);
2406       }
2407       // todo - handle OE bit
2408       break;
2409     }
2410     case DIVDU: {
2411       int rt = instr->RTValue();
2412       int ra = instr->RAValue();
2413       int rb = instr->RBValue();
2414       uint64_t ra_val = get_register(ra);
2415       uint64_t rb_val = get_register(rb);
2416       // result is undefined if divisor is zero
2417       uint64_t alu_out = (rb_val == 0) ? -1 : ra_val / rb_val;
2418       set_register(rt, alu_out);
2419       if (instr->Bit(0)) {  // RC bit set
2420         SetCR0(alu_out);
2421       }
2422       // todo - handle OE bit
2423       break;
2424     }
2425 #endif
2426     case ADDX: {
2427       int rt = instr->RTValue();
2428       int ra = instr->RAValue();
2429       int rb = instr->RBValue();
2430       // int oe = instr->Bit(10);
2431       intptr_t ra_val = get_register(ra);
2432       intptr_t rb_val = get_register(rb);
2433       intptr_t alu_out = ra_val + rb_val;
2434       set_register(rt, alu_out);
2435       if (instr->Bit(0)) {  // RC bit set
2436         SetCR0(alu_out);
2437       }
2438       // todo - handle OE bit
2439       break;
2440     }
2441     case XORX: {
2442       int rs = instr->RSValue();
2443       int ra = instr->RAValue();
2444       int rb = instr->RBValue();
2445       intptr_t rs_val = get_register(rs);
2446       intptr_t rb_val = get_register(rb);
2447       intptr_t alu_out = rs_val ^ rb_val;
2448       set_register(ra, alu_out);
2449       if (instr->Bit(0)) {  // RC bit set
2450         SetCR0(alu_out);
2451       }
2452       break;
2453     }
2454     case ORX: {
2455       int rs = instr->RSValue();
2456       int ra = instr->RAValue();
2457       int rb = instr->RBValue();
2458       intptr_t rs_val = get_register(rs);
2459       intptr_t rb_val = get_register(rb);
2460       intptr_t alu_out = rs_val | rb_val;
2461       set_register(ra, alu_out);
2462       if (instr->Bit(0)) {  // RC bit set
2463         SetCR0(alu_out);
2464       }
2465       break;
2466     }
2467     case ORC: {
2468       int rs = instr->RSValue();
2469       int ra = instr->RAValue();
2470       int rb = instr->RBValue();
2471       intptr_t rs_val = get_register(rs);
2472       intptr_t rb_val = get_register(rb);
2473       intptr_t alu_out = rs_val | ~rb_val;
2474       set_register(ra, alu_out);
2475       if (instr->Bit(0)) {  // RC bit set
2476         SetCR0(alu_out);
2477       }
2478       break;
2479     }
2480     case MFSPR: {
2481       int rt = instr->RTValue();
2482       int spr = instr->Bits(20, 11);
2483       if (spr != 256) {
2484         UNIMPLEMENTED();  // Only LRLR supported
2485       }
2486       set_register(rt, special_reg_lr_);
2487       break;
2488     }
2489     case MTSPR: {
2490       int rt = instr->RTValue();
2491       intptr_t rt_val = get_register(rt);
2492       int spr = instr->Bits(20, 11);
2493       if (spr == 256) {
2494         special_reg_lr_ = rt_val;
2495       } else if (spr == 288) {
2496         special_reg_ctr_ = rt_val;
2497       } else if (spr == 32) {
2498         special_reg_xer_ = rt_val;
2499       } else {
2500         UNIMPLEMENTED();  // Only LR supported
2501       }
2502       break;
2503     }
2504     case MFCR: {
2505       int rt = instr->RTValue();
2506       set_register(rt, condition_reg_);
2507       break;
2508     }
2509     case STWUX:
2510     case STWX: {
2511       int rs = instr->RSValue();
2512       int ra = instr->RAValue();
2513       int rb = instr->RBValue();
2514       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2515       int32_t rs_val = get_register(rs);
2516       intptr_t rb_val = get_register(rb);
2517       WriteW(ra_val + rb_val, rs_val, instr);
2518       if (opcode == STWUX) {
2519         DCHECK(ra != 0);
2520         set_register(ra, ra_val + rb_val);
2521       }
2522       break;
2523     }
2524     case STBUX:
2525     case STBX: {
2526       int rs = instr->RSValue();
2527       int ra = instr->RAValue();
2528       int rb = instr->RBValue();
2529       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2530       int8_t rs_val = get_register(rs);
2531       intptr_t rb_val = get_register(rb);
2532       WriteB(ra_val + rb_val, rs_val);
2533       if (opcode == STBUX) {
2534         DCHECK(ra != 0);
2535         set_register(ra, ra_val + rb_val);
2536       }
2537       break;
2538     }
2539     case STHUX:
2540     case STHX: {
2541       int rs = instr->RSValue();
2542       int ra = instr->RAValue();
2543       int rb = instr->RBValue();
2544       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2545       int16_t rs_val = get_register(rs);
2546       intptr_t rb_val = get_register(rb);
2547       WriteH(ra_val + rb_val, rs_val, instr);
2548       if (opcode == STHUX) {
2549         DCHECK(ra != 0);
2550         set_register(ra, ra_val + rb_val);
2551       }
2552       break;
2553     }
2554     case LWZX:
2555     case LWZUX: {
2556       int rt = instr->RTValue();
2557       int ra = instr->RAValue();
2558       int rb = instr->RBValue();
2559       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2560       intptr_t rb_val = get_register(rb);
2561       set_register(rt, ReadWU(ra_val + rb_val, instr));
2562       if (opcode == LWZUX) {
2563         DCHECK(ra != 0 && ra != rt);
2564         set_register(ra, ra_val + rb_val);
2565       }
2566       break;
2567     }
2568 #if V8_TARGET_ARCH_PPC64
2569     case LWAX: {
2570       int rt = instr->RTValue();
2571       int ra = instr->RAValue();
2572       int rb = instr->RBValue();
2573       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2574       intptr_t rb_val = get_register(rb);
2575       set_register(rt, ReadW(ra_val + rb_val, instr));
2576       break;
2577     }
2578     case LDX:
2579     case LDUX: {
2580       int rt = instr->RTValue();
2581       int ra = instr->RAValue();
2582       int rb = instr->RBValue();
2583       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2584       intptr_t rb_val = get_register(rb);
2585       intptr_t* result = ReadDW(ra_val + rb_val);
2586       set_register(rt, *result);
2587       if (opcode == LDUX) {
2588         DCHECK(ra != 0 && ra != rt);
2589         set_register(ra, ra_val + rb_val);
2590       }
2591       break;
2592     }
2593     case STDX:
2594     case STDUX: {
2595       int rs = instr->RSValue();
2596       int ra = instr->RAValue();
2597       int rb = instr->RBValue();
2598       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2599       intptr_t rs_val = get_register(rs);
2600       intptr_t rb_val = get_register(rb);
2601       WriteDW(ra_val + rb_val, rs_val);
2602       if (opcode == STDUX) {
2603         DCHECK(ra != 0);
2604         set_register(ra, ra_val + rb_val);
2605       }
2606       break;
2607     }
2608 #endif
2609     case LBZX:
2610     case LBZUX: {
2611       int rt = instr->RTValue();
2612       int ra = instr->RAValue();
2613       int rb = instr->RBValue();
2614       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2615       intptr_t rb_val = get_register(rb);
2616       set_register(rt, ReadBU(ra_val + rb_val) & 0xFF);
2617       if (opcode == LBZUX) {
2618         DCHECK(ra != 0 && ra != rt);
2619         set_register(ra, ra_val + rb_val);
2620       }
2621       break;
2622     }
2623     case LHZX:
2624     case LHZUX: {
2625       int rt = instr->RTValue();
2626       int ra = instr->RAValue();
2627       int rb = instr->RBValue();
2628       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2629       intptr_t rb_val = get_register(rb);
2630       set_register(rt, ReadHU(ra_val + rb_val, instr) & 0xFFFF);
2631       if (opcode == LHZUX) {
2632         DCHECK(ra != 0 && ra != rt);
2633         set_register(ra, ra_val + rb_val);
2634       }
2635       break;
2636     }
2637     case LHAX:
2638     case LHAUX: {
2639       int rt = instr->RTValue();
2640       int ra = instr->RAValue();
2641       int rb = instr->RBValue();
2642       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2643       intptr_t rb_val = get_register(rb);
2644       set_register(rt, ReadH(ra_val + rb_val, instr));
2645       if (opcode == LHAUX) {
2646         DCHECK(ra != 0 && ra != rt);
2647         set_register(ra, ra_val + rb_val);
2648       }
2649       break;
2650     }
2651     case DCBF: {
2652       // todo - simulate dcbf
2653       break;
2654     }
2655     default: {
2656       found = false;
2657       break;
2658     }
2659   }
2660 
2661   return found;
2662 }
2663 
2664 
ExecuteExt2_5bit(Instruction * instr)2665 void Simulator::ExecuteExt2_5bit(Instruction* instr) {
2666   int opcode = instr->Bits(5, 1) << 1;
2667   switch (opcode) {
2668     case ISEL: {
2669       int rt = instr->RTValue();
2670       int ra = instr->RAValue();
2671       int rb = instr->RBValue();
2672       int condition_bit = instr->RCValue();
2673       int condition_mask = 0x80000000 >> condition_bit;
2674       intptr_t ra_val = (ra == 0) ? 0 : get_register(ra);
2675       intptr_t rb_val = get_register(rb);
2676       intptr_t value = (condition_reg_ & condition_mask) ? ra_val : rb_val;
2677       set_register(rt, value);
2678       break;
2679     }
2680     default: {
2681       PrintF("Unimplemented: %08x\n", instr->InstructionBits());
2682       UNIMPLEMENTED();  // Not used by V8.
2683     }
2684   }
2685 }
2686 
2687 
ExecuteExt2(Instruction * instr)2688 void Simulator::ExecuteExt2(Instruction* instr) {
2689   // Check first the 10-1 bit versions
2690   if (ExecuteExt2_10bit(instr)) return;
2691   // Now look at the lesser encodings
2692   if (ExecuteExt2_9bit_part1(instr)) return;
2693   if (ExecuteExt2_9bit_part2(instr)) return;
2694   ExecuteExt2_5bit(instr);
2695 }
2696 
2697 
ExecuteExt3(Instruction * instr)2698 void Simulator::ExecuteExt3(Instruction* instr) {
2699   int opcode = instr->Bits(10, 1) << 1;
2700   switch (opcode) {
2701     case FCFID: {
2702       // fcfids
2703       int frt = instr->RTValue();
2704       int frb = instr->RBValue();
2705       int64_t frb_val = get_d_register(frb);
2706       double frt_val = static_cast<float>(frb_val);
2707       set_d_register_from_double(frt, frt_val);
2708       return;
2709     }
2710     case FCFIDU: {
2711       // fcfidus
2712       int frt = instr->RTValue();
2713       int frb = instr->RBValue();
2714       uint64_t frb_val = get_d_register(frb);
2715       double frt_val = static_cast<float>(frb_val);
2716       set_d_register_from_double(frt, frt_val);
2717       return;
2718     }
2719   }
2720   UNIMPLEMENTED();  // Not used by V8.
2721 }
2722 
2723 
ExecuteExt4(Instruction * instr)2724 void Simulator::ExecuteExt4(Instruction* instr) {
2725   switch (instr->Bits(5, 1) << 1) {
2726     case FDIV: {
2727       int frt = instr->RTValue();
2728       int fra = instr->RAValue();
2729       int frb = instr->RBValue();
2730       double fra_val = get_double_from_d_register(fra);
2731       double frb_val = get_double_from_d_register(frb);
2732       double frt_val = fra_val / frb_val;
2733       set_d_register_from_double(frt, frt_val);
2734       return;
2735     }
2736     case FSUB: {
2737       int frt = instr->RTValue();
2738       int fra = instr->RAValue();
2739       int frb = instr->RBValue();
2740       double fra_val = get_double_from_d_register(fra);
2741       double frb_val = get_double_from_d_register(frb);
2742       double frt_val = fra_val - frb_val;
2743       set_d_register_from_double(frt, frt_val);
2744       return;
2745     }
2746     case FADD: {
2747       int frt = instr->RTValue();
2748       int fra = instr->RAValue();
2749       int frb = instr->RBValue();
2750       double fra_val = get_double_from_d_register(fra);
2751       double frb_val = get_double_from_d_register(frb);
2752       double frt_val = fra_val + frb_val;
2753       set_d_register_from_double(frt, frt_val);
2754       return;
2755     }
2756     case FSQRT: {
2757       lazily_initialize_fast_sqrt(isolate_);
2758       int frt = instr->RTValue();
2759       int frb = instr->RBValue();
2760       double frb_val = get_double_from_d_register(frb);
2761       double frt_val = fast_sqrt(frb_val, isolate_);
2762       set_d_register_from_double(frt, frt_val);
2763       return;
2764     }
2765     case FSEL: {
2766       int frt = instr->RTValue();
2767       int fra = instr->RAValue();
2768       int frb = instr->RBValue();
2769       int frc = instr->RCValue();
2770       double fra_val = get_double_from_d_register(fra);
2771       double frb_val = get_double_from_d_register(frb);
2772       double frc_val = get_double_from_d_register(frc);
2773       double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val);
2774       set_d_register_from_double(frt, frt_val);
2775       return;
2776     }
2777     case FMUL: {
2778       int frt = instr->RTValue();
2779       int fra = instr->RAValue();
2780       int frc = instr->RCValue();
2781       double fra_val = get_double_from_d_register(fra);
2782       double frc_val = get_double_from_d_register(frc);
2783       double frt_val = fra_val * frc_val;
2784       set_d_register_from_double(frt, frt_val);
2785       return;
2786     }
2787     case FMSUB: {
2788       int frt = instr->RTValue();
2789       int fra = instr->RAValue();
2790       int frb = instr->RBValue();
2791       int frc = instr->RCValue();
2792       double fra_val = get_double_from_d_register(fra);
2793       double frb_val = get_double_from_d_register(frb);
2794       double frc_val = get_double_from_d_register(frc);
2795       double frt_val = (fra_val * frc_val) - frb_val;
2796       set_d_register_from_double(frt, frt_val);
2797       return;
2798     }
2799     case FMADD: {
2800       int frt = instr->RTValue();
2801       int fra = instr->RAValue();
2802       int frb = instr->RBValue();
2803       int frc = instr->RCValue();
2804       double fra_val = get_double_from_d_register(fra);
2805       double frb_val = get_double_from_d_register(frb);
2806       double frc_val = get_double_from_d_register(frc);
2807       double frt_val = (fra_val * frc_val) + frb_val;
2808       set_d_register_from_double(frt, frt_val);
2809       return;
2810     }
2811   }
2812   int opcode = instr->Bits(10, 1) << 1;
2813   switch (opcode) {
2814     case FCMPU: {
2815       int fra = instr->RAValue();
2816       int frb = instr->RBValue();
2817       double fra_val = get_double_from_d_register(fra);
2818       double frb_val = get_double_from_d_register(frb);
2819       int cr = instr->Bits(25, 23);
2820       int bf = 0;
2821       if (fra_val < frb_val) {
2822         bf |= 0x80000000;
2823       }
2824       if (fra_val > frb_val) {
2825         bf |= 0x40000000;
2826       }
2827       if (fra_val == frb_val) {
2828         bf |= 0x20000000;
2829       }
2830       if (std::isunordered(fra_val, frb_val)) {
2831         bf |= 0x10000000;
2832       }
2833       int condition_mask = 0xF0000000 >> (cr * 4);
2834       int condition = bf >> (cr * 4);
2835       condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
2836       return;
2837     }
2838     case FRIN: {
2839       int frt = instr->RTValue();
2840       int frb = instr->RBValue();
2841       double frb_val = get_double_from_d_register(frb);
2842       double frt_val = std::round(frb_val);
2843       set_d_register_from_double(frt, frt_val);
2844       if (instr->Bit(0)) {  // RC bit set
2845                             //  UNIMPLEMENTED();
2846       }
2847       return;
2848     }
2849     case FRIZ: {
2850       int frt = instr->RTValue();
2851       int frb = instr->RBValue();
2852       double frb_val = get_double_from_d_register(frb);
2853       double frt_val = std::trunc(frb_val);
2854       set_d_register_from_double(frt, frt_val);
2855       if (instr->Bit(0)) {  // RC bit set
2856                             //  UNIMPLEMENTED();
2857       }
2858       return;
2859     }
2860     case FRIP: {
2861       int frt = instr->RTValue();
2862       int frb = instr->RBValue();
2863       double frb_val = get_double_from_d_register(frb);
2864       double frt_val = std::ceil(frb_val);
2865       set_d_register_from_double(frt, frt_val);
2866       if (instr->Bit(0)) {  // RC bit set
2867                             //  UNIMPLEMENTED();
2868       }
2869       return;
2870     }
2871     case FRIM: {
2872       int frt = instr->RTValue();
2873       int frb = instr->RBValue();
2874       double frb_val = get_double_from_d_register(frb);
2875       double frt_val = std::floor(frb_val);
2876       set_d_register_from_double(frt, frt_val);
2877       if (instr->Bit(0)) {  // RC bit set
2878                             //  UNIMPLEMENTED();
2879       }
2880       return;
2881     }
2882     case FRSP: {
2883       int frt = instr->RTValue();
2884       int frb = instr->RBValue();
2885       // frsp round 8-byte double-precision value to
2886       // single-precision value
2887       double frb_val = get_double_from_d_register(frb);
2888       double frt_val = static_cast<float>(frb_val);
2889       set_d_register_from_double(frt, frt_val);
2890       if (instr->Bit(0)) {  // RC bit set
2891                             //  UNIMPLEMENTED();
2892       }
2893       return;
2894     }
2895     case FCFID: {
2896       int frt = instr->RTValue();
2897       int frb = instr->RBValue();
2898       int64_t frb_val = get_d_register(frb);
2899       double frt_val = static_cast<double>(frb_val);
2900       set_d_register_from_double(frt, frt_val);
2901       return;
2902     }
2903     case FCFIDU: {
2904       int frt = instr->RTValue();
2905       int frb = instr->RBValue();
2906       uint64_t frb_val = get_d_register(frb);
2907       double frt_val = static_cast<double>(frb_val);
2908       set_d_register_from_double(frt, frt_val);
2909       return;
2910     }
2911     case FCTID:
2912     case FCTIDZ: {
2913       int frt = instr->RTValue();
2914       int frb = instr->RBValue();
2915       double frb_val = get_double_from_d_register(frb);
2916       int mode = (opcode == FCTIDZ) ? kRoundToZero
2917                                     : (fp_condition_reg_ & kFPRoundingModeMask);
2918       int64_t frt_val;
2919       int64_t one = 1;  // work-around gcc
2920       int64_t kMinVal = (one << 63);
2921       int64_t kMaxVal = kMinVal - 1;
2922       bool invalid_convert = false;
2923 
2924       if (std::isnan(frb_val)) {
2925         frt_val = kMinVal;
2926         invalid_convert = true;
2927       } else {
2928         switch (mode) {
2929           case kRoundToZero:
2930             frb_val = std::trunc(frb_val);
2931             break;
2932           case kRoundToPlusInf:
2933             frb_val = std::ceil(frb_val);
2934             break;
2935           case kRoundToMinusInf:
2936             frb_val = std::floor(frb_val);
2937             break;
2938           default:
2939             UNIMPLEMENTED();  // Not used by V8.
2940             break;
2941         }
2942         if (frb_val < static_cast<double>(kMinVal)) {
2943           frt_val = kMinVal;
2944           invalid_convert = true;
2945         } else if (frb_val >= static_cast<double>(kMaxVal)) {
2946           frt_val = kMaxVal;
2947           invalid_convert = true;
2948         } else {
2949           frt_val = (int64_t)frb_val;
2950         }
2951       }
2952       set_d_register(frt, frt_val);
2953       if (invalid_convert) SetFPSCR(VXCVI);
2954       return;
2955     }
2956     case FCTIDU:
2957     case FCTIDUZ: {
2958       int frt = instr->RTValue();
2959       int frb = instr->RBValue();
2960       double frb_val = get_double_from_d_register(frb);
2961       int mode = (opcode == FCTIDUZ)
2962                      ? kRoundToZero
2963                      : (fp_condition_reg_ & kFPRoundingModeMask);
2964       uint64_t frt_val;
2965       uint64_t kMinVal = 0;
2966       uint64_t kMaxVal = kMinVal - 1;
2967       bool invalid_convert = false;
2968 
2969       if (std::isnan(frb_val)) {
2970         frt_val = kMinVal;
2971         invalid_convert = true;
2972       } else {
2973         switch (mode) {
2974           case kRoundToZero:
2975             frb_val = std::trunc(frb_val);
2976             break;
2977           case kRoundToPlusInf:
2978             frb_val = std::ceil(frb_val);
2979             break;
2980           case kRoundToMinusInf:
2981             frb_val = std::floor(frb_val);
2982             break;
2983           default:
2984             UNIMPLEMENTED();  // Not used by V8.
2985             break;
2986         }
2987         if (frb_val < static_cast<double>(kMinVal)) {
2988           frt_val = kMinVal;
2989           invalid_convert = true;
2990         } else if (frb_val >= static_cast<double>(kMaxVal)) {
2991           frt_val = kMaxVal;
2992           invalid_convert = true;
2993         } else {
2994           frt_val = (uint64_t)frb_val;
2995         }
2996       }
2997       set_d_register(frt, frt_val);
2998       if (invalid_convert) SetFPSCR(VXCVI);
2999       return;
3000     }
3001     case FCTIW:
3002     case FCTIWZ: {
3003       int frt = instr->RTValue();
3004       int frb = instr->RBValue();
3005       double frb_val = get_double_from_d_register(frb);
3006       int mode = (opcode == FCTIWZ) ? kRoundToZero
3007                                     : (fp_condition_reg_ & kFPRoundingModeMask);
3008       int64_t frt_val;
3009       int64_t kMinVal = kMinInt;
3010       int64_t kMaxVal = kMaxInt;
3011 
3012       if (std::isnan(frb_val)) {
3013         frt_val = kMinVal;
3014       } else {
3015         switch (mode) {
3016           case kRoundToZero:
3017             frb_val = std::trunc(frb_val);
3018             break;
3019           case kRoundToPlusInf:
3020             frb_val = std::ceil(frb_val);
3021             break;
3022           case kRoundToMinusInf:
3023             frb_val = std::floor(frb_val);
3024             break;
3025           case kRoundToNearest: {
3026             double orig = frb_val;
3027             frb_val = lround(frb_val);
3028             // Round to even if exactly halfway.  (lround rounds up)
3029             if (std::fabs(frb_val - orig) == 0.5 && ((int64_t)frb_val % 2)) {
3030               frb_val += ((frb_val > 0) ? -1.0 : 1.0);
3031             }
3032             break;
3033           }
3034           default:
3035             UNIMPLEMENTED();  // Not used by V8.
3036             break;
3037         }
3038         if (frb_val < kMinVal) {
3039           frt_val = kMinVal;
3040         } else if (frb_val > kMaxVal) {
3041           frt_val = kMaxVal;
3042         } else {
3043           frt_val = (int64_t)frb_val;
3044         }
3045       }
3046       set_d_register(frt, frt_val);
3047       return;
3048     }
3049     case FNEG: {
3050       int frt = instr->RTValue();
3051       int frb = instr->RBValue();
3052       double frb_val = get_double_from_d_register(frb);
3053       double frt_val = -frb_val;
3054       set_d_register_from_double(frt, frt_val);
3055       return;
3056     }
3057     case FMR: {
3058       int frt = instr->RTValue();
3059       int frb = instr->RBValue();
3060       int64_t frb_val = get_d_register(frb);
3061       set_d_register(frt, frb_val);
3062       return;
3063     }
3064     case MTFSFI: {
3065       int bf = instr->Bits(25, 23);
3066       int imm = instr->Bits(15, 12);
3067       int fp_condition_mask = 0xF0000000 >> (bf * 4);
3068       fp_condition_reg_ &= ~fp_condition_mask;
3069       fp_condition_reg_ |= (imm << (28 - (bf * 4)));
3070       if (instr->Bit(0)) {  // RC bit set
3071         condition_reg_ &= 0xF0FFFFFF;
3072         condition_reg_ |= (imm << 23);
3073       }
3074       return;
3075     }
3076     case MTFSF: {
3077       int frb = instr->RBValue();
3078       int64_t frb_dval = get_d_register(frb);
3079       int32_t frb_ival = static_cast<int32_t>((frb_dval)&0xffffffff);
3080       int l = instr->Bits(25, 25);
3081       if (l == 1) {
3082         fp_condition_reg_ = frb_ival;
3083       } else {
3084         UNIMPLEMENTED();
3085       }
3086       if (instr->Bit(0)) {  // RC bit set
3087         UNIMPLEMENTED();
3088         // int w = instr->Bits(16, 16);
3089         // int flm = instr->Bits(24, 17);
3090       }
3091       return;
3092     }
3093     case MFFS: {
3094       int frt = instr->RTValue();
3095       int64_t lval = static_cast<int64_t>(fp_condition_reg_);
3096       set_d_register(frt, lval);
3097       return;
3098     }
3099     case MCRFS: {
3100       int bf = instr->Bits(25, 23);
3101       int bfa = instr->Bits(20, 18);
3102       int cr_shift = (7 - bf) * CRWIDTH;
3103       int fp_shift = (7 - bfa) * CRWIDTH;
3104       int field_val = (fp_condition_reg_ >> fp_shift) & 0xf;
3105       condition_reg_ &= ~(0x0f << cr_shift);
3106       condition_reg_ |= (field_val << cr_shift);
3107       // Clear copied exception bits
3108       switch (bfa) {
3109         case 5:
3110           ClearFPSCR(VXSOFT);
3111           ClearFPSCR(VXSQRT);
3112           ClearFPSCR(VXCVI);
3113           break;
3114         default:
3115           UNIMPLEMENTED();
3116           break;
3117       }
3118       return;
3119     }
3120     case MTFSB0: {
3121       int bt = instr->Bits(25, 21);
3122       ClearFPSCR(bt);
3123       if (instr->Bit(0)) {  // RC bit set
3124         UNIMPLEMENTED();
3125       }
3126       return;
3127     }
3128     case MTFSB1: {
3129       int bt = instr->Bits(25, 21);
3130       SetFPSCR(bt);
3131       if (instr->Bit(0)) {  // RC bit set
3132         UNIMPLEMENTED();
3133       }
3134       return;
3135     }
3136     case FABS: {
3137       int frt = instr->RTValue();
3138       int frb = instr->RBValue();
3139       double frb_val = get_double_from_d_register(frb);
3140       double frt_val = std::fabs(frb_val);
3141       set_d_register_from_double(frt, frt_val);
3142       return;
3143     }
3144   }
3145   UNIMPLEMENTED();  // Not used by V8.
3146 }
3147 
3148 #if V8_TARGET_ARCH_PPC64
ExecuteExt5(Instruction * instr)3149 void Simulator::ExecuteExt5(Instruction* instr) {
3150   switch (instr->Bits(4, 2) << 2) {
3151     case RLDICL: {
3152       int ra = instr->RAValue();
3153       int rs = instr->RSValue();
3154       uintptr_t rs_val = get_register(rs);
3155       int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3156       int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3157       DCHECK(sh >= 0 && sh <= 63);
3158       DCHECK(mb >= 0 && mb <= 63);
3159       uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3160       uintptr_t mask = 0xffffffffffffffff >> mb;
3161       result &= mask;
3162       set_register(ra, result);
3163       if (instr->Bit(0)) {  // RC bit set
3164         SetCR0(result);
3165       }
3166       return;
3167     }
3168     case RLDICR: {
3169       int ra = instr->RAValue();
3170       int rs = instr->RSValue();
3171       uintptr_t rs_val = get_register(rs);
3172       int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3173       int me = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3174       DCHECK(sh >= 0 && sh <= 63);
3175       DCHECK(me >= 0 && me <= 63);
3176       uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3177       uintptr_t mask = 0xffffffffffffffff << (63 - me);
3178       result &= mask;
3179       set_register(ra, result);
3180       if (instr->Bit(0)) {  // RC bit set
3181         SetCR0(result);
3182       }
3183       return;
3184     }
3185     case RLDIC: {
3186       int ra = instr->RAValue();
3187       int rs = instr->RSValue();
3188       uintptr_t rs_val = get_register(rs);
3189       int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3190       int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3191       DCHECK(sh >= 0 && sh <= 63);
3192       DCHECK(mb >= 0 && mb <= 63);
3193       uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3194       uintptr_t mask = (0xffffffffffffffff >> mb) & (0xffffffffffffffff << sh);
3195       result &= mask;
3196       set_register(ra, result);
3197       if (instr->Bit(0)) {  // RC bit set
3198         SetCR0(result);
3199       }
3200       return;
3201     }
3202     case RLDIMI: {
3203       int ra = instr->RAValue();
3204       int rs = instr->RSValue();
3205       uintptr_t rs_val = get_register(rs);
3206       intptr_t ra_val = get_register(ra);
3207       int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3208       int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3209       int me = 63 - sh;
3210       uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3211       uintptr_t mask = 0;
3212       if (mb < me + 1) {
3213         uintptr_t bit = 0x8000000000000000 >> mb;
3214         for (; mb <= me; mb++) {
3215           mask |= bit;
3216           bit >>= 1;
3217         }
3218       } else if (mb == me + 1) {
3219         mask = 0xffffffffffffffff;
3220       } else {                                           // mb > me+1
3221         uintptr_t bit = 0x8000000000000000 >> (me + 1);  // needs to be tested
3222         mask = 0xffffffffffffffff;
3223         for (; me < mb; me++) {
3224           mask ^= bit;
3225           bit >>= 1;
3226         }
3227       }
3228       result &= mask;
3229       ra_val &= ~mask;
3230       result |= ra_val;
3231       set_register(ra, result);
3232       if (instr->Bit(0)) {  // RC bit set
3233         SetCR0(result);
3234       }
3235       return;
3236     }
3237   }
3238   switch (instr->Bits(4, 1) << 1) {
3239     case RLDCL: {
3240       int ra = instr->RAValue();
3241       int rs = instr->RSValue();
3242       int rb = instr->RBValue();
3243       uintptr_t rs_val = get_register(rs);
3244       uintptr_t rb_val = get_register(rb);
3245       int sh = (rb_val & 0x3f);
3246       int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3247       DCHECK(sh >= 0 && sh <= 63);
3248       DCHECK(mb >= 0 && mb <= 63);
3249       uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3250       uintptr_t mask = 0xffffffffffffffff >> mb;
3251       result &= mask;
3252       set_register(ra, result);
3253       if (instr->Bit(0)) {  // RC bit set
3254         SetCR0(result);
3255       }
3256       return;
3257     }
3258   }
3259   UNIMPLEMENTED();  // Not used by V8.
3260 }
3261 #endif
3262 
3263 
ExecuteGeneric(Instruction * instr)3264 void Simulator::ExecuteGeneric(Instruction* instr) {
3265   int opcode = instr->OpcodeValue() << 26;
3266   switch (opcode) {
3267     case SUBFIC: {
3268       int rt = instr->RTValue();
3269       int ra = instr->RAValue();
3270       intptr_t ra_val = get_register(ra);
3271       int32_t im_val = instr->Bits(15, 0);
3272       im_val = SIGN_EXT_IMM16(im_val);
3273       intptr_t alu_out = im_val - ra_val;
3274       set_register(rt, alu_out);
3275       // todo - handle RC bit
3276       break;
3277     }
3278     case CMPLI: {
3279       int ra = instr->RAValue();
3280       uint32_t im_val = instr->Bits(15, 0);
3281       int cr = instr->Bits(25, 23);
3282       uint32_t bf = 0;
3283 #if V8_TARGET_ARCH_PPC64
3284       int L = instr->Bit(21);
3285       if (L) {
3286 #endif
3287         uintptr_t ra_val = get_register(ra);
3288         if (ra_val < im_val) {
3289           bf |= 0x80000000;
3290         }
3291         if (ra_val > im_val) {
3292           bf |= 0x40000000;
3293         }
3294         if (ra_val == im_val) {
3295           bf |= 0x20000000;
3296         }
3297 #if V8_TARGET_ARCH_PPC64
3298       } else {
3299         uint32_t ra_val = get_register(ra);
3300         if (ra_val < im_val) {
3301           bf |= 0x80000000;
3302         }
3303         if (ra_val > im_val) {
3304           bf |= 0x40000000;
3305         }
3306         if (ra_val == im_val) {
3307           bf |= 0x20000000;
3308         }
3309       }
3310 #endif
3311       uint32_t condition_mask = 0xF0000000U >> (cr * 4);
3312       uint32_t condition = bf >> (cr * 4);
3313       condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
3314       break;
3315     }
3316     case CMPI: {
3317       int ra = instr->RAValue();
3318       int32_t im_val = instr->Bits(15, 0);
3319       im_val = SIGN_EXT_IMM16(im_val);
3320       int cr = instr->Bits(25, 23);
3321       uint32_t bf = 0;
3322 #if V8_TARGET_ARCH_PPC64
3323       int L = instr->Bit(21);
3324       if (L) {
3325 #endif
3326         intptr_t ra_val = get_register(ra);
3327         if (ra_val < im_val) {
3328           bf |= 0x80000000;
3329         }
3330         if (ra_val > im_val) {
3331           bf |= 0x40000000;
3332         }
3333         if (ra_val == im_val) {
3334           bf |= 0x20000000;
3335         }
3336 #if V8_TARGET_ARCH_PPC64
3337       } else {
3338         int32_t ra_val = get_register(ra);
3339         if (ra_val < im_val) {
3340           bf |= 0x80000000;
3341         }
3342         if (ra_val > im_val) {
3343           bf |= 0x40000000;
3344         }
3345         if (ra_val == im_val) {
3346           bf |= 0x20000000;
3347         }
3348       }
3349 #endif
3350       uint32_t condition_mask = 0xF0000000U >> (cr * 4);
3351       uint32_t condition = bf >> (cr * 4);
3352       condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
3353       break;
3354     }
3355     case ADDIC: {
3356       int rt = instr->RTValue();
3357       int ra = instr->RAValue();
3358       uintptr_t ra_val = get_register(ra);
3359       uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
3360       uintptr_t alu_out = ra_val + im_val;
3361       // Check overflow
3362       if (~ra_val < im_val) {
3363         special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
3364       } else {
3365         special_reg_xer_ &= ~0xF0000000;
3366       }
3367       set_register(rt, alu_out);
3368       break;
3369     }
3370     case ADDI: {
3371       int rt = instr->RTValue();
3372       int ra = instr->RAValue();
3373       int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
3374       intptr_t alu_out;
3375       if (ra == 0) {
3376         alu_out = im_val;
3377       } else {
3378         intptr_t ra_val = get_register(ra);
3379         alu_out = ra_val + im_val;
3380       }
3381       set_register(rt, alu_out);
3382       // todo - handle RC bit
3383       break;
3384     }
3385     case ADDIS: {
3386       int rt = instr->RTValue();
3387       int ra = instr->RAValue();
3388       int32_t im_val = (instr->Bits(15, 0) << 16);
3389       intptr_t alu_out;
3390       if (ra == 0) {  // treat r0 as zero
3391         alu_out = im_val;
3392       } else {
3393         intptr_t ra_val = get_register(ra);
3394         alu_out = ra_val + im_val;
3395       }
3396       set_register(rt, alu_out);
3397       break;
3398     }
3399     case BCX: {
3400       ExecuteBranchConditional(instr, BC_OFFSET);
3401       break;
3402     }
3403     case BX: {
3404       int offset = (instr->Bits(25, 2) << 8) >> 6;
3405       if (instr->Bit(0) == 1) {  // LK flag set
3406         special_reg_lr_ = get_pc() + 4;
3407       }
3408       set_pc(get_pc() + offset);
3409       // todo - AA flag
3410       break;
3411     }
3412     case EXT1: {
3413       ExecuteExt1(instr);
3414       break;
3415     }
3416     case RLWIMIX: {
3417       int ra = instr->RAValue();
3418       int rs = instr->RSValue();
3419       uint32_t rs_val = get_register(rs);
3420       int32_t ra_val = get_register(ra);
3421       int sh = instr->Bits(15, 11);
3422       int mb = instr->Bits(10, 6);
3423       int me = instr->Bits(5, 1);
3424       uint32_t result = base::bits::RotateLeft32(rs_val, sh);
3425       int mask = 0;
3426       if (mb < me + 1) {
3427         int bit = 0x80000000 >> mb;
3428         for (; mb <= me; mb++) {
3429           mask |= bit;
3430           bit >>= 1;
3431         }
3432       } else if (mb == me + 1) {
3433         mask = 0xffffffff;
3434       } else {                             // mb > me+1
3435         int bit = 0x80000000 >> (me + 1);  // needs to be tested
3436         mask = 0xffffffff;
3437         for (; me < mb; me++) {
3438           mask ^= bit;
3439           bit >>= 1;
3440         }
3441       }
3442       result &= mask;
3443       ra_val &= ~mask;
3444       result |= ra_val;
3445       set_register(ra, result);
3446       if (instr->Bit(0)) {  // RC bit set
3447         SetCR0(result);
3448       }
3449       break;
3450     }
3451     case RLWINMX:
3452     case RLWNMX: {
3453       int ra = instr->RAValue();
3454       int rs = instr->RSValue();
3455       uint32_t rs_val = get_register(rs);
3456       int sh = 0;
3457       if (opcode == RLWINMX) {
3458         sh = instr->Bits(15, 11);
3459       } else {
3460         int rb = instr->RBValue();
3461         uint32_t rb_val = get_register(rb);
3462         sh = (rb_val & 0x1f);
3463       }
3464       int mb = instr->Bits(10, 6);
3465       int me = instr->Bits(5, 1);
3466       uint32_t result = base::bits::RotateLeft32(rs_val, sh);
3467       int mask = 0;
3468       if (mb < me + 1) {
3469         int bit = 0x80000000 >> mb;
3470         for (; mb <= me; mb++) {
3471           mask |= bit;
3472           bit >>= 1;
3473         }
3474       } else if (mb == me + 1) {
3475         mask = 0xffffffff;
3476       } else {                             // mb > me+1
3477         int bit = 0x80000000 >> (me + 1);  // needs to be tested
3478         mask = 0xffffffff;
3479         for (; me < mb; me++) {
3480           mask ^= bit;
3481           bit >>= 1;
3482         }
3483       }
3484       result &= mask;
3485       set_register(ra, result);
3486       if (instr->Bit(0)) {  // RC bit set
3487         SetCR0(result);
3488       }
3489       break;
3490     }
3491     case ORI: {
3492       int rs = instr->RSValue();
3493       int ra = instr->RAValue();
3494       intptr_t rs_val = get_register(rs);
3495       uint32_t im_val = instr->Bits(15, 0);
3496       intptr_t alu_out = rs_val | im_val;
3497       set_register(ra, alu_out);
3498       break;
3499     }
3500     case ORIS: {
3501       int rs = instr->RSValue();
3502       int ra = instr->RAValue();
3503       intptr_t rs_val = get_register(rs);
3504       uint32_t im_val = instr->Bits(15, 0);
3505       intptr_t alu_out = rs_val | (im_val << 16);
3506       set_register(ra, alu_out);
3507       break;
3508     }
3509     case XORI: {
3510       int rs = instr->RSValue();
3511       int ra = instr->RAValue();
3512       intptr_t rs_val = get_register(rs);
3513       uint32_t im_val = instr->Bits(15, 0);
3514       intptr_t alu_out = rs_val ^ im_val;
3515       set_register(ra, alu_out);
3516       // todo - set condition based SO bit
3517       break;
3518     }
3519     case XORIS: {
3520       int rs = instr->RSValue();
3521       int ra = instr->RAValue();
3522       intptr_t rs_val = get_register(rs);
3523       uint32_t im_val = instr->Bits(15, 0);
3524       intptr_t alu_out = rs_val ^ (im_val << 16);
3525       set_register(ra, alu_out);
3526       break;
3527     }
3528     case ANDIx: {
3529       int rs = instr->RSValue();
3530       int ra = instr->RAValue();
3531       intptr_t rs_val = get_register(rs);
3532       uint32_t im_val = instr->Bits(15, 0);
3533       intptr_t alu_out = rs_val & im_val;
3534       set_register(ra, alu_out);
3535       SetCR0(alu_out);
3536       break;
3537     }
3538     case ANDISx: {
3539       int rs = instr->RSValue();
3540       int ra = instr->RAValue();
3541       intptr_t rs_val = get_register(rs);
3542       uint32_t im_val = instr->Bits(15, 0);
3543       intptr_t alu_out = rs_val & (im_val << 16);
3544       set_register(ra, alu_out);
3545       SetCR0(alu_out);
3546       break;
3547     }
3548     case EXT2: {
3549       ExecuteExt2(instr);
3550       break;
3551     }
3552 
3553     case LWZU:
3554     case LWZ: {
3555       int ra = instr->RAValue();
3556       int rt = instr->RTValue();
3557       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3558       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3559       set_register(rt, ReadWU(ra_val + offset, instr));
3560       if (opcode == LWZU) {
3561         DCHECK(ra != 0);
3562         set_register(ra, ra_val + offset);
3563       }
3564       break;
3565     }
3566 
3567     case LBZU:
3568     case LBZ: {
3569       int ra = instr->RAValue();
3570       int rt = instr->RTValue();
3571       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3572       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3573       set_register(rt, ReadB(ra_val + offset) & 0xFF);
3574       if (opcode == LBZU) {
3575         DCHECK(ra != 0);
3576         set_register(ra, ra_val + offset);
3577       }
3578       break;
3579     }
3580 
3581     case STWU:
3582     case STW: {
3583       int ra = instr->RAValue();
3584       int rs = instr->RSValue();
3585       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3586       int32_t rs_val = get_register(rs);
3587       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3588       WriteW(ra_val + offset, rs_val, instr);
3589       if (opcode == STWU) {
3590         DCHECK(ra != 0);
3591         set_register(ra, ra_val + offset);
3592       }
3593       // printf("r%d %08x -> %08x\n", rs, rs_val, offset); // 0xdead
3594       break;
3595     }
3596 
3597     case STBU:
3598     case STB: {
3599       int ra = instr->RAValue();
3600       int rs = instr->RSValue();
3601       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3602       int8_t rs_val = get_register(rs);
3603       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3604       WriteB(ra_val + offset, rs_val);
3605       if (opcode == STBU) {
3606         DCHECK(ra != 0);
3607         set_register(ra, ra_val + offset);
3608       }
3609       break;
3610     }
3611 
3612     case LHZU:
3613     case LHZ: {
3614       int ra = instr->RAValue();
3615       int rt = instr->RTValue();
3616       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3617       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3618       uintptr_t result = ReadHU(ra_val + offset, instr) & 0xffff;
3619       set_register(rt, result);
3620       if (opcode == LHZU) {
3621         set_register(ra, ra_val + offset);
3622       }
3623       break;
3624     }
3625 
3626     case LHA:
3627     case LHAU: {
3628       int ra = instr->RAValue();
3629       int rt = instr->RTValue();
3630       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3631       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3632       intptr_t result = ReadH(ra_val + offset, instr);
3633       set_register(rt, result);
3634       if (opcode == LHAU) {
3635         set_register(ra, ra_val + offset);
3636       }
3637       break;
3638     }
3639 
3640     case STHU:
3641     case STH: {
3642       int ra = instr->RAValue();
3643       int rs = instr->RSValue();
3644       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3645       int16_t rs_val = get_register(rs);
3646       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3647       WriteH(ra_val + offset, rs_val, instr);
3648       if (opcode == STHU) {
3649         DCHECK(ra != 0);
3650         set_register(ra, ra_val + offset);
3651       }
3652       break;
3653     }
3654 
3655     case LMW:
3656     case STMW: {
3657       UNIMPLEMENTED();
3658       break;
3659     }
3660 
3661     case LFSU:
3662     case LFS: {
3663       int frt = instr->RTValue();
3664       int ra = instr->RAValue();
3665       int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3666       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3667       int32_t val = ReadW(ra_val + offset, instr);
3668       float* fptr = reinterpret_cast<float*>(&val);
3669       set_d_register_from_double(frt, static_cast<double>(*fptr));
3670       if (opcode == LFSU) {
3671         DCHECK(ra != 0);
3672         set_register(ra, ra_val + offset);
3673       }
3674       break;
3675     }
3676 
3677     case LFDU:
3678     case LFD: {
3679       int frt = instr->RTValue();
3680       int ra = instr->RAValue();
3681       int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3682       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3683       int64_t* dptr = reinterpret_cast<int64_t*>(ReadDW(ra_val + offset));
3684       set_d_register(frt, *dptr);
3685       if (opcode == LFDU) {
3686         DCHECK(ra != 0);
3687         set_register(ra, ra_val + offset);
3688       }
3689       break;
3690     }
3691 
3692     case STFSU: {
3693       case STFS:
3694         int frs = instr->RSValue();
3695         int ra = instr->RAValue();
3696         int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3697         intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3698         float frs_val = static_cast<float>(get_double_from_d_register(frs));
3699         int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
3700         WriteW(ra_val + offset, *p, instr);
3701         if (opcode == STFSU) {
3702           DCHECK(ra != 0);
3703           set_register(ra, ra_val + offset);
3704         }
3705         break;
3706     }
3707 
3708     case STFDU:
3709     case STFD: {
3710       int frs = instr->RSValue();
3711       int ra = instr->RAValue();
3712       int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3713       intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3714       int64_t frs_val = get_d_register(frs);
3715       WriteDW(ra_val + offset, frs_val);
3716       if (opcode == STFDU) {
3717         DCHECK(ra != 0);
3718         set_register(ra, ra_val + offset);
3719       }
3720       break;
3721     }
3722 
3723     case EXT3: {
3724       ExecuteExt3(instr);
3725       break;
3726     }
3727     case EXT4: {
3728       ExecuteExt4(instr);
3729       break;
3730     }
3731 
3732 #if V8_TARGET_ARCH_PPC64
3733     case EXT5: {
3734       ExecuteExt5(instr);
3735       break;
3736     }
3737     case LD: {
3738       int ra = instr->RAValue();
3739       int rt = instr->RTValue();
3740       int64_t ra_val = ra == 0 ? 0 : get_register(ra);
3741       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
3742       switch (instr->Bits(1, 0)) {
3743         case 0: {  // ld
3744           intptr_t* result = ReadDW(ra_val + offset);
3745           set_register(rt, *result);
3746           break;
3747         }
3748         case 1: {  // ldu
3749           intptr_t* result = ReadDW(ra_val + offset);
3750           set_register(rt, *result);
3751           DCHECK(ra != 0);
3752           set_register(ra, ra_val + offset);
3753           break;
3754         }
3755         case 2: {  // lwa
3756           intptr_t result = ReadW(ra_val + offset, instr);
3757           set_register(rt, result);
3758           break;
3759         }
3760       }
3761       break;
3762     }
3763 
3764     case STD: {
3765       int ra = instr->RAValue();
3766       int rs = instr->RSValue();
3767       int64_t ra_val = ra == 0 ? 0 : get_register(ra);
3768       int64_t rs_val = get_register(rs);
3769       int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
3770       WriteDW(ra_val + offset, rs_val);
3771       if (instr->Bit(0) == 1) {  // This is the STDU form
3772         DCHECK(ra != 0);
3773         set_register(ra, ra_val + offset);
3774       }
3775       break;
3776     }
3777 #endif
3778 
3779     default: {
3780       UNIMPLEMENTED();
3781       break;
3782     }
3783   }
3784 }  // NOLINT
3785 
3786 
Trace(Instruction * instr)3787 void Simulator::Trace(Instruction* instr) {
3788   disasm::NameConverter converter;
3789   disasm::Disassembler dasm(converter);
3790   // use a reasonably large buffer
3791   v8::internal::EmbeddedVector<char, 256> buffer;
3792   dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
3793   PrintF("%05d  %08" V8PRIxPTR "  %s\n", icount_,
3794          reinterpret_cast<intptr_t>(instr), buffer.start());
3795 }
3796 
3797 
3798 // Executes the current instruction.
ExecuteInstruction(Instruction * instr)3799 void Simulator::ExecuteInstruction(Instruction* instr) {
3800   if (v8::internal::FLAG_check_icache) {
3801     CheckICache(isolate_->simulator_i_cache(), instr);
3802   }
3803   pc_modified_ = false;
3804   if (::v8::internal::FLAG_trace_sim) {
3805     Trace(instr);
3806   }
3807   int opcode = instr->OpcodeValue() << 26;
3808   if (opcode == TWI) {
3809     SoftwareInterrupt(instr);
3810   } else {
3811     ExecuteGeneric(instr);
3812   }
3813   if (!pc_modified_) {
3814     set_pc(reinterpret_cast<intptr_t>(instr) + Instruction::kInstrSize);
3815   }
3816 }
3817 
3818 
Execute()3819 void Simulator::Execute() {
3820   // Get the PC to simulate. Cannot use the accessor here as we need the
3821   // raw PC value and not the one used as input to arithmetic instructions.
3822   intptr_t program_counter = get_pc();
3823 
3824   if (::v8::internal::FLAG_stop_sim_at == 0) {
3825     // Fast version of the dispatch loop without checking whether the simulator
3826     // should be stopping at a particular executed instruction.
3827     while (program_counter != end_sim_pc) {
3828       Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
3829       icount_++;
3830       ExecuteInstruction(instr);
3831       program_counter = get_pc();
3832     }
3833   } else {
3834     // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
3835     // we reach the particular instuction count.
3836     while (program_counter != end_sim_pc) {
3837       Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
3838       icount_++;
3839       if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
3840         PPCDebugger dbg(this);
3841         dbg.Debug();
3842       } else {
3843         ExecuteInstruction(instr);
3844       }
3845       program_counter = get_pc();
3846     }
3847   }
3848 }
3849 
3850 
CallInternal(byte * entry)3851 void Simulator::CallInternal(byte* entry) {
3852   // Adjust JS-based stack limit to C-based stack limit.
3853   isolate_->stack_guard()->AdjustStackLimitForSimulator();
3854 
3855 // Prepare to execute the code at entry
3856 #if ABI_USES_FUNCTION_DESCRIPTORS
3857   // entry is the function descriptor
3858   set_pc(*(reinterpret_cast<intptr_t*>(entry)));
3859 #else
3860   // entry is the instruction address
3861   set_pc(reinterpret_cast<intptr_t>(entry));
3862 #endif
3863 
3864   // Put target address in ip (for JS prologue).
3865   set_register(r12, get_pc());
3866 
3867   // Put down marker for end of simulation. The simulator will stop simulation
3868   // when the PC reaches this value. By saving the "end simulation" value into
3869   // the LR the simulation stops when returning to this call point.
3870   special_reg_lr_ = end_sim_pc;
3871 
3872   // Remember the values of non-volatile registers.
3873   intptr_t r2_val = get_register(r2);
3874   intptr_t r13_val = get_register(r13);
3875   intptr_t r14_val = get_register(r14);
3876   intptr_t r15_val = get_register(r15);
3877   intptr_t r16_val = get_register(r16);
3878   intptr_t r17_val = get_register(r17);
3879   intptr_t r18_val = get_register(r18);
3880   intptr_t r19_val = get_register(r19);
3881   intptr_t r20_val = get_register(r20);
3882   intptr_t r21_val = get_register(r21);
3883   intptr_t r22_val = get_register(r22);
3884   intptr_t r23_val = get_register(r23);
3885   intptr_t r24_val = get_register(r24);
3886   intptr_t r25_val = get_register(r25);
3887   intptr_t r26_val = get_register(r26);
3888   intptr_t r27_val = get_register(r27);
3889   intptr_t r28_val = get_register(r28);
3890   intptr_t r29_val = get_register(r29);
3891   intptr_t r30_val = get_register(r30);
3892   intptr_t r31_val = get_register(fp);
3893 
3894   // Set up the non-volatile registers with a known value. To be able to check
3895   // that they are preserved properly across JS execution.
3896   intptr_t callee_saved_value = icount_;
3897   set_register(r2, callee_saved_value);
3898   set_register(r13, callee_saved_value);
3899   set_register(r14, callee_saved_value);
3900   set_register(r15, callee_saved_value);
3901   set_register(r16, callee_saved_value);
3902   set_register(r17, callee_saved_value);
3903   set_register(r18, callee_saved_value);
3904   set_register(r19, callee_saved_value);
3905   set_register(r20, callee_saved_value);
3906   set_register(r21, callee_saved_value);
3907   set_register(r22, callee_saved_value);
3908   set_register(r23, callee_saved_value);
3909   set_register(r24, callee_saved_value);
3910   set_register(r25, callee_saved_value);
3911   set_register(r26, callee_saved_value);
3912   set_register(r27, callee_saved_value);
3913   set_register(r28, callee_saved_value);
3914   set_register(r29, callee_saved_value);
3915   set_register(r30, callee_saved_value);
3916   set_register(fp, callee_saved_value);
3917 
3918   // Start the simulation
3919   Execute();
3920 
3921   // Check that the non-volatile registers have been preserved.
3922   CHECK_EQ(callee_saved_value, get_register(r2));
3923   CHECK_EQ(callee_saved_value, get_register(r13));
3924   CHECK_EQ(callee_saved_value, get_register(r14));
3925   CHECK_EQ(callee_saved_value, get_register(r15));
3926   CHECK_EQ(callee_saved_value, get_register(r16));
3927   CHECK_EQ(callee_saved_value, get_register(r17));
3928   CHECK_EQ(callee_saved_value, get_register(r18));
3929   CHECK_EQ(callee_saved_value, get_register(r19));
3930   CHECK_EQ(callee_saved_value, get_register(r20));
3931   CHECK_EQ(callee_saved_value, get_register(r21));
3932   CHECK_EQ(callee_saved_value, get_register(r22));
3933   CHECK_EQ(callee_saved_value, get_register(r23));
3934   CHECK_EQ(callee_saved_value, get_register(r24));
3935   CHECK_EQ(callee_saved_value, get_register(r25));
3936   CHECK_EQ(callee_saved_value, get_register(r26));
3937   CHECK_EQ(callee_saved_value, get_register(r27));
3938   CHECK_EQ(callee_saved_value, get_register(r28));
3939   CHECK_EQ(callee_saved_value, get_register(r29));
3940   CHECK_EQ(callee_saved_value, get_register(r30));
3941   CHECK_EQ(callee_saved_value, get_register(fp));
3942 
3943   // Restore non-volatile registers with the original value.
3944   set_register(r2, r2_val);
3945   set_register(r13, r13_val);
3946   set_register(r14, r14_val);
3947   set_register(r15, r15_val);
3948   set_register(r16, r16_val);
3949   set_register(r17, r17_val);
3950   set_register(r18, r18_val);
3951   set_register(r19, r19_val);
3952   set_register(r20, r20_val);
3953   set_register(r21, r21_val);
3954   set_register(r22, r22_val);
3955   set_register(r23, r23_val);
3956   set_register(r24, r24_val);
3957   set_register(r25, r25_val);
3958   set_register(r26, r26_val);
3959   set_register(r27, r27_val);
3960   set_register(r28, r28_val);
3961   set_register(r29, r29_val);
3962   set_register(r30, r30_val);
3963   set_register(fp, r31_val);
3964 }
3965 
3966 
Call(byte * entry,int argument_count,...)3967 intptr_t Simulator::Call(byte* entry, int argument_count, ...) {
3968   va_list parameters;
3969   va_start(parameters, argument_count);
3970   // Set up arguments
3971 
3972   // First eight arguments passed in registers r3-r10.
3973   int reg_arg_count = (argument_count > 8) ? 8 : argument_count;
3974   int stack_arg_count = argument_count - reg_arg_count;
3975   for (int i = 0; i < reg_arg_count; i++) {
3976     set_register(i + 3, va_arg(parameters, intptr_t));
3977   }
3978 
3979   // Remaining arguments passed on stack.
3980   intptr_t original_stack = get_register(sp);
3981   // Compute position of stack on entry to generated code.
3982   intptr_t entry_stack =
3983       (original_stack -
3984        (kNumRequiredStackFrameSlots + stack_arg_count) * sizeof(intptr_t));
3985   if (base::OS::ActivationFrameAlignment() != 0) {
3986     entry_stack &= -base::OS::ActivationFrameAlignment();
3987   }
3988   // Store remaining arguments on stack, from low to high memory.
3989   // +2 is a hack for the LR slot + old SP on PPC
3990   intptr_t* stack_argument =
3991       reinterpret_cast<intptr_t*>(entry_stack) + kStackFrameExtraParamSlot;
3992   for (int i = 0; i < stack_arg_count; i++) {
3993     stack_argument[i] = va_arg(parameters, intptr_t);
3994   }
3995   va_end(parameters);
3996   set_register(sp, entry_stack);
3997 
3998   CallInternal(entry);
3999 
4000   // Pop stack passed arguments.
4001   CHECK_EQ(entry_stack, get_register(sp));
4002   set_register(sp, original_stack);
4003 
4004   intptr_t result = get_register(r3);
4005   return result;
4006 }
4007 
4008 
CallFP(byte * entry,double d0,double d1)4009 void Simulator::CallFP(byte* entry, double d0, double d1) {
4010   set_d_register_from_double(1, d0);
4011   set_d_register_from_double(2, d1);
4012   CallInternal(entry);
4013 }
4014 
4015 
CallFPReturnsInt(byte * entry,double d0,double d1)4016 int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
4017   CallFP(entry, d0, d1);
4018   int32_t result = get_register(r3);
4019   return result;
4020 }
4021 
4022 
CallFPReturnsDouble(byte * entry,double d0,double d1)4023 double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
4024   CallFP(entry, d0, d1);
4025   return get_double_from_d_register(1);
4026 }
4027 
4028 
PushAddress(uintptr_t address)4029 uintptr_t Simulator::PushAddress(uintptr_t address) {
4030   uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t);
4031   uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
4032   *stack_slot = address;
4033   set_register(sp, new_sp);
4034   return new_sp;
4035 }
4036 
4037 
PopAddress()4038 uintptr_t Simulator::PopAddress() {
4039   uintptr_t current_sp = get_register(sp);
4040   uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
4041   uintptr_t address = *stack_slot;
4042   set_register(sp, current_sp + sizeof(uintptr_t));
4043   return address;
4044 }
4045 }  // namespace internal
4046 }  // namespace v8
4047 
4048 #endif  // USE_SIMULATOR
4049 #endif  // V8_TARGET_ARCH_PPC
4050