1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <stdarg.h>
6 #include <stdlib.h>
7 #include <cmath>
8
9 #if V8_TARGET_ARCH_PPC
10
11 #include "src/assembler.h"
12 #include "src/base/bits.h"
13 #include "src/codegen.h"
14 #include "src/disasm.h"
15 #include "src/ppc/constants-ppc.h"
16 #include "src/ppc/frames-ppc.h"
17 #include "src/ppc/simulator-ppc.h"
18
19 #if defined(USE_SIMULATOR)
20
21 // Only build the simulator if not compiling for real PPC hardware.
22 namespace v8 {
23 namespace internal {
24
25 // This macro provides a platform independent use of sscanf. The reason for
26 // SScanF not being implemented in a platform independent way through
27 // ::v8::internal::OS in the same way as SNPrintF is that the
28 // Windows C Run-Time Library does not provide vsscanf.
29 #define SScanF sscanf // NOLINT
30
31 // The PPCDebugger class is used by the simulator while debugging simulated
32 // PowerPC code.
33 class PPCDebugger {
34 public:
PPCDebugger(Simulator * sim)35 explicit PPCDebugger(Simulator* sim) : sim_(sim) {}
36 ~PPCDebugger();
37
38 void Stop(Instruction* instr);
39 void Debug();
40
41 private:
42 static const Instr kBreakpointInstr = (TWI | 0x1f * B21);
43 static const Instr kNopInstr = (ORI); // ori, 0,0,0
44
45 Simulator* sim_;
46
47 intptr_t GetRegisterValue(int regnum);
48 double GetRegisterPairDoubleValue(int regnum);
49 double GetFPDoubleRegisterValue(int regnum);
50 bool GetValue(const char* desc, intptr_t* value);
51 bool GetFPDoubleValue(const char* desc, double* value);
52
53 // Set or delete a breakpoint. Returns true if successful.
54 bool SetBreakpoint(Instruction* break_pc);
55 bool DeleteBreakpoint(Instruction* break_pc);
56
57 // Undo and redo all breakpoints. This is needed to bracket disassembly and
58 // execution to skip past breakpoints when run from the debugger.
59 void UndoBreakpoints();
60 void RedoBreakpoints();
61 };
62
63
~PPCDebugger()64 PPCDebugger::~PPCDebugger() {}
65
66
67 #ifdef GENERATED_CODE_COVERAGE
68 static FILE* coverage_log = NULL;
69
70
InitializeCoverage()71 static void InitializeCoverage() {
72 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
73 if (file_name != NULL) {
74 coverage_log = fopen(file_name, "aw+");
75 }
76 }
77
78
Stop(Instruction * instr)79 void PPCDebugger::Stop(Instruction* instr) {
80 // Get the stop code.
81 uint32_t code = instr->SvcValue() & kStopCodeMask;
82 // Retrieve the encoded address, which comes just after this stop.
83 char** msg_address =
84 reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
85 char* msg = *msg_address;
86 DCHECK(msg != NULL);
87
88 // Update this stop description.
89 if (isWatchedStop(code) && !watched_stops_[code].desc) {
90 watched_stops_[code].desc = msg;
91 }
92
93 if (strlen(msg) > 0) {
94 if (coverage_log != NULL) {
95 fprintf(coverage_log, "%s\n", msg);
96 fflush(coverage_log);
97 }
98 // Overwrite the instruction and address with nops.
99 instr->SetInstructionBits(kNopInstr);
100 reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr);
101 }
102 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
103 }
104
105 #else // ndef GENERATED_CODE_COVERAGE
106
InitializeCoverage()107 static void InitializeCoverage() {}
108
109
Stop(Instruction * instr)110 void PPCDebugger::Stop(Instruction* instr) {
111 // Get the stop code.
112 // use of kStopCodeMask not right on PowerPC
113 uint32_t code = instr->SvcValue() & kStopCodeMask;
114 // Retrieve the encoded address, which comes just after this stop.
115 char* msg =
116 *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
117 // Update this stop description.
118 if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
119 sim_->watched_stops_[code].desc = msg;
120 }
121 // Print the stop message and code if it is not the default code.
122 if (code != kMaxStopCode) {
123 PrintF("Simulator hit stop %u: %s\n", code, msg);
124 } else {
125 PrintF("Simulator hit %s\n", msg);
126 }
127 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
128 Debug();
129 }
130 #endif
131
132
GetRegisterValue(int regnum)133 intptr_t PPCDebugger::GetRegisterValue(int regnum) {
134 return sim_->get_register(regnum);
135 }
136
137
GetRegisterPairDoubleValue(int regnum)138 double PPCDebugger::GetRegisterPairDoubleValue(int regnum) {
139 return sim_->get_double_from_register_pair(regnum);
140 }
141
142
GetFPDoubleRegisterValue(int regnum)143 double PPCDebugger::GetFPDoubleRegisterValue(int regnum) {
144 return sim_->get_double_from_d_register(regnum);
145 }
146
147
GetValue(const char * desc,intptr_t * value)148 bool PPCDebugger::GetValue(const char* desc, intptr_t* value) {
149 int regnum = Registers::Number(desc);
150 if (regnum != kNoRegister) {
151 *value = GetRegisterValue(regnum);
152 return true;
153 } else {
154 if (strncmp(desc, "0x", 2) == 0) {
155 return SScanF(desc + 2, "%" V8PRIxPTR,
156 reinterpret_cast<uintptr_t*>(value)) == 1;
157 } else {
158 return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) ==
159 1;
160 }
161 }
162 return false;
163 }
164
165
GetFPDoubleValue(const char * desc,double * value)166 bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) {
167 int regnum = DoubleRegisters::Number(desc);
168 if (regnum != kNoRegister) {
169 *value = sim_->get_double_from_d_register(regnum);
170 return true;
171 }
172 return false;
173 }
174
175
SetBreakpoint(Instruction * break_pc)176 bool PPCDebugger::SetBreakpoint(Instruction* break_pc) {
177 // Check if a breakpoint can be set. If not return without any side-effects.
178 if (sim_->break_pc_ != NULL) {
179 return false;
180 }
181
182 // Set the breakpoint.
183 sim_->break_pc_ = break_pc;
184 sim_->break_instr_ = break_pc->InstructionBits();
185 // Not setting the breakpoint instruction in the code itself. It will be set
186 // when the debugger shell continues.
187 return true;
188 }
189
190
DeleteBreakpoint(Instruction * break_pc)191 bool PPCDebugger::DeleteBreakpoint(Instruction* break_pc) {
192 if (sim_->break_pc_ != NULL) {
193 sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
194 }
195
196 sim_->break_pc_ = NULL;
197 sim_->break_instr_ = 0;
198 return true;
199 }
200
201
UndoBreakpoints()202 void PPCDebugger::UndoBreakpoints() {
203 if (sim_->break_pc_ != NULL) {
204 sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
205 }
206 }
207
208
RedoBreakpoints()209 void PPCDebugger::RedoBreakpoints() {
210 if (sim_->break_pc_ != NULL) {
211 sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
212 }
213 }
214
215
Debug()216 void PPCDebugger::Debug() {
217 intptr_t last_pc = -1;
218 bool done = false;
219
220 #define COMMAND_SIZE 63
221 #define ARG_SIZE 255
222
223 #define STR(a) #a
224 #define XSTR(a) STR(a)
225
226 char cmd[COMMAND_SIZE + 1];
227 char arg1[ARG_SIZE + 1];
228 char arg2[ARG_SIZE + 1];
229 char* argv[3] = {cmd, arg1, arg2};
230
231 // make sure to have a proper terminating character if reaching the limit
232 cmd[COMMAND_SIZE] = 0;
233 arg1[ARG_SIZE] = 0;
234 arg2[ARG_SIZE] = 0;
235
236 // Undo all set breakpoints while running in the debugger shell. This will
237 // make them invisible to all commands.
238 UndoBreakpoints();
239 // Disable tracing while simulating
240 bool trace = ::v8::internal::FLAG_trace_sim;
241 ::v8::internal::FLAG_trace_sim = false;
242
243 while (!done && !sim_->has_bad_pc()) {
244 if (last_pc != sim_->get_pc()) {
245 disasm::NameConverter converter;
246 disasm::Disassembler dasm(converter);
247 // use a reasonably large buffer
248 v8::internal::EmbeddedVector<char, 256> buffer;
249 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
250 PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start());
251 last_pc = sim_->get_pc();
252 }
253 char* line = ReadLine("sim> ");
254 if (line == NULL) {
255 break;
256 } else {
257 char* last_input = sim_->last_debugger_input();
258 if (strcmp(line, "\n") == 0 && last_input != NULL) {
259 line = last_input;
260 } else {
261 // Ownership is transferred to sim_;
262 sim_->set_last_debugger_input(line);
263 }
264 // Use sscanf to parse the individual parts of the command line. At the
265 // moment no command expects more than two parameters.
266 int argc = SScanF(line,
267 "%" XSTR(COMMAND_SIZE) "s "
268 "%" XSTR(ARG_SIZE) "s "
269 "%" XSTR(ARG_SIZE) "s",
270 cmd, arg1, arg2);
271 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
272 intptr_t value;
273
274 // If at a breakpoint, proceed past it.
275 if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
276 ->InstructionBits() == 0x7d821008) {
277 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
278 } else {
279 sim_->ExecuteInstruction(
280 reinterpret_cast<Instruction*>(sim_->get_pc()));
281 }
282
283 if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) {
284 for (int i = 1; i < value; i++) {
285 disasm::NameConverter converter;
286 disasm::Disassembler dasm(converter);
287 // use a reasonably large buffer
288 v8::internal::EmbeddedVector<char, 256> buffer;
289 dasm.InstructionDecode(buffer,
290 reinterpret_cast<byte*>(sim_->get_pc()));
291 PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(),
292 buffer.start());
293 sim_->ExecuteInstruction(
294 reinterpret_cast<Instruction*>(sim_->get_pc()));
295 }
296 }
297 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
298 // If at a breakpoint, proceed past it.
299 if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
300 ->InstructionBits() == 0x7d821008) {
301 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
302 } else {
303 // Execute the one instruction we broke at with breakpoints disabled.
304 sim_->ExecuteInstruction(
305 reinterpret_cast<Instruction*>(sim_->get_pc()));
306 }
307 // Leave the debugger shell.
308 done = true;
309 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
310 if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
311 intptr_t value;
312 double dvalue;
313 if (strcmp(arg1, "all") == 0) {
314 for (int i = 0; i < kNumRegisters; i++) {
315 value = GetRegisterValue(i);
316 PrintF(" %3s: %08" V8PRIxPTR,
317 Register::from_code(i).ToString(), value);
318 if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
319 (i % 2) == 0) {
320 dvalue = GetRegisterPairDoubleValue(i);
321 PrintF(" (%f)\n", dvalue);
322 } else if (i != 0 && !((i + 1) & 3)) {
323 PrintF("\n");
324 }
325 }
326 PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR
327 " "
328 "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n",
329 sim_->special_reg_pc_, sim_->special_reg_lr_,
330 sim_->special_reg_ctr_, sim_->special_reg_xer_,
331 sim_->condition_reg_);
332 } else if (strcmp(arg1, "alld") == 0) {
333 for (int i = 0; i < kNumRegisters; i++) {
334 value = GetRegisterValue(i);
335 PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
336 Register::from_code(i).ToString(), value, value);
337 if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
338 (i % 2) == 0) {
339 dvalue = GetRegisterPairDoubleValue(i);
340 PrintF(" (%f)\n", dvalue);
341 } else if (!((i + 1) % 2)) {
342 PrintF("\n");
343 }
344 }
345 PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR
346 " "
347 "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n",
348 sim_->special_reg_pc_, sim_->special_reg_lr_,
349 sim_->special_reg_ctr_, sim_->special_reg_xer_,
350 sim_->condition_reg_);
351 } else if (strcmp(arg1, "allf") == 0) {
352 for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
353 dvalue = GetFPDoubleRegisterValue(i);
354 uint64_t as_words = bit_cast<uint64_t>(dvalue);
355 PrintF("%3s: %f 0x%08x %08x\n",
356 DoubleRegister::from_code(i).ToString(), dvalue,
357 static_cast<uint32_t>(as_words >> 32),
358 static_cast<uint32_t>(as_words & 0xffffffff));
359 }
360 } else if (arg1[0] == 'r' &&
361 (arg1[1] >= '0' && arg1[1] <= '9' &&
362 (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' &&
363 arg1[3] == '\0')))) {
364 int regnum = strtoul(&arg1[1], 0, 10);
365 if (regnum != kNoRegister) {
366 value = GetRegisterValue(regnum);
367 PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
368 value);
369 } else {
370 PrintF("%s unrecognized\n", arg1);
371 }
372 } else {
373 if (GetValue(arg1, &value)) {
374 PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
375 value);
376 } else if (GetFPDoubleValue(arg1, &dvalue)) {
377 uint64_t as_words = bit_cast<uint64_t>(dvalue);
378 PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
379 static_cast<uint32_t>(as_words >> 32),
380 static_cast<uint32_t>(as_words & 0xffffffff));
381 } else {
382 PrintF("%s unrecognized\n", arg1);
383 }
384 }
385 } else {
386 PrintF("print <register>\n");
387 }
388 } else if ((strcmp(cmd, "po") == 0) ||
389 (strcmp(cmd, "printobject") == 0)) {
390 if (argc == 2) {
391 intptr_t value;
392 OFStream os(stdout);
393 if (GetValue(arg1, &value)) {
394 Object* obj = reinterpret_cast<Object*>(value);
395 os << arg1 << ": \n";
396 #ifdef DEBUG
397 obj->Print(os);
398 os << "\n";
399 #else
400 os << Brief(obj) << "\n";
401 #endif
402 } else {
403 os << arg1 << " unrecognized\n";
404 }
405 } else {
406 PrintF("printobject <value>\n");
407 }
408 } else if (strcmp(cmd, "setpc") == 0) {
409 intptr_t value;
410
411 if (!GetValue(arg1, &value)) {
412 PrintF("%s unrecognized\n", arg1);
413 continue;
414 }
415 sim_->set_pc(value);
416 } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
417 intptr_t* cur = NULL;
418 intptr_t* end = NULL;
419 int next_arg = 1;
420
421 if (strcmp(cmd, "stack") == 0) {
422 cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
423 } else { // "mem"
424 intptr_t value;
425 if (!GetValue(arg1, &value)) {
426 PrintF("%s unrecognized\n", arg1);
427 continue;
428 }
429 cur = reinterpret_cast<intptr_t*>(value);
430 next_arg++;
431 }
432
433 intptr_t words; // likely inaccurate variable name for 64bit
434 if (argc == next_arg) {
435 words = 10;
436 } else {
437 if (!GetValue(argv[next_arg], &words)) {
438 words = 10;
439 }
440 }
441 end = cur + words;
442
443 while (cur < end) {
444 PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR,
445 reinterpret_cast<intptr_t>(cur), *cur, *cur);
446 HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
447 intptr_t value = *cur;
448 Heap* current_heap = sim_->isolate_->heap();
449 if (((value & 1) == 0) || current_heap->Contains(obj)) {
450 PrintF(" (");
451 if ((value & 1) == 0) {
452 PrintF("smi %d", PlatformSmiTagging::SmiToInt(obj));
453 } else {
454 obj->ShortPrint();
455 }
456 PrintF(")");
457 }
458 PrintF("\n");
459 cur++;
460 }
461 } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
462 disasm::NameConverter converter;
463 disasm::Disassembler dasm(converter);
464 // use a reasonably large buffer
465 v8::internal::EmbeddedVector<char, 256> buffer;
466
467 byte* prev = NULL;
468 byte* cur = NULL;
469 byte* end = NULL;
470
471 if (argc == 1) {
472 cur = reinterpret_cast<byte*>(sim_->get_pc());
473 end = cur + (10 * Instruction::kInstrSize);
474 } else if (argc == 2) {
475 int regnum = Registers::Number(arg1);
476 if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
477 // The argument is an address or a register name.
478 intptr_t value;
479 if (GetValue(arg1, &value)) {
480 cur = reinterpret_cast<byte*>(value);
481 // Disassemble 10 instructions at <arg1>.
482 end = cur + (10 * Instruction::kInstrSize);
483 }
484 } else {
485 // The argument is the number of instructions.
486 intptr_t value;
487 if (GetValue(arg1, &value)) {
488 cur = reinterpret_cast<byte*>(sim_->get_pc());
489 // Disassemble <arg1> instructions.
490 end = cur + (value * Instruction::kInstrSize);
491 }
492 }
493 } else {
494 intptr_t value1;
495 intptr_t value2;
496 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
497 cur = reinterpret_cast<byte*>(value1);
498 end = cur + (value2 * Instruction::kInstrSize);
499 }
500 }
501
502 while (cur < end) {
503 prev = cur;
504 cur += dasm.InstructionDecode(buffer, cur);
505 PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev),
506 buffer.start());
507 }
508 } else if (strcmp(cmd, "gdb") == 0) {
509 PrintF("relinquishing control to gdb\n");
510 v8::base::OS::DebugBreak();
511 PrintF("regaining control from gdb\n");
512 } else if (strcmp(cmd, "break") == 0) {
513 if (argc == 2) {
514 intptr_t value;
515 if (GetValue(arg1, &value)) {
516 if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
517 PrintF("setting breakpoint failed\n");
518 }
519 } else {
520 PrintF("%s unrecognized\n", arg1);
521 }
522 } else {
523 PrintF("break <address>\n");
524 }
525 } else if (strcmp(cmd, "del") == 0) {
526 if (!DeleteBreakpoint(NULL)) {
527 PrintF("deleting breakpoint failed\n");
528 }
529 } else if (strcmp(cmd, "cr") == 0) {
530 PrintF("Condition reg: %08x\n", sim_->condition_reg_);
531 } else if (strcmp(cmd, "lr") == 0) {
532 PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_);
533 } else if (strcmp(cmd, "ctr") == 0) {
534 PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_);
535 } else if (strcmp(cmd, "xer") == 0) {
536 PrintF("XER: %08x\n", sim_->special_reg_xer_);
537 } else if (strcmp(cmd, "fpscr") == 0) {
538 PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_);
539 } else if (strcmp(cmd, "stop") == 0) {
540 intptr_t value;
541 intptr_t stop_pc =
542 sim_->get_pc() - (Instruction::kInstrSize + kPointerSize);
543 Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
544 Instruction* msg_address =
545 reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize);
546 if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
547 // Remove the current stop.
548 if (sim_->isStopInstruction(stop_instr)) {
549 stop_instr->SetInstructionBits(kNopInstr);
550 msg_address->SetInstructionBits(kNopInstr);
551 } else {
552 PrintF("Not at debugger stop.\n");
553 }
554 } else if (argc == 3) {
555 // Print information about all/the specified breakpoint(s).
556 if (strcmp(arg1, "info") == 0) {
557 if (strcmp(arg2, "all") == 0) {
558 PrintF("Stop information:\n");
559 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
560 sim_->PrintStopInfo(i);
561 }
562 } else if (GetValue(arg2, &value)) {
563 sim_->PrintStopInfo(value);
564 } else {
565 PrintF("Unrecognized argument.\n");
566 }
567 } else if (strcmp(arg1, "enable") == 0) {
568 // Enable all/the specified breakpoint(s).
569 if (strcmp(arg2, "all") == 0) {
570 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
571 sim_->EnableStop(i);
572 }
573 } else if (GetValue(arg2, &value)) {
574 sim_->EnableStop(value);
575 } else {
576 PrintF("Unrecognized argument.\n");
577 }
578 } else if (strcmp(arg1, "disable") == 0) {
579 // Disable all/the specified breakpoint(s).
580 if (strcmp(arg2, "all") == 0) {
581 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
582 sim_->DisableStop(i);
583 }
584 } else if (GetValue(arg2, &value)) {
585 sim_->DisableStop(value);
586 } else {
587 PrintF("Unrecognized argument.\n");
588 }
589 }
590 } else {
591 PrintF("Wrong usage. Use help command for more information.\n");
592 }
593 } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
594 ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
595 PrintF("Trace of executed instructions is %s\n",
596 ::v8::internal::FLAG_trace_sim ? "on" : "off");
597 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
598 PrintF("cont\n");
599 PrintF(" continue execution (alias 'c')\n");
600 PrintF("stepi [num instructions]\n");
601 PrintF(" step one/num instruction(s) (alias 'si')\n");
602 PrintF("print <register>\n");
603 PrintF(" print register content (alias 'p')\n");
604 PrintF(" use register name 'all' to display all integer registers\n");
605 PrintF(
606 " use register name 'alld' to display integer registers "
607 "with decimal values\n");
608 PrintF(" use register name 'rN' to display register number 'N'\n");
609 PrintF(" add argument 'fp' to print register pair double values\n");
610 PrintF(
611 " use register name 'allf' to display floating-point "
612 "registers\n");
613 PrintF("printobject <register>\n");
614 PrintF(" print an object from a register (alias 'po')\n");
615 PrintF("cr\n");
616 PrintF(" print condition register\n");
617 PrintF("lr\n");
618 PrintF(" print link register\n");
619 PrintF("ctr\n");
620 PrintF(" print ctr register\n");
621 PrintF("xer\n");
622 PrintF(" print XER\n");
623 PrintF("fpscr\n");
624 PrintF(" print FPSCR\n");
625 PrintF("stack [<num words>]\n");
626 PrintF(" dump stack content, default dump 10 words)\n");
627 PrintF("mem <address> [<num words>]\n");
628 PrintF(" dump memory content, default dump 10 words)\n");
629 PrintF("disasm [<instructions>]\n");
630 PrintF("disasm [<address/register>]\n");
631 PrintF("disasm [[<address/register>] <instructions>]\n");
632 PrintF(" disassemble code, default is 10 instructions\n");
633 PrintF(" from pc (alias 'di')\n");
634 PrintF("gdb\n");
635 PrintF(" enter gdb\n");
636 PrintF("break <address>\n");
637 PrintF(" set a break point on the address\n");
638 PrintF("del\n");
639 PrintF(" delete the breakpoint\n");
640 PrintF("trace (alias 't')\n");
641 PrintF(" toogle the tracing of all executed statements\n");
642 PrintF("stop feature:\n");
643 PrintF(" Description:\n");
644 PrintF(" Stops are debug instructions inserted by\n");
645 PrintF(" the Assembler::stop() function.\n");
646 PrintF(" When hitting a stop, the Simulator will\n");
647 PrintF(" stop and and give control to the PPCDebugger.\n");
648 PrintF(" The first %d stop codes are watched:\n",
649 Simulator::kNumOfWatchedStops);
650 PrintF(" - They can be enabled / disabled: the Simulator\n");
651 PrintF(" will / won't stop when hitting them.\n");
652 PrintF(" - The Simulator keeps track of how many times they \n");
653 PrintF(" are met. (See the info command.) Going over a\n");
654 PrintF(" disabled stop still increases its counter. \n");
655 PrintF(" Commands:\n");
656 PrintF(" stop info all/<code> : print infos about number <code>\n");
657 PrintF(" or all stop(s).\n");
658 PrintF(" stop enable/disable all/<code> : enables / disables\n");
659 PrintF(" all or number <code> stop(s)\n");
660 PrintF(" stop unstop\n");
661 PrintF(" ignore the stop instruction at the current location\n");
662 PrintF(" from now on\n");
663 } else {
664 PrintF("Unknown command: %s\n", cmd);
665 }
666 }
667 }
668
669 // Add all the breakpoints back to stop execution and enter the debugger
670 // shell when hit.
671 RedoBreakpoints();
672 // Restore tracing
673 ::v8::internal::FLAG_trace_sim = trace;
674
675 #undef COMMAND_SIZE
676 #undef ARG_SIZE
677
678 #undef STR
679 #undef XSTR
680 }
681
682
ICacheMatch(void * one,void * two)683 static bool ICacheMatch(void* one, void* two) {
684 DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
685 DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
686 return one == two;
687 }
688
689
ICacheHash(void * key)690 static uint32_t ICacheHash(void* key) {
691 return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
692 }
693
694
AllOnOnePage(uintptr_t start,int size)695 static bool AllOnOnePage(uintptr_t start, int size) {
696 intptr_t start_page = (start & ~CachePage::kPageMask);
697 intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
698 return start_page == end_page;
699 }
700
701
set_last_debugger_input(char * input)702 void Simulator::set_last_debugger_input(char* input) {
703 DeleteArray(last_debugger_input_);
704 last_debugger_input_ = input;
705 }
706
707
FlushICache(v8::internal::HashMap * i_cache,void * start_addr,size_t size)708 void Simulator::FlushICache(v8::internal::HashMap* i_cache, void* start_addr,
709 size_t size) {
710 intptr_t start = reinterpret_cast<intptr_t>(start_addr);
711 int intra_line = (start & CachePage::kLineMask);
712 start -= intra_line;
713 size += intra_line;
714 size = ((size - 1) | CachePage::kLineMask) + 1;
715 int offset = (start & CachePage::kPageMask);
716 while (!AllOnOnePage(start, size - 1)) {
717 int bytes_to_flush = CachePage::kPageSize - offset;
718 FlushOnePage(i_cache, start, bytes_to_flush);
719 start += bytes_to_flush;
720 size -= bytes_to_flush;
721 DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
722 offset = 0;
723 }
724 if (size != 0) {
725 FlushOnePage(i_cache, start, size);
726 }
727 }
728
729
GetCachePage(v8::internal::HashMap * i_cache,void * page)730 CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
731 v8::internal::HashMap::Entry* entry =
732 i_cache->LookupOrInsert(page, ICacheHash(page));
733 if (entry->value == NULL) {
734 CachePage* new_page = new CachePage();
735 entry->value = new_page;
736 }
737 return reinterpret_cast<CachePage*>(entry->value);
738 }
739
740
741 // Flush from start up to and not including start + size.
FlushOnePage(v8::internal::HashMap * i_cache,intptr_t start,int size)742 void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
743 int size) {
744 DCHECK(size <= CachePage::kPageSize);
745 DCHECK(AllOnOnePage(start, size - 1));
746 DCHECK((start & CachePage::kLineMask) == 0);
747 DCHECK((size & CachePage::kLineMask) == 0);
748 void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
749 int offset = (start & CachePage::kPageMask);
750 CachePage* cache_page = GetCachePage(i_cache, page);
751 char* valid_bytemap = cache_page->ValidityByte(offset);
752 memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
753 }
754
755
CheckICache(v8::internal::HashMap * i_cache,Instruction * instr)756 void Simulator::CheckICache(v8::internal::HashMap* i_cache,
757 Instruction* instr) {
758 intptr_t address = reinterpret_cast<intptr_t>(instr);
759 void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
760 void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
761 int offset = (address & CachePage::kPageMask);
762 CachePage* cache_page = GetCachePage(i_cache, page);
763 char* cache_valid_byte = cache_page->ValidityByte(offset);
764 bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
765 char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
766 if (cache_hit) {
767 // Check that the data in memory matches the contents of the I-cache.
768 CHECK_EQ(0,
769 memcmp(reinterpret_cast<void*>(instr),
770 cache_page->CachedData(offset), Instruction::kInstrSize));
771 } else {
772 // Cache miss. Load memory into the cache.
773 memcpy(cached_line, line, CachePage::kLineLength);
774 *cache_valid_byte = CachePage::LINE_VALID;
775 }
776 }
777
778
Initialize(Isolate * isolate)779 void Simulator::Initialize(Isolate* isolate) {
780 if (isolate->simulator_initialized()) return;
781 isolate->set_simulator_initialized(true);
782 ::v8::internal::ExternalReference::set_redirector(isolate,
783 &RedirectExternalReference);
784 }
785
786
Simulator(Isolate * isolate)787 Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
788 i_cache_ = isolate_->simulator_i_cache();
789 if (i_cache_ == NULL) {
790 i_cache_ = new v8::internal::HashMap(&ICacheMatch);
791 isolate_->set_simulator_i_cache(i_cache_);
792 }
793 Initialize(isolate);
794 // Set up simulator support first. Some of this information is needed to
795 // setup the architecture state.
796 #if V8_TARGET_ARCH_PPC64
797 size_t stack_size = FLAG_sim_stack_size * KB;
798 #else
799 size_t stack_size = MB; // allocate 1MB for stack
800 #endif
801 stack_size += 2 * stack_protection_size_;
802 stack_ = reinterpret_cast<char*>(malloc(stack_size));
803 pc_modified_ = false;
804 icount_ = 0;
805 break_pc_ = NULL;
806 break_instr_ = 0;
807
808 // Set up architecture state.
809 // All registers are initialized to zero to start with.
810 for (int i = 0; i < kNumGPRs; i++) {
811 registers_[i] = 0;
812 }
813 condition_reg_ = 0;
814 fp_condition_reg_ = 0;
815 special_reg_pc_ = 0;
816 special_reg_lr_ = 0;
817 special_reg_ctr_ = 0;
818
819 // Initializing FP registers.
820 for (int i = 0; i < kNumFPRs; i++) {
821 fp_registers_[i] = 0.0;
822 }
823
824 // The sp is initialized to point to the bottom (high address) of the
825 // allocated stack area. To be safe in potential stack underflows we leave
826 // some buffer below.
827 registers_[sp] =
828 reinterpret_cast<intptr_t>(stack_) + stack_size - stack_protection_size_;
829 InitializeCoverage();
830
831 last_debugger_input_ = NULL;
832 }
833
834
~Simulator()835 Simulator::~Simulator() { free(stack_); }
836
837
838 // When the generated code calls an external reference we need to catch that in
839 // the simulator. The external reference will be a function compiled for the
840 // host architecture. We need to call that function instead of trying to
841 // execute it with the simulator. We do that by redirecting the external
842 // reference to a svc (Supervisor Call) instruction that is handled by
843 // the simulator. We write the original destination of the jump just at a known
844 // offset from the svc instruction so the simulator knows what to call.
845 class Redirection {
846 public:
Redirection(Isolate * isolate,void * external_function,ExternalReference::Type type)847 Redirection(Isolate* isolate, void* external_function,
848 ExternalReference::Type type)
849 : external_function_(external_function),
850 swi_instruction_(rtCallRedirInstr | kCallRtRedirected),
851 type_(type),
852 next_(NULL) {
853 next_ = isolate->simulator_redirection();
854 Simulator::current(isolate)->FlushICache(
855 isolate->simulator_i_cache(),
856 reinterpret_cast<void*>(&swi_instruction_), Instruction::kInstrSize);
857 isolate->set_simulator_redirection(this);
858 }
859
address_of_swi_instruction()860 void* address_of_swi_instruction() {
861 return reinterpret_cast<void*>(&swi_instruction_);
862 }
863
external_function()864 void* external_function() { return external_function_; }
type()865 ExternalReference::Type type() { return type_; }
866
Get(Isolate * isolate,void * external_function,ExternalReference::Type type)867 static Redirection* Get(Isolate* isolate, void* external_function,
868 ExternalReference::Type type) {
869 Redirection* current = isolate->simulator_redirection();
870 for (; current != NULL; current = current->next_) {
871 if (current->external_function_ == external_function) {
872 DCHECK_EQ(current->type(), type);
873 return current;
874 }
875 }
876 return new Redirection(isolate, external_function, type);
877 }
878
FromSwiInstruction(Instruction * swi_instruction)879 static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
880 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
881 char* addr_of_redirection =
882 addr_of_swi - offsetof(Redirection, swi_instruction_);
883 return reinterpret_cast<Redirection*>(addr_of_redirection);
884 }
885
ReverseRedirection(intptr_t reg)886 static void* ReverseRedirection(intptr_t reg) {
887 Redirection* redirection = FromSwiInstruction(
888 reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg)));
889 return redirection->external_function();
890 }
891
DeleteChain(Redirection * redirection)892 static void DeleteChain(Redirection* redirection) {
893 while (redirection != nullptr) {
894 Redirection* next = redirection->next_;
895 delete redirection;
896 redirection = next;
897 }
898 }
899
900 private:
901 void* external_function_;
902 uint32_t swi_instruction_;
903 ExternalReference::Type type_;
904 Redirection* next_;
905 };
906
907
908 // static
TearDown(HashMap * i_cache,Redirection * first)909 void Simulator::TearDown(HashMap* i_cache, Redirection* first) {
910 Redirection::DeleteChain(first);
911 if (i_cache != nullptr) {
912 for (HashMap::Entry* entry = i_cache->Start(); entry != nullptr;
913 entry = i_cache->Next(entry)) {
914 delete static_cast<CachePage*>(entry->value);
915 }
916 delete i_cache;
917 }
918 }
919
920
RedirectExternalReference(Isolate * isolate,void * external_function,ExternalReference::Type type)921 void* Simulator::RedirectExternalReference(Isolate* isolate,
922 void* external_function,
923 ExternalReference::Type type) {
924 Redirection* redirection = Redirection::Get(isolate, external_function, type);
925 return redirection->address_of_swi_instruction();
926 }
927
928
929 // Get the active Simulator for the current thread.
current(Isolate * isolate)930 Simulator* Simulator::current(Isolate* isolate) {
931 v8::internal::Isolate::PerIsolateThreadData* isolate_data =
932 isolate->FindOrAllocatePerThreadDataForThisThread();
933 DCHECK(isolate_data != NULL);
934
935 Simulator* sim = isolate_data->simulator();
936 if (sim == NULL) {
937 // TODO(146): delete the simulator object when a thread/isolate goes away.
938 sim = new Simulator(isolate);
939 isolate_data->set_simulator(sim);
940 }
941 return sim;
942 }
943
944
945 // Sets the register in the architecture state.
set_register(int reg,intptr_t value)946 void Simulator::set_register(int reg, intptr_t value) {
947 DCHECK((reg >= 0) && (reg < kNumGPRs));
948 registers_[reg] = value;
949 }
950
951
952 // Get the register from the architecture state.
get_register(int reg) const953 intptr_t Simulator::get_register(int reg) const {
954 DCHECK((reg >= 0) && (reg < kNumGPRs));
955 // Stupid code added to avoid bug in GCC.
956 // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
957 if (reg >= kNumGPRs) return 0;
958 // End stupid code.
959 return registers_[reg];
960 }
961
962
get_double_from_register_pair(int reg)963 double Simulator::get_double_from_register_pair(int reg) {
964 DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));
965
966 double dm_val = 0.0;
967 #if !V8_TARGET_ARCH_PPC64 // doesn't make sense in 64bit mode
968 // Read the bits from the unsigned integer register_[] array
969 // into the double precision floating point value and return it.
970 char buffer[sizeof(fp_registers_[0])];
971 memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0]));
972 memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
973 #endif
974 return (dm_val);
975 }
976
977
978 // Raw access to the PC register.
set_pc(intptr_t value)979 void Simulator::set_pc(intptr_t value) {
980 pc_modified_ = true;
981 special_reg_pc_ = value;
982 }
983
984
has_bad_pc() const985 bool Simulator::has_bad_pc() const {
986 return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
987 }
988
989
990 // Raw access to the PC register without the special adjustment when reading.
get_pc() const991 intptr_t Simulator::get_pc() const { return special_reg_pc_; }
992
993
994 // Runtime FP routines take:
995 // - two double arguments
996 // - one double argument and zero or one integer arguments.
997 // All are consructed here from d1, d2 and r3.
GetFpArgs(double * x,double * y,intptr_t * z)998 void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
999 *x = get_double_from_d_register(1);
1000 *y = get_double_from_d_register(2);
1001 *z = get_register(3);
1002 }
1003
1004
1005 // The return value is in d1.
SetFpResult(const double & result)1006 void Simulator::SetFpResult(const double& result) {
1007 set_d_register_from_double(1, result);
1008 }
1009
1010
TrashCallerSaveRegisters()1011 void Simulator::TrashCallerSaveRegisters() {
1012 // We don't trash the registers with the return value.
1013 #if 0 // A good idea to trash volatile registers, needs to be done
1014 registers_[2] = 0x50Bad4U;
1015 registers_[3] = 0x50Bad4U;
1016 registers_[12] = 0x50Bad4U;
1017 #endif
1018 }
1019
1020
ReadWU(intptr_t addr,Instruction * instr)1021 uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) {
1022 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
1023 return *ptr;
1024 }
1025
1026
ReadW(intptr_t addr,Instruction * instr)1027 int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) {
1028 int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1029 return *ptr;
1030 }
1031
1032
WriteW(intptr_t addr,uint32_t value,Instruction * instr)1033 void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) {
1034 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
1035 *ptr = value;
1036 return;
1037 }
1038
1039
WriteW(intptr_t addr,int32_t value,Instruction * instr)1040 void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) {
1041 int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1042 *ptr = value;
1043 return;
1044 }
1045
1046
ReadHU(intptr_t addr,Instruction * instr)1047 uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) {
1048 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1049 return *ptr;
1050 }
1051
1052
ReadH(intptr_t addr,Instruction * instr)1053 int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) {
1054 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1055 return *ptr;
1056 }
1057
1058
WriteH(intptr_t addr,uint16_t value,Instruction * instr)1059 void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) {
1060 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1061 *ptr = value;
1062 return;
1063 }
1064
1065
WriteH(intptr_t addr,int16_t value,Instruction * instr)1066 void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) {
1067 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1068 *ptr = value;
1069 return;
1070 }
1071
1072
ReadBU(intptr_t addr)1073 uint8_t Simulator::ReadBU(intptr_t addr) {
1074 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1075 return *ptr;
1076 }
1077
1078
ReadB(intptr_t addr)1079 int8_t Simulator::ReadB(intptr_t addr) {
1080 int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1081 return *ptr;
1082 }
1083
1084
WriteB(intptr_t addr,uint8_t value)1085 void Simulator::WriteB(intptr_t addr, uint8_t value) {
1086 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1087 *ptr = value;
1088 }
1089
1090
WriteB(intptr_t addr,int8_t value)1091 void Simulator::WriteB(intptr_t addr, int8_t value) {
1092 int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1093 *ptr = value;
1094 }
1095
1096
ReadDW(intptr_t addr)1097 intptr_t* Simulator::ReadDW(intptr_t addr) {
1098 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
1099 return ptr;
1100 }
1101
1102
WriteDW(intptr_t addr,int64_t value)1103 void Simulator::WriteDW(intptr_t addr, int64_t value) {
1104 int64_t* ptr = reinterpret_cast<int64_t*>(addr);
1105 *ptr = value;
1106 return;
1107 }
1108
1109
1110 // Returns the limit of the stack area to enable checking for stack overflows.
StackLimit(uintptr_t c_limit) const1111 uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
1112 // The simulator uses a separate JS stack. If we have exhausted the C stack,
1113 // we also drop down the JS limit to reflect the exhaustion on the JS stack.
1114 if (GetCurrentStackPosition() < c_limit) {
1115 return reinterpret_cast<uintptr_t>(get_sp());
1116 }
1117
1118 // Otherwise the limit is the JS stack. Leave a safety margin to prevent
1119 // overrunning the stack when pushing values.
1120 return reinterpret_cast<uintptr_t>(stack_) + stack_protection_size_;
1121 }
1122
1123
1124 // Unsupported instructions use Format to print an error and stop execution.
Format(Instruction * instr,const char * format)1125 void Simulator::Format(Instruction* instr, const char* format) {
1126 PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
1127 reinterpret_cast<intptr_t>(instr), format);
1128 UNIMPLEMENTED();
1129 }
1130
1131
1132 // Calculate C flag value for additions.
CarryFrom(int32_t left,int32_t right,int32_t carry)1133 bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
1134 uint32_t uleft = static_cast<uint32_t>(left);
1135 uint32_t uright = static_cast<uint32_t>(right);
1136 uint32_t urest = 0xffffffffU - uleft;
1137
1138 return (uright > urest) ||
1139 (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
1140 }
1141
1142
1143 // Calculate C flag value for subtractions.
BorrowFrom(int32_t left,int32_t right)1144 bool Simulator::BorrowFrom(int32_t left, int32_t right) {
1145 uint32_t uleft = static_cast<uint32_t>(left);
1146 uint32_t uright = static_cast<uint32_t>(right);
1147
1148 return (uright > uleft);
1149 }
1150
1151
1152 // Calculate V flag value for additions and subtractions.
OverflowFrom(int32_t alu_out,int32_t left,int32_t right,bool addition)1153 bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
1154 bool addition) {
1155 bool overflow;
1156 if (addition) {
1157 // operands have the same sign
1158 overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
1159 // and operands and result have different sign
1160 &&
1161 ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1162 } else {
1163 // operands have different signs
1164 overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
1165 // and first operand and result have different signs
1166 &&
1167 ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1168 }
1169 return overflow;
1170 }
1171
1172
1173 #if V8_TARGET_ARCH_PPC64
1174 struct ObjectPair {
1175 intptr_t x;
1176 intptr_t y;
1177 };
1178
1179
decodeObjectPair(ObjectPair * pair,intptr_t * x,intptr_t * y)1180 static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
1181 *x = pair->x;
1182 *y = pair->y;
1183 }
1184 #else
1185 typedef uint64_t ObjectPair;
1186
1187
decodeObjectPair(ObjectPair * pair,intptr_t * x,intptr_t * y)1188 static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
1189 #if V8_TARGET_BIG_ENDIAN
1190 *x = static_cast<int32_t>(*pair >> 32);
1191 *y = static_cast<int32_t>(*pair);
1192 #else
1193 *x = static_cast<int32_t>(*pair);
1194 *y = static_cast<int32_t>(*pair >> 32);
1195 #endif
1196 }
1197 #endif
1198
1199 // Calls into the V8 runtime are based on this very simple interface.
1200 // Note: To be able to return two values from some calls the code in
1201 // runtime.cc uses the ObjectPair which is essentially two pointer
1202 // values stuffed into a structure. With the code below we assume that
1203 // all runtime calls return this pair. If they don't, the r4 result
1204 // register contains a bogus value, which is fine because it is
1205 // caller-saved.
1206 typedef ObjectPair (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
1207 intptr_t arg2, intptr_t arg3,
1208 intptr_t arg4, intptr_t arg5);
1209
1210 // These prototypes handle the four types of FP calls.
1211 typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
1212 typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
1213 typedef double (*SimulatorRuntimeFPCall)(double darg0);
1214 typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0);
1215
1216 // This signature supports direct call in to API function native callback
1217 // (refer to InvocationCallback in v8.h).
1218 typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0);
1219 typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1);
1220
1221 // This signature supports direct call to accessor getter callback.
1222 typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1);
1223 typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0,
1224 intptr_t arg1, void* arg2);
1225
1226 // Software interrupt instructions are used by the simulator to call into the
1227 // C-based V8 runtime.
SoftwareInterrupt(Instruction * instr)1228 void Simulator::SoftwareInterrupt(Instruction* instr) {
1229 int svc = instr->SvcValue();
1230 switch (svc) {
1231 case kCallRtRedirected: {
1232 // Check if stack is aligned. Error if not aligned is reported below to
1233 // include information on the function called.
1234 bool stack_aligned =
1235 (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
1236 0;
1237 Redirection* redirection = Redirection::FromSwiInstruction(instr);
1238 const int kArgCount = 6;
1239 int arg0_regnum = 3;
1240 #if !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
1241 intptr_t result_buffer = 0;
1242 if (redirection->type() == ExternalReference::BUILTIN_OBJECTPAIR_CALL) {
1243 result_buffer = get_register(r3);
1244 arg0_regnum++;
1245 }
1246 #endif
1247 intptr_t arg[kArgCount];
1248 for (int i = 0; i < kArgCount; i++) {
1249 arg[i] = get_register(arg0_regnum + i);
1250 }
1251 bool fp_call =
1252 (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
1253 (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
1254 (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
1255 (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
1256 // This is dodgy but it works because the C entry stubs are never moved.
1257 // See comment in codegen-arm.cc and bug 1242173.
1258 intptr_t saved_lr = special_reg_lr_;
1259 intptr_t external =
1260 reinterpret_cast<intptr_t>(redirection->external_function());
1261 if (fp_call) {
1262 double dval0, dval1; // one or two double parameters
1263 intptr_t ival; // zero or one integer parameters
1264 int iresult = 0; // integer return value
1265 double dresult = 0; // double return value
1266 GetFpArgs(&dval0, &dval1, &ival);
1267 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1268 SimulatorRuntimeCall generic_target =
1269 reinterpret_cast<SimulatorRuntimeCall>(external);
1270 switch (redirection->type()) {
1271 case ExternalReference::BUILTIN_FP_FP_CALL:
1272 case ExternalReference::BUILTIN_COMPARE_CALL:
1273 PrintF("Call to host function at %p with args %f, %f",
1274 FUNCTION_ADDR(generic_target), dval0, dval1);
1275 break;
1276 case ExternalReference::BUILTIN_FP_CALL:
1277 PrintF("Call to host function at %p with arg %f",
1278 FUNCTION_ADDR(generic_target), dval0);
1279 break;
1280 case ExternalReference::BUILTIN_FP_INT_CALL:
1281 PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
1282 FUNCTION_ADDR(generic_target), dval0, ival);
1283 break;
1284 default:
1285 UNREACHABLE();
1286 break;
1287 }
1288 if (!stack_aligned) {
1289 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1290 get_register(sp));
1291 }
1292 PrintF("\n");
1293 }
1294 CHECK(stack_aligned);
1295 switch (redirection->type()) {
1296 case ExternalReference::BUILTIN_COMPARE_CALL: {
1297 SimulatorRuntimeCompareCall target =
1298 reinterpret_cast<SimulatorRuntimeCompareCall>(external);
1299 iresult = target(dval0, dval1);
1300 set_register(r3, iresult);
1301 break;
1302 }
1303 case ExternalReference::BUILTIN_FP_FP_CALL: {
1304 SimulatorRuntimeFPFPCall target =
1305 reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
1306 dresult = target(dval0, dval1);
1307 SetFpResult(dresult);
1308 break;
1309 }
1310 case ExternalReference::BUILTIN_FP_CALL: {
1311 SimulatorRuntimeFPCall target =
1312 reinterpret_cast<SimulatorRuntimeFPCall>(external);
1313 dresult = target(dval0);
1314 SetFpResult(dresult);
1315 break;
1316 }
1317 case ExternalReference::BUILTIN_FP_INT_CALL: {
1318 SimulatorRuntimeFPIntCall target =
1319 reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
1320 dresult = target(dval0, ival);
1321 SetFpResult(dresult);
1322 break;
1323 }
1324 default:
1325 UNREACHABLE();
1326 break;
1327 }
1328 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1329 switch (redirection->type()) {
1330 case ExternalReference::BUILTIN_COMPARE_CALL:
1331 PrintF("Returned %08x\n", iresult);
1332 break;
1333 case ExternalReference::BUILTIN_FP_FP_CALL:
1334 case ExternalReference::BUILTIN_FP_CALL:
1335 case ExternalReference::BUILTIN_FP_INT_CALL:
1336 PrintF("Returned %f\n", dresult);
1337 break;
1338 default:
1339 UNREACHABLE();
1340 break;
1341 }
1342 }
1343 } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
1344 // See callers of MacroAssembler::CallApiFunctionAndReturn for
1345 // explanation of register usage.
1346 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1347 PrintF("Call to host function at %p args %08" V8PRIxPTR,
1348 reinterpret_cast<void*>(external), arg[0]);
1349 if (!stack_aligned) {
1350 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1351 get_register(sp));
1352 }
1353 PrintF("\n");
1354 }
1355 CHECK(stack_aligned);
1356 SimulatorRuntimeDirectApiCall target =
1357 reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
1358 target(arg[0]);
1359 } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
1360 // See callers of MacroAssembler::CallApiFunctionAndReturn for
1361 // explanation of register usage.
1362 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1363 PrintF("Call to host function at %p args %08" V8PRIxPTR
1364 " %08" V8PRIxPTR,
1365 reinterpret_cast<void*>(external), arg[0], arg[1]);
1366 if (!stack_aligned) {
1367 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1368 get_register(sp));
1369 }
1370 PrintF("\n");
1371 }
1372 CHECK(stack_aligned);
1373 SimulatorRuntimeProfilingApiCall target =
1374 reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
1375 target(arg[0], Redirection::ReverseRedirection(arg[1]));
1376 } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
1377 // See callers of MacroAssembler::CallApiFunctionAndReturn for
1378 // explanation of register usage.
1379 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1380 PrintF("Call to host function at %p args %08" V8PRIxPTR
1381 " %08" V8PRIxPTR,
1382 reinterpret_cast<void*>(external), arg[0], arg[1]);
1383 if (!stack_aligned) {
1384 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1385 get_register(sp));
1386 }
1387 PrintF("\n");
1388 }
1389 CHECK(stack_aligned);
1390 SimulatorRuntimeDirectGetterCall target =
1391 reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
1392 #if !ABI_PASSES_HANDLES_IN_REGS
1393 arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
1394 #endif
1395 target(arg[0], arg[1]);
1396 } else if (redirection->type() ==
1397 ExternalReference::PROFILING_GETTER_CALL) {
1398 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1399 PrintF("Call to host function at %p args %08" V8PRIxPTR
1400 " %08" V8PRIxPTR " %08" V8PRIxPTR,
1401 reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]);
1402 if (!stack_aligned) {
1403 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1404 get_register(sp));
1405 }
1406 PrintF("\n");
1407 }
1408 CHECK(stack_aligned);
1409 SimulatorRuntimeProfilingGetterCall target =
1410 reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
1411 #if !ABI_PASSES_HANDLES_IN_REGS
1412 arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
1413 #endif
1414 target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2]));
1415 } else {
1416 // builtin call.
1417 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1418 SimulatorRuntimeCall target =
1419 reinterpret_cast<SimulatorRuntimeCall>(external);
1420 PrintF(
1421 "Call to host function at %p,\n"
1422 "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
1423 ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR,
1424 FUNCTION_ADDR(target), arg[0], arg[1], arg[2], arg[3], arg[4],
1425 arg[5]);
1426 if (!stack_aligned) {
1427 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1428 get_register(sp));
1429 }
1430 PrintF("\n");
1431 }
1432 CHECK(stack_aligned);
1433 DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
1434 SimulatorRuntimeCall target =
1435 reinterpret_cast<SimulatorRuntimeCall>(external);
1436 ObjectPair result =
1437 target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
1438 intptr_t x;
1439 intptr_t y;
1440 decodeObjectPair(&result, &x, &y);
1441 if (::v8::internal::FLAG_trace_sim) {
1442 PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y);
1443 }
1444 set_register(r3, x);
1445 set_register(r4, y);
1446 }
1447 set_pc(saved_lr);
1448 break;
1449 }
1450 case kBreakpoint: {
1451 PPCDebugger dbg(this);
1452 dbg.Debug();
1453 break;
1454 }
1455 // stop uses all codes greater than 1 << 23.
1456 default: {
1457 if (svc >= (1 << 23)) {
1458 uint32_t code = svc & kStopCodeMask;
1459 if (isWatchedStop(code)) {
1460 IncreaseStopCounter(code);
1461 }
1462 // Stop if it is enabled, otherwise go on jumping over the stop
1463 // and the message address.
1464 if (isEnabledStop(code)) {
1465 PPCDebugger dbg(this);
1466 dbg.Stop(instr);
1467 } else {
1468 set_pc(get_pc() + Instruction::kInstrSize + kPointerSize);
1469 }
1470 } else {
1471 // This is not a valid svc code.
1472 UNREACHABLE();
1473 break;
1474 }
1475 }
1476 }
1477 }
1478
1479
1480 // Stop helper functions.
isStopInstruction(Instruction * instr)1481 bool Simulator::isStopInstruction(Instruction* instr) {
1482 return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
1483 }
1484
1485
isWatchedStop(uint32_t code)1486 bool Simulator::isWatchedStop(uint32_t code) {
1487 DCHECK(code <= kMaxStopCode);
1488 return code < kNumOfWatchedStops;
1489 }
1490
1491
isEnabledStop(uint32_t code)1492 bool Simulator::isEnabledStop(uint32_t code) {
1493 DCHECK(code <= kMaxStopCode);
1494 // Unwatched stops are always enabled.
1495 return !isWatchedStop(code) ||
1496 !(watched_stops_[code].count & kStopDisabledBit);
1497 }
1498
1499
EnableStop(uint32_t code)1500 void Simulator::EnableStop(uint32_t code) {
1501 DCHECK(isWatchedStop(code));
1502 if (!isEnabledStop(code)) {
1503 watched_stops_[code].count &= ~kStopDisabledBit;
1504 }
1505 }
1506
1507
DisableStop(uint32_t code)1508 void Simulator::DisableStop(uint32_t code) {
1509 DCHECK(isWatchedStop(code));
1510 if (isEnabledStop(code)) {
1511 watched_stops_[code].count |= kStopDisabledBit;
1512 }
1513 }
1514
1515
IncreaseStopCounter(uint32_t code)1516 void Simulator::IncreaseStopCounter(uint32_t code) {
1517 DCHECK(code <= kMaxStopCode);
1518 DCHECK(isWatchedStop(code));
1519 if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
1520 PrintF(
1521 "Stop counter for code %i has overflowed.\n"
1522 "Enabling this code and reseting the counter to 0.\n",
1523 code);
1524 watched_stops_[code].count = 0;
1525 EnableStop(code);
1526 } else {
1527 watched_stops_[code].count++;
1528 }
1529 }
1530
1531
1532 // Print a stop status.
PrintStopInfo(uint32_t code)1533 void Simulator::PrintStopInfo(uint32_t code) {
1534 DCHECK(code <= kMaxStopCode);
1535 if (!isWatchedStop(code)) {
1536 PrintF("Stop not watched.");
1537 } else {
1538 const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
1539 int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
1540 // Don't print the state of unused breakpoints.
1541 if (count != 0) {
1542 if (watched_stops_[code].desc) {
1543 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
1544 state, count, watched_stops_[code].desc);
1545 } else {
1546 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
1547 count);
1548 }
1549 }
1550 }
1551 }
1552
1553
SetCR0(intptr_t result,bool setSO)1554 void Simulator::SetCR0(intptr_t result, bool setSO) {
1555 int bf = 0;
1556 if (result < 0) {
1557 bf |= 0x80000000;
1558 }
1559 if (result > 0) {
1560 bf |= 0x40000000;
1561 }
1562 if (result == 0) {
1563 bf |= 0x20000000;
1564 }
1565 if (setSO) {
1566 bf |= 0x10000000;
1567 }
1568 condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
1569 }
1570
1571
ExecuteBranchConditional(Instruction * instr,BCType type)1572 void Simulator::ExecuteBranchConditional(Instruction* instr, BCType type) {
1573 int bo = instr->Bits(25, 21) << 21;
1574 int condition_bit = instr->Bits(20, 16);
1575 int condition_mask = 0x80000000 >> condition_bit;
1576 switch (bo) {
1577 case DCBNZF: // Decrement CTR; branch if CTR != 0 and condition false
1578 case DCBEZF: // Decrement CTR; branch if CTR == 0 and condition false
1579 UNIMPLEMENTED();
1580 case BF: { // Branch if condition false
1581 if (condition_reg_ & condition_mask) return;
1582 break;
1583 }
1584 case DCBNZT: // Decrement CTR; branch if CTR != 0 and condition true
1585 case DCBEZT: // Decrement CTR; branch if CTR == 0 and condition true
1586 UNIMPLEMENTED();
1587 case BT: { // Branch if condition true
1588 if (!(condition_reg_ & condition_mask)) return;
1589 break;
1590 }
1591 case DCBNZ: // Decrement CTR; branch if CTR != 0
1592 case DCBEZ: // Decrement CTR; branch if CTR == 0
1593 special_reg_ctr_ -= 1;
1594 if ((special_reg_ctr_ == 0) != (bo == DCBEZ)) return;
1595 break;
1596 case BA: { // Branch always
1597 break;
1598 }
1599 default:
1600 UNIMPLEMENTED(); // Invalid encoding
1601 }
1602
1603 intptr_t old_pc = get_pc();
1604
1605 switch (type) {
1606 case BC_OFFSET: {
1607 int offset = (instr->Bits(15, 2) << 18) >> 16;
1608 set_pc(old_pc + offset);
1609 break;
1610 }
1611 case BC_LINK_REG:
1612 set_pc(special_reg_lr_);
1613 break;
1614 case BC_CTR_REG:
1615 set_pc(special_reg_ctr_);
1616 break;
1617 }
1618
1619 if (instr->Bit(0) == 1) { // LK flag set
1620 special_reg_lr_ = old_pc + 4;
1621 }
1622 }
1623
1624
1625 // Handle execution based on instruction types.
ExecuteExt1(Instruction * instr)1626 void Simulator::ExecuteExt1(Instruction* instr) {
1627 switch (instr->Bits(10, 1) << 1) {
1628 case MCRF:
1629 UNIMPLEMENTED(); // Not used by V8.
1630 case BCLRX:
1631 ExecuteBranchConditional(instr, BC_LINK_REG);
1632 break;
1633 case BCCTRX:
1634 ExecuteBranchConditional(instr, BC_CTR_REG);
1635 break;
1636 case CRNOR:
1637 case RFI:
1638 case CRANDC:
1639 UNIMPLEMENTED();
1640 case ISYNC: {
1641 // todo - simulate isync
1642 break;
1643 }
1644 case CRXOR: {
1645 int bt = instr->Bits(25, 21);
1646 int ba = instr->Bits(20, 16);
1647 int bb = instr->Bits(15, 11);
1648 int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
1649 int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
1650 int bt_val = ba_val ^ bb_val;
1651 bt_val = bt_val << (31 - bt); // shift bit to correct destination
1652 condition_reg_ &= ~(0x80000000 >> bt);
1653 condition_reg_ |= bt_val;
1654 break;
1655 }
1656 case CREQV: {
1657 int bt = instr->Bits(25, 21);
1658 int ba = instr->Bits(20, 16);
1659 int bb = instr->Bits(15, 11);
1660 int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
1661 int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
1662 int bt_val = 1 - (ba_val ^ bb_val);
1663 bt_val = bt_val << (31 - bt); // shift bit to correct destination
1664 condition_reg_ &= ~(0x80000000 >> bt);
1665 condition_reg_ |= bt_val;
1666 break;
1667 }
1668 case CRNAND:
1669 case CRAND:
1670 case CRORC:
1671 case CROR:
1672 default: {
1673 UNIMPLEMENTED(); // Not used by V8.
1674 }
1675 }
1676 }
1677
1678
ExecuteExt2_10bit(Instruction * instr)1679 bool Simulator::ExecuteExt2_10bit(Instruction* instr) {
1680 bool found = true;
1681
1682 int opcode = instr->Bits(10, 1) << 1;
1683 switch (opcode) {
1684 case SRWX: {
1685 int rs = instr->RSValue();
1686 int ra = instr->RAValue();
1687 int rb = instr->RBValue();
1688 uint32_t rs_val = get_register(rs);
1689 uintptr_t rb_val = get_register(rb);
1690 intptr_t result = rs_val >> (rb_val & 0x3f);
1691 set_register(ra, result);
1692 if (instr->Bit(0)) { // RC bit set
1693 SetCR0(result);
1694 }
1695 break;
1696 }
1697 #if V8_TARGET_ARCH_PPC64
1698 case SRDX: {
1699 int rs = instr->RSValue();
1700 int ra = instr->RAValue();
1701 int rb = instr->RBValue();
1702 uintptr_t rs_val = get_register(rs);
1703 uintptr_t rb_val = get_register(rb);
1704 intptr_t result = rs_val >> (rb_val & 0x7f);
1705 set_register(ra, result);
1706 if (instr->Bit(0)) { // RC bit set
1707 SetCR0(result);
1708 }
1709 break;
1710 }
1711 #endif
1712 case SRAW: {
1713 int rs = instr->RSValue();
1714 int ra = instr->RAValue();
1715 int rb = instr->RBValue();
1716 int32_t rs_val = get_register(rs);
1717 intptr_t rb_val = get_register(rb);
1718 intptr_t result = rs_val >> (rb_val & 0x3f);
1719 set_register(ra, result);
1720 if (instr->Bit(0)) { // RC bit set
1721 SetCR0(result);
1722 }
1723 break;
1724 }
1725 #if V8_TARGET_ARCH_PPC64
1726 case SRAD: {
1727 int rs = instr->RSValue();
1728 int ra = instr->RAValue();
1729 int rb = instr->RBValue();
1730 intptr_t rs_val = get_register(rs);
1731 intptr_t rb_val = get_register(rb);
1732 intptr_t result = rs_val >> (rb_val & 0x7f);
1733 set_register(ra, result);
1734 if (instr->Bit(0)) { // RC bit set
1735 SetCR0(result);
1736 }
1737 break;
1738 }
1739 #endif
1740 case SRAWIX: {
1741 int ra = instr->RAValue();
1742 int rs = instr->RSValue();
1743 int sh = instr->Bits(15, 11);
1744 int32_t rs_val = get_register(rs);
1745 intptr_t result = rs_val >> sh;
1746 set_register(ra, result);
1747 if (instr->Bit(0)) { // RC bit set
1748 SetCR0(result);
1749 }
1750 break;
1751 }
1752 #if V8_TARGET_ARCH_PPC64
1753 case EXTSW: {
1754 const int shift = kBitsPerPointer - 32;
1755 int ra = instr->RAValue();
1756 int rs = instr->RSValue();
1757 intptr_t rs_val = get_register(rs);
1758 intptr_t ra_val = (rs_val << shift) >> shift;
1759 set_register(ra, ra_val);
1760 if (instr->Bit(0)) { // RC bit set
1761 SetCR0(ra_val);
1762 }
1763 break;
1764 }
1765 #endif
1766 case EXTSH: {
1767 const int shift = kBitsPerPointer - 16;
1768 int ra = instr->RAValue();
1769 int rs = instr->RSValue();
1770 intptr_t rs_val = get_register(rs);
1771 intptr_t ra_val = (rs_val << shift) >> shift;
1772 set_register(ra, ra_val);
1773 if (instr->Bit(0)) { // RC bit set
1774 SetCR0(ra_val);
1775 }
1776 break;
1777 }
1778 case EXTSB: {
1779 const int shift = kBitsPerPointer - 8;
1780 int ra = instr->RAValue();
1781 int rs = instr->RSValue();
1782 intptr_t rs_val = get_register(rs);
1783 intptr_t ra_val = (rs_val << shift) >> shift;
1784 set_register(ra, ra_val);
1785 if (instr->Bit(0)) { // RC bit set
1786 SetCR0(ra_val);
1787 }
1788 break;
1789 }
1790 case LFSUX:
1791 case LFSX: {
1792 int frt = instr->RTValue();
1793 int ra = instr->RAValue();
1794 int rb = instr->RBValue();
1795 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1796 intptr_t rb_val = get_register(rb);
1797 int32_t val = ReadW(ra_val + rb_val, instr);
1798 float* fptr = reinterpret_cast<float*>(&val);
1799 set_d_register_from_double(frt, static_cast<double>(*fptr));
1800 if (opcode == LFSUX) {
1801 DCHECK(ra != 0);
1802 set_register(ra, ra_val + rb_val);
1803 }
1804 break;
1805 }
1806 case LFDUX:
1807 case LFDX: {
1808 int frt = instr->RTValue();
1809 int ra = instr->RAValue();
1810 int rb = instr->RBValue();
1811 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1812 intptr_t rb_val = get_register(rb);
1813 int64_t* dptr = reinterpret_cast<int64_t*>(ReadDW(ra_val + rb_val));
1814 set_d_register(frt, *dptr);
1815 if (opcode == LFDUX) {
1816 DCHECK(ra != 0);
1817 set_register(ra, ra_val + rb_val);
1818 }
1819 break;
1820 }
1821 case STFSUX: {
1822 case STFSX:
1823 int frs = instr->RSValue();
1824 int ra = instr->RAValue();
1825 int rb = instr->RBValue();
1826 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1827 intptr_t rb_val = get_register(rb);
1828 float frs_val = static_cast<float>(get_double_from_d_register(frs));
1829 int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
1830 WriteW(ra_val + rb_val, *p, instr);
1831 if (opcode == STFSUX) {
1832 DCHECK(ra != 0);
1833 set_register(ra, ra_val + rb_val);
1834 }
1835 break;
1836 }
1837 case STFDUX: {
1838 case STFDX:
1839 int frs = instr->RSValue();
1840 int ra = instr->RAValue();
1841 int rb = instr->RBValue();
1842 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1843 intptr_t rb_val = get_register(rb);
1844 int64_t frs_val = get_d_register(frs);
1845 WriteDW(ra_val + rb_val, frs_val);
1846 if (opcode == STFDUX) {
1847 DCHECK(ra != 0);
1848 set_register(ra, ra_val + rb_val);
1849 }
1850 break;
1851 }
1852 case POPCNTW: {
1853 int rs = instr->RSValue();
1854 int ra = instr->RAValue();
1855 uintptr_t rs_val = get_register(rs);
1856 uintptr_t count = 0;
1857 int n = 0;
1858 uintptr_t bit = 0x80000000;
1859 for (; n < 32; n++) {
1860 if (bit & rs_val) count++;
1861 bit >>= 1;
1862 }
1863 set_register(ra, count);
1864 break;
1865 }
1866 #if V8_TARGET_ARCH_PPC64
1867 case POPCNTD: {
1868 int rs = instr->RSValue();
1869 int ra = instr->RAValue();
1870 uintptr_t rs_val = get_register(rs);
1871 uintptr_t count = 0;
1872 int n = 0;
1873 uintptr_t bit = 0x8000000000000000UL;
1874 for (; n < 64; n++) {
1875 if (bit & rs_val) count++;
1876 bit >>= 1;
1877 }
1878 set_register(ra, count);
1879 break;
1880 }
1881 #endif
1882 case SYNC: {
1883 // todo - simulate sync
1884 break;
1885 }
1886 case ICBI: {
1887 // todo - simulate icbi
1888 break;
1889 }
1890 default: {
1891 found = false;
1892 break;
1893 }
1894 }
1895
1896 if (found) return found;
1897
1898 found = true;
1899 opcode = instr->Bits(10, 2) << 2;
1900 switch (opcode) {
1901 case SRADIX: {
1902 int ra = instr->RAValue();
1903 int rs = instr->RSValue();
1904 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
1905 intptr_t rs_val = get_register(rs);
1906 intptr_t result = rs_val >> sh;
1907 set_register(ra, result);
1908 if (instr->Bit(0)) { // RC bit set
1909 SetCR0(result);
1910 }
1911 break;
1912 }
1913 default: {
1914 found = false;
1915 break;
1916 }
1917 }
1918
1919 return found;
1920 }
1921
1922
ExecuteExt2_9bit_part1(Instruction * instr)1923 bool Simulator::ExecuteExt2_9bit_part1(Instruction* instr) {
1924 bool found = true;
1925
1926 int opcode = instr->Bits(9, 1) << 1;
1927 switch (opcode) {
1928 case TW: {
1929 // used for call redirection in simulation mode
1930 SoftwareInterrupt(instr);
1931 break;
1932 }
1933 case CMP: {
1934 int ra = instr->RAValue();
1935 int rb = instr->RBValue();
1936 int cr = instr->Bits(25, 23);
1937 uint32_t bf = 0;
1938 #if V8_TARGET_ARCH_PPC64
1939 int L = instr->Bit(21);
1940 if (L) {
1941 #endif
1942 intptr_t ra_val = get_register(ra);
1943 intptr_t rb_val = get_register(rb);
1944 if (ra_val < rb_val) {
1945 bf |= 0x80000000;
1946 }
1947 if (ra_val > rb_val) {
1948 bf |= 0x40000000;
1949 }
1950 if (ra_val == rb_val) {
1951 bf |= 0x20000000;
1952 }
1953 #if V8_TARGET_ARCH_PPC64
1954 } else {
1955 int32_t ra_val = get_register(ra);
1956 int32_t rb_val = get_register(rb);
1957 if (ra_val < rb_val) {
1958 bf |= 0x80000000;
1959 }
1960 if (ra_val > rb_val) {
1961 bf |= 0x40000000;
1962 }
1963 if (ra_val == rb_val) {
1964 bf |= 0x20000000;
1965 }
1966 }
1967 #endif
1968 uint32_t condition_mask = 0xF0000000U >> (cr * 4);
1969 uint32_t condition = bf >> (cr * 4);
1970 condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
1971 break;
1972 }
1973 case SUBFCX: {
1974 int rt = instr->RTValue();
1975 int ra = instr->RAValue();
1976 int rb = instr->RBValue();
1977 // int oe = instr->Bit(10);
1978 uintptr_t ra_val = get_register(ra);
1979 uintptr_t rb_val = get_register(rb);
1980 uintptr_t alu_out = ~ra_val + rb_val + 1;
1981 set_register(rt, alu_out);
1982 // If the sign of rb and alu_out don't match, carry = 0
1983 if ((alu_out ^ rb_val) & 0x80000000) {
1984 special_reg_xer_ &= ~0xF0000000;
1985 } else {
1986 special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
1987 }
1988 if (instr->Bit(0)) { // RC bit set
1989 SetCR0(alu_out);
1990 }
1991 // todo - handle OE bit
1992 break;
1993 }
1994 case ADDCX: {
1995 int rt = instr->RTValue();
1996 int ra = instr->RAValue();
1997 int rb = instr->RBValue();
1998 // int oe = instr->Bit(10);
1999 uintptr_t ra_val = get_register(ra);
2000 uintptr_t rb_val = get_register(rb);
2001 uintptr_t alu_out = ra_val + rb_val;
2002 // Check overflow
2003 if (~ra_val < rb_val) {
2004 special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
2005 } else {
2006 special_reg_xer_ &= ~0xF0000000;
2007 }
2008 set_register(rt, alu_out);
2009 if (instr->Bit(0)) { // RC bit set
2010 SetCR0(static_cast<intptr_t>(alu_out));
2011 }
2012 // todo - handle OE bit
2013 break;
2014 }
2015 case MULHWX: {
2016 int rt = instr->RTValue();
2017 int ra = instr->RAValue();
2018 int rb = instr->RBValue();
2019 int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
2020 int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
2021 int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val;
2022 alu_out >>= 32;
2023 set_register(rt, alu_out);
2024 if (instr->Bit(0)) { // RC bit set
2025 SetCR0(static_cast<intptr_t>(alu_out));
2026 }
2027 break;
2028 }
2029 case MULHWUX: {
2030 int rt = instr->RTValue();
2031 int ra = instr->RAValue();
2032 int rb = instr->RBValue();
2033 uint32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
2034 uint32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
2035 uint64_t alu_out = (uint64_t)ra_val * (uint64_t)rb_val;
2036 alu_out >>= 32;
2037 set_register(rt, alu_out);
2038 if (instr->Bit(0)) { // RC bit set
2039 SetCR0(static_cast<intptr_t>(alu_out));
2040 }
2041 break;
2042 }
2043 case NEGX: {
2044 int rt = instr->RTValue();
2045 int ra = instr->RAValue();
2046 intptr_t ra_val = get_register(ra);
2047 intptr_t alu_out = 1 + ~ra_val;
2048 #if V8_TARGET_ARCH_PPC64
2049 intptr_t one = 1; // work-around gcc
2050 intptr_t kOverflowVal = (one << 63);
2051 #else
2052 intptr_t kOverflowVal = kMinInt;
2053 #endif
2054 set_register(rt, alu_out);
2055 if (instr->Bit(10)) { // OE bit set
2056 if (ra_val == kOverflowVal) {
2057 special_reg_xer_ |= 0xC0000000; // set SO,OV
2058 } else {
2059 special_reg_xer_ &= ~0x40000000; // clear OV
2060 }
2061 }
2062 if (instr->Bit(0)) { // RC bit set
2063 bool setSO = (special_reg_xer_ & 0x80000000);
2064 SetCR0(alu_out, setSO);
2065 }
2066 break;
2067 }
2068 case SLWX: {
2069 int rs = instr->RSValue();
2070 int ra = instr->RAValue();
2071 int rb = instr->RBValue();
2072 uint32_t rs_val = get_register(rs);
2073 uintptr_t rb_val = get_register(rb);
2074 uint32_t result = rs_val << (rb_val & 0x3f);
2075 set_register(ra, result);
2076 if (instr->Bit(0)) { // RC bit set
2077 SetCR0(result);
2078 }
2079 break;
2080 }
2081 #if V8_TARGET_ARCH_PPC64
2082 case SLDX: {
2083 int rs = instr->RSValue();
2084 int ra = instr->RAValue();
2085 int rb = instr->RBValue();
2086 uintptr_t rs_val = get_register(rs);
2087 uintptr_t rb_val = get_register(rb);
2088 uintptr_t result = rs_val << (rb_val & 0x7f);
2089 set_register(ra, result);
2090 if (instr->Bit(0)) { // RC bit set
2091 SetCR0(result);
2092 }
2093 break;
2094 }
2095 case MFVSRD: {
2096 DCHECK(!instr->Bit(0));
2097 int frt = instr->RTValue();
2098 int ra = instr->RAValue();
2099 int64_t frt_val = get_d_register(frt);
2100 set_register(ra, frt_val);
2101 break;
2102 }
2103 case MFVSRWZ: {
2104 DCHECK(!instr->Bit(0));
2105 int frt = instr->RTValue();
2106 int ra = instr->RAValue();
2107 int64_t frt_val = get_d_register(frt);
2108 set_register(ra, static_cast<uint32_t>(frt_val));
2109 break;
2110 }
2111 case MTVSRD: {
2112 DCHECK(!instr->Bit(0));
2113 int frt = instr->RTValue();
2114 int ra = instr->RAValue();
2115 int64_t ra_val = get_register(ra);
2116 set_d_register(frt, ra_val);
2117 break;
2118 }
2119 case MTVSRWA: {
2120 DCHECK(!instr->Bit(0));
2121 int frt = instr->RTValue();
2122 int ra = instr->RAValue();
2123 int64_t ra_val = static_cast<int32_t>(get_register(ra));
2124 set_d_register(frt, ra_val);
2125 break;
2126 }
2127 case MTVSRWZ: {
2128 DCHECK(!instr->Bit(0));
2129 int frt = instr->RTValue();
2130 int ra = instr->RAValue();
2131 uint64_t ra_val = static_cast<uint32_t>(get_register(ra));
2132 set_d_register(frt, ra_val);
2133 break;
2134 }
2135 #endif
2136 default: {
2137 found = false;
2138 break;
2139 }
2140 }
2141
2142 return found;
2143 }
2144
2145
ExecuteExt2_9bit_part2(Instruction * instr)2146 bool Simulator::ExecuteExt2_9bit_part2(Instruction* instr) {
2147 bool found = true;
2148 int opcode = instr->Bits(9, 1) << 1;
2149 switch (opcode) {
2150 case CNTLZWX: {
2151 int rs = instr->RSValue();
2152 int ra = instr->RAValue();
2153 uintptr_t rs_val = get_register(rs);
2154 uintptr_t count = 0;
2155 int n = 0;
2156 uintptr_t bit = 0x80000000;
2157 for (; n < 32; n++) {
2158 if (bit & rs_val) break;
2159 count++;
2160 bit >>= 1;
2161 }
2162 set_register(ra, count);
2163 if (instr->Bit(0)) { // RC Bit set
2164 int bf = 0;
2165 if (count > 0) {
2166 bf |= 0x40000000;
2167 }
2168 if (count == 0) {
2169 bf |= 0x20000000;
2170 }
2171 condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
2172 }
2173 break;
2174 }
2175 #if V8_TARGET_ARCH_PPC64
2176 case CNTLZDX: {
2177 int rs = instr->RSValue();
2178 int ra = instr->RAValue();
2179 uintptr_t rs_val = get_register(rs);
2180 uintptr_t count = 0;
2181 int n = 0;
2182 uintptr_t bit = 0x8000000000000000UL;
2183 for (; n < 64; n++) {
2184 if (bit & rs_val) break;
2185 count++;
2186 bit >>= 1;
2187 }
2188 set_register(ra, count);
2189 if (instr->Bit(0)) { // RC Bit set
2190 int bf = 0;
2191 if (count > 0) {
2192 bf |= 0x40000000;
2193 }
2194 if (count == 0) {
2195 bf |= 0x20000000;
2196 }
2197 condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
2198 }
2199 break;
2200 }
2201 #endif
2202 case ANDX: {
2203 int rs = instr->RSValue();
2204 int ra = instr->RAValue();
2205 int rb = instr->RBValue();
2206 intptr_t rs_val = get_register(rs);
2207 intptr_t rb_val = get_register(rb);
2208 intptr_t alu_out = rs_val & rb_val;
2209 set_register(ra, alu_out);
2210 if (instr->Bit(0)) { // RC Bit set
2211 SetCR0(alu_out);
2212 }
2213 break;
2214 }
2215 case ANDCX: {
2216 int rs = instr->RSValue();
2217 int ra = instr->RAValue();
2218 int rb = instr->RBValue();
2219 intptr_t rs_val = get_register(rs);
2220 intptr_t rb_val = get_register(rb);
2221 intptr_t alu_out = rs_val & ~rb_val;
2222 set_register(ra, alu_out);
2223 if (instr->Bit(0)) { // RC Bit set
2224 SetCR0(alu_out);
2225 }
2226 break;
2227 }
2228 case CMPL: {
2229 int ra = instr->RAValue();
2230 int rb = instr->RBValue();
2231 int cr = instr->Bits(25, 23);
2232 uint32_t bf = 0;
2233 #if V8_TARGET_ARCH_PPC64
2234 int L = instr->Bit(21);
2235 if (L) {
2236 #endif
2237 uintptr_t ra_val = get_register(ra);
2238 uintptr_t rb_val = get_register(rb);
2239 if (ra_val < rb_val) {
2240 bf |= 0x80000000;
2241 }
2242 if (ra_val > rb_val) {
2243 bf |= 0x40000000;
2244 }
2245 if (ra_val == rb_val) {
2246 bf |= 0x20000000;
2247 }
2248 #if V8_TARGET_ARCH_PPC64
2249 } else {
2250 uint32_t ra_val = get_register(ra);
2251 uint32_t rb_val = get_register(rb);
2252 if (ra_val < rb_val) {
2253 bf |= 0x80000000;
2254 }
2255 if (ra_val > rb_val) {
2256 bf |= 0x40000000;
2257 }
2258 if (ra_val == rb_val) {
2259 bf |= 0x20000000;
2260 }
2261 }
2262 #endif
2263 uint32_t condition_mask = 0xF0000000U >> (cr * 4);
2264 uint32_t condition = bf >> (cr * 4);
2265 condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
2266 break;
2267 }
2268 case SUBFX: {
2269 int rt = instr->RTValue();
2270 int ra = instr->RAValue();
2271 int rb = instr->RBValue();
2272 // int oe = instr->Bit(10);
2273 intptr_t ra_val = get_register(ra);
2274 intptr_t rb_val = get_register(rb);
2275 intptr_t alu_out = rb_val - ra_val;
2276 // todo - figure out underflow
2277 set_register(rt, alu_out);
2278 if (instr->Bit(0)) { // RC Bit set
2279 SetCR0(alu_out);
2280 }
2281 // todo - handle OE bit
2282 break;
2283 }
2284 case ADDZEX: {
2285 int rt = instr->RTValue();
2286 int ra = instr->RAValue();
2287 intptr_t ra_val = get_register(ra);
2288 if (special_reg_xer_ & 0x20000000) {
2289 ra_val += 1;
2290 }
2291 set_register(rt, ra_val);
2292 if (instr->Bit(0)) { // RC bit set
2293 SetCR0(ra_val);
2294 }
2295 // todo - handle OE bit
2296 break;
2297 }
2298 case NORX: {
2299 int rs = instr->RSValue();
2300 int ra = instr->RAValue();
2301 int rb = instr->RBValue();
2302 intptr_t rs_val = get_register(rs);
2303 intptr_t rb_val = get_register(rb);
2304 intptr_t alu_out = ~(rs_val | rb_val);
2305 set_register(ra, alu_out);
2306 if (instr->Bit(0)) { // RC bit set
2307 SetCR0(alu_out);
2308 }
2309 break;
2310 }
2311 case MULLW: {
2312 int rt = instr->RTValue();
2313 int ra = instr->RAValue();
2314 int rb = instr->RBValue();
2315 int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
2316 int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
2317 int32_t alu_out = ra_val * rb_val;
2318 set_register(rt, alu_out);
2319 if (instr->Bit(0)) { // RC bit set
2320 SetCR0(alu_out);
2321 }
2322 // todo - handle OE bit
2323 break;
2324 }
2325 #if V8_TARGET_ARCH_PPC64
2326 case MULLD: {
2327 int rt = instr->RTValue();
2328 int ra = instr->RAValue();
2329 int rb = instr->RBValue();
2330 int64_t ra_val = get_register(ra);
2331 int64_t rb_val = get_register(rb);
2332 int64_t alu_out = ra_val * rb_val;
2333 set_register(rt, alu_out);
2334 if (instr->Bit(0)) { // RC bit set
2335 SetCR0(alu_out);
2336 }
2337 // todo - handle OE bit
2338 break;
2339 }
2340 #endif
2341 case DIVW: {
2342 int rt = instr->RTValue();
2343 int ra = instr->RAValue();
2344 int rb = instr->RBValue();
2345 int32_t ra_val = get_register(ra);
2346 int32_t rb_val = get_register(rb);
2347 bool overflow = (ra_val == kMinInt && rb_val == -1);
2348 // result is undefined if divisor is zero or if operation
2349 // is 0x80000000 / -1.
2350 int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val;
2351 set_register(rt, alu_out);
2352 if (instr->Bit(10)) { // OE bit set
2353 if (overflow) {
2354 special_reg_xer_ |= 0xC0000000; // set SO,OV
2355 } else {
2356 special_reg_xer_ &= ~0x40000000; // clear OV
2357 }
2358 }
2359 if (instr->Bit(0)) { // RC bit set
2360 bool setSO = (special_reg_xer_ & 0x80000000);
2361 SetCR0(alu_out, setSO);
2362 }
2363 break;
2364 }
2365 case DIVWU: {
2366 int rt = instr->RTValue();
2367 int ra = instr->RAValue();
2368 int rb = instr->RBValue();
2369 uint32_t ra_val = get_register(ra);
2370 uint32_t rb_val = get_register(rb);
2371 bool overflow = (rb_val == 0);
2372 // result is undefined if divisor is zero
2373 uint32_t alu_out = (overflow) ? -1 : ra_val / rb_val;
2374 set_register(rt, alu_out);
2375 if (instr->Bit(10)) { // OE bit set
2376 if (overflow) {
2377 special_reg_xer_ |= 0xC0000000; // set SO,OV
2378 } else {
2379 special_reg_xer_ &= ~0x40000000; // clear OV
2380 }
2381 }
2382 if (instr->Bit(0)) { // RC bit set
2383 bool setSO = (special_reg_xer_ & 0x80000000);
2384 SetCR0(alu_out, setSO);
2385 }
2386 break;
2387 }
2388 #if V8_TARGET_ARCH_PPC64
2389 case DIVD: {
2390 int rt = instr->RTValue();
2391 int ra = instr->RAValue();
2392 int rb = instr->RBValue();
2393 int64_t ra_val = get_register(ra);
2394 int64_t rb_val = get_register(rb);
2395 int64_t one = 1; // work-around gcc
2396 int64_t kMinLongLong = (one << 63);
2397 // result is undefined if divisor is zero or if operation
2398 // is 0x80000000_00000000 / -1.
2399 int64_t alu_out =
2400 (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1))
2401 ? -1
2402 : ra_val / rb_val;
2403 set_register(rt, alu_out);
2404 if (instr->Bit(0)) { // RC bit set
2405 SetCR0(alu_out);
2406 }
2407 // todo - handle OE bit
2408 break;
2409 }
2410 case DIVDU: {
2411 int rt = instr->RTValue();
2412 int ra = instr->RAValue();
2413 int rb = instr->RBValue();
2414 uint64_t ra_val = get_register(ra);
2415 uint64_t rb_val = get_register(rb);
2416 // result is undefined if divisor is zero
2417 uint64_t alu_out = (rb_val == 0) ? -1 : ra_val / rb_val;
2418 set_register(rt, alu_out);
2419 if (instr->Bit(0)) { // RC bit set
2420 SetCR0(alu_out);
2421 }
2422 // todo - handle OE bit
2423 break;
2424 }
2425 #endif
2426 case ADDX: {
2427 int rt = instr->RTValue();
2428 int ra = instr->RAValue();
2429 int rb = instr->RBValue();
2430 // int oe = instr->Bit(10);
2431 intptr_t ra_val = get_register(ra);
2432 intptr_t rb_val = get_register(rb);
2433 intptr_t alu_out = ra_val + rb_val;
2434 set_register(rt, alu_out);
2435 if (instr->Bit(0)) { // RC bit set
2436 SetCR0(alu_out);
2437 }
2438 // todo - handle OE bit
2439 break;
2440 }
2441 case XORX: {
2442 int rs = instr->RSValue();
2443 int ra = instr->RAValue();
2444 int rb = instr->RBValue();
2445 intptr_t rs_val = get_register(rs);
2446 intptr_t rb_val = get_register(rb);
2447 intptr_t alu_out = rs_val ^ rb_val;
2448 set_register(ra, alu_out);
2449 if (instr->Bit(0)) { // RC bit set
2450 SetCR0(alu_out);
2451 }
2452 break;
2453 }
2454 case ORX: {
2455 int rs = instr->RSValue();
2456 int ra = instr->RAValue();
2457 int rb = instr->RBValue();
2458 intptr_t rs_val = get_register(rs);
2459 intptr_t rb_val = get_register(rb);
2460 intptr_t alu_out = rs_val | rb_val;
2461 set_register(ra, alu_out);
2462 if (instr->Bit(0)) { // RC bit set
2463 SetCR0(alu_out);
2464 }
2465 break;
2466 }
2467 case ORC: {
2468 int rs = instr->RSValue();
2469 int ra = instr->RAValue();
2470 int rb = instr->RBValue();
2471 intptr_t rs_val = get_register(rs);
2472 intptr_t rb_val = get_register(rb);
2473 intptr_t alu_out = rs_val | ~rb_val;
2474 set_register(ra, alu_out);
2475 if (instr->Bit(0)) { // RC bit set
2476 SetCR0(alu_out);
2477 }
2478 break;
2479 }
2480 case MFSPR: {
2481 int rt = instr->RTValue();
2482 int spr = instr->Bits(20, 11);
2483 if (spr != 256) {
2484 UNIMPLEMENTED(); // Only LRLR supported
2485 }
2486 set_register(rt, special_reg_lr_);
2487 break;
2488 }
2489 case MTSPR: {
2490 int rt = instr->RTValue();
2491 intptr_t rt_val = get_register(rt);
2492 int spr = instr->Bits(20, 11);
2493 if (spr == 256) {
2494 special_reg_lr_ = rt_val;
2495 } else if (spr == 288) {
2496 special_reg_ctr_ = rt_val;
2497 } else if (spr == 32) {
2498 special_reg_xer_ = rt_val;
2499 } else {
2500 UNIMPLEMENTED(); // Only LR supported
2501 }
2502 break;
2503 }
2504 case MFCR: {
2505 int rt = instr->RTValue();
2506 set_register(rt, condition_reg_);
2507 break;
2508 }
2509 case STWUX:
2510 case STWX: {
2511 int rs = instr->RSValue();
2512 int ra = instr->RAValue();
2513 int rb = instr->RBValue();
2514 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2515 int32_t rs_val = get_register(rs);
2516 intptr_t rb_val = get_register(rb);
2517 WriteW(ra_val + rb_val, rs_val, instr);
2518 if (opcode == STWUX) {
2519 DCHECK(ra != 0);
2520 set_register(ra, ra_val + rb_val);
2521 }
2522 break;
2523 }
2524 case STBUX:
2525 case STBX: {
2526 int rs = instr->RSValue();
2527 int ra = instr->RAValue();
2528 int rb = instr->RBValue();
2529 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2530 int8_t rs_val = get_register(rs);
2531 intptr_t rb_val = get_register(rb);
2532 WriteB(ra_val + rb_val, rs_val);
2533 if (opcode == STBUX) {
2534 DCHECK(ra != 0);
2535 set_register(ra, ra_val + rb_val);
2536 }
2537 break;
2538 }
2539 case STHUX:
2540 case STHX: {
2541 int rs = instr->RSValue();
2542 int ra = instr->RAValue();
2543 int rb = instr->RBValue();
2544 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2545 int16_t rs_val = get_register(rs);
2546 intptr_t rb_val = get_register(rb);
2547 WriteH(ra_val + rb_val, rs_val, instr);
2548 if (opcode == STHUX) {
2549 DCHECK(ra != 0);
2550 set_register(ra, ra_val + rb_val);
2551 }
2552 break;
2553 }
2554 case LWZX:
2555 case LWZUX: {
2556 int rt = instr->RTValue();
2557 int ra = instr->RAValue();
2558 int rb = instr->RBValue();
2559 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2560 intptr_t rb_val = get_register(rb);
2561 set_register(rt, ReadWU(ra_val + rb_val, instr));
2562 if (opcode == LWZUX) {
2563 DCHECK(ra != 0 && ra != rt);
2564 set_register(ra, ra_val + rb_val);
2565 }
2566 break;
2567 }
2568 #if V8_TARGET_ARCH_PPC64
2569 case LWAX: {
2570 int rt = instr->RTValue();
2571 int ra = instr->RAValue();
2572 int rb = instr->RBValue();
2573 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2574 intptr_t rb_val = get_register(rb);
2575 set_register(rt, ReadW(ra_val + rb_val, instr));
2576 break;
2577 }
2578 case LDX:
2579 case LDUX: {
2580 int rt = instr->RTValue();
2581 int ra = instr->RAValue();
2582 int rb = instr->RBValue();
2583 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2584 intptr_t rb_val = get_register(rb);
2585 intptr_t* result = ReadDW(ra_val + rb_val);
2586 set_register(rt, *result);
2587 if (opcode == LDUX) {
2588 DCHECK(ra != 0 && ra != rt);
2589 set_register(ra, ra_val + rb_val);
2590 }
2591 break;
2592 }
2593 case STDX:
2594 case STDUX: {
2595 int rs = instr->RSValue();
2596 int ra = instr->RAValue();
2597 int rb = instr->RBValue();
2598 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2599 intptr_t rs_val = get_register(rs);
2600 intptr_t rb_val = get_register(rb);
2601 WriteDW(ra_val + rb_val, rs_val);
2602 if (opcode == STDUX) {
2603 DCHECK(ra != 0);
2604 set_register(ra, ra_val + rb_val);
2605 }
2606 break;
2607 }
2608 #endif
2609 case LBZX:
2610 case LBZUX: {
2611 int rt = instr->RTValue();
2612 int ra = instr->RAValue();
2613 int rb = instr->RBValue();
2614 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2615 intptr_t rb_val = get_register(rb);
2616 set_register(rt, ReadBU(ra_val + rb_val) & 0xFF);
2617 if (opcode == LBZUX) {
2618 DCHECK(ra != 0 && ra != rt);
2619 set_register(ra, ra_val + rb_val);
2620 }
2621 break;
2622 }
2623 case LHZX:
2624 case LHZUX: {
2625 int rt = instr->RTValue();
2626 int ra = instr->RAValue();
2627 int rb = instr->RBValue();
2628 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2629 intptr_t rb_val = get_register(rb);
2630 set_register(rt, ReadHU(ra_val + rb_val, instr) & 0xFFFF);
2631 if (opcode == LHZUX) {
2632 DCHECK(ra != 0 && ra != rt);
2633 set_register(ra, ra_val + rb_val);
2634 }
2635 break;
2636 }
2637 case LHAX:
2638 case LHAUX: {
2639 int rt = instr->RTValue();
2640 int ra = instr->RAValue();
2641 int rb = instr->RBValue();
2642 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2643 intptr_t rb_val = get_register(rb);
2644 set_register(rt, ReadH(ra_val + rb_val, instr));
2645 if (opcode == LHAUX) {
2646 DCHECK(ra != 0 && ra != rt);
2647 set_register(ra, ra_val + rb_val);
2648 }
2649 break;
2650 }
2651 case DCBF: {
2652 // todo - simulate dcbf
2653 break;
2654 }
2655 default: {
2656 found = false;
2657 break;
2658 }
2659 }
2660
2661 return found;
2662 }
2663
2664
ExecuteExt2_5bit(Instruction * instr)2665 void Simulator::ExecuteExt2_5bit(Instruction* instr) {
2666 int opcode = instr->Bits(5, 1) << 1;
2667 switch (opcode) {
2668 case ISEL: {
2669 int rt = instr->RTValue();
2670 int ra = instr->RAValue();
2671 int rb = instr->RBValue();
2672 int condition_bit = instr->RCValue();
2673 int condition_mask = 0x80000000 >> condition_bit;
2674 intptr_t ra_val = (ra == 0) ? 0 : get_register(ra);
2675 intptr_t rb_val = get_register(rb);
2676 intptr_t value = (condition_reg_ & condition_mask) ? ra_val : rb_val;
2677 set_register(rt, value);
2678 break;
2679 }
2680 default: {
2681 PrintF("Unimplemented: %08x\n", instr->InstructionBits());
2682 UNIMPLEMENTED(); // Not used by V8.
2683 }
2684 }
2685 }
2686
2687
ExecuteExt2(Instruction * instr)2688 void Simulator::ExecuteExt2(Instruction* instr) {
2689 // Check first the 10-1 bit versions
2690 if (ExecuteExt2_10bit(instr)) return;
2691 // Now look at the lesser encodings
2692 if (ExecuteExt2_9bit_part1(instr)) return;
2693 if (ExecuteExt2_9bit_part2(instr)) return;
2694 ExecuteExt2_5bit(instr);
2695 }
2696
2697
ExecuteExt3(Instruction * instr)2698 void Simulator::ExecuteExt3(Instruction* instr) {
2699 int opcode = instr->Bits(10, 1) << 1;
2700 switch (opcode) {
2701 case FCFID: {
2702 // fcfids
2703 int frt = instr->RTValue();
2704 int frb = instr->RBValue();
2705 int64_t frb_val = get_d_register(frb);
2706 double frt_val = static_cast<float>(frb_val);
2707 set_d_register_from_double(frt, frt_val);
2708 return;
2709 }
2710 case FCFIDU: {
2711 // fcfidus
2712 int frt = instr->RTValue();
2713 int frb = instr->RBValue();
2714 uint64_t frb_val = get_d_register(frb);
2715 double frt_val = static_cast<float>(frb_val);
2716 set_d_register_from_double(frt, frt_val);
2717 return;
2718 }
2719 }
2720 UNIMPLEMENTED(); // Not used by V8.
2721 }
2722
2723
ExecuteExt4(Instruction * instr)2724 void Simulator::ExecuteExt4(Instruction* instr) {
2725 switch (instr->Bits(5, 1) << 1) {
2726 case FDIV: {
2727 int frt = instr->RTValue();
2728 int fra = instr->RAValue();
2729 int frb = instr->RBValue();
2730 double fra_val = get_double_from_d_register(fra);
2731 double frb_val = get_double_from_d_register(frb);
2732 double frt_val = fra_val / frb_val;
2733 set_d_register_from_double(frt, frt_val);
2734 return;
2735 }
2736 case FSUB: {
2737 int frt = instr->RTValue();
2738 int fra = instr->RAValue();
2739 int frb = instr->RBValue();
2740 double fra_val = get_double_from_d_register(fra);
2741 double frb_val = get_double_from_d_register(frb);
2742 double frt_val = fra_val - frb_val;
2743 set_d_register_from_double(frt, frt_val);
2744 return;
2745 }
2746 case FADD: {
2747 int frt = instr->RTValue();
2748 int fra = instr->RAValue();
2749 int frb = instr->RBValue();
2750 double fra_val = get_double_from_d_register(fra);
2751 double frb_val = get_double_from_d_register(frb);
2752 double frt_val = fra_val + frb_val;
2753 set_d_register_from_double(frt, frt_val);
2754 return;
2755 }
2756 case FSQRT: {
2757 lazily_initialize_fast_sqrt(isolate_);
2758 int frt = instr->RTValue();
2759 int frb = instr->RBValue();
2760 double frb_val = get_double_from_d_register(frb);
2761 double frt_val = fast_sqrt(frb_val, isolate_);
2762 set_d_register_from_double(frt, frt_val);
2763 return;
2764 }
2765 case FSEL: {
2766 int frt = instr->RTValue();
2767 int fra = instr->RAValue();
2768 int frb = instr->RBValue();
2769 int frc = instr->RCValue();
2770 double fra_val = get_double_from_d_register(fra);
2771 double frb_val = get_double_from_d_register(frb);
2772 double frc_val = get_double_from_d_register(frc);
2773 double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val);
2774 set_d_register_from_double(frt, frt_val);
2775 return;
2776 }
2777 case FMUL: {
2778 int frt = instr->RTValue();
2779 int fra = instr->RAValue();
2780 int frc = instr->RCValue();
2781 double fra_val = get_double_from_d_register(fra);
2782 double frc_val = get_double_from_d_register(frc);
2783 double frt_val = fra_val * frc_val;
2784 set_d_register_from_double(frt, frt_val);
2785 return;
2786 }
2787 case FMSUB: {
2788 int frt = instr->RTValue();
2789 int fra = instr->RAValue();
2790 int frb = instr->RBValue();
2791 int frc = instr->RCValue();
2792 double fra_val = get_double_from_d_register(fra);
2793 double frb_val = get_double_from_d_register(frb);
2794 double frc_val = get_double_from_d_register(frc);
2795 double frt_val = (fra_val * frc_val) - frb_val;
2796 set_d_register_from_double(frt, frt_val);
2797 return;
2798 }
2799 case FMADD: {
2800 int frt = instr->RTValue();
2801 int fra = instr->RAValue();
2802 int frb = instr->RBValue();
2803 int frc = instr->RCValue();
2804 double fra_val = get_double_from_d_register(fra);
2805 double frb_val = get_double_from_d_register(frb);
2806 double frc_val = get_double_from_d_register(frc);
2807 double frt_val = (fra_val * frc_val) + frb_val;
2808 set_d_register_from_double(frt, frt_val);
2809 return;
2810 }
2811 }
2812 int opcode = instr->Bits(10, 1) << 1;
2813 switch (opcode) {
2814 case FCMPU: {
2815 int fra = instr->RAValue();
2816 int frb = instr->RBValue();
2817 double fra_val = get_double_from_d_register(fra);
2818 double frb_val = get_double_from_d_register(frb);
2819 int cr = instr->Bits(25, 23);
2820 int bf = 0;
2821 if (fra_val < frb_val) {
2822 bf |= 0x80000000;
2823 }
2824 if (fra_val > frb_val) {
2825 bf |= 0x40000000;
2826 }
2827 if (fra_val == frb_val) {
2828 bf |= 0x20000000;
2829 }
2830 if (std::isunordered(fra_val, frb_val)) {
2831 bf |= 0x10000000;
2832 }
2833 int condition_mask = 0xF0000000 >> (cr * 4);
2834 int condition = bf >> (cr * 4);
2835 condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
2836 return;
2837 }
2838 case FRIN: {
2839 int frt = instr->RTValue();
2840 int frb = instr->RBValue();
2841 double frb_val = get_double_from_d_register(frb);
2842 double frt_val = std::round(frb_val);
2843 set_d_register_from_double(frt, frt_val);
2844 if (instr->Bit(0)) { // RC bit set
2845 // UNIMPLEMENTED();
2846 }
2847 return;
2848 }
2849 case FRIZ: {
2850 int frt = instr->RTValue();
2851 int frb = instr->RBValue();
2852 double frb_val = get_double_from_d_register(frb);
2853 double frt_val = std::trunc(frb_val);
2854 set_d_register_from_double(frt, frt_val);
2855 if (instr->Bit(0)) { // RC bit set
2856 // UNIMPLEMENTED();
2857 }
2858 return;
2859 }
2860 case FRIP: {
2861 int frt = instr->RTValue();
2862 int frb = instr->RBValue();
2863 double frb_val = get_double_from_d_register(frb);
2864 double frt_val = std::ceil(frb_val);
2865 set_d_register_from_double(frt, frt_val);
2866 if (instr->Bit(0)) { // RC bit set
2867 // UNIMPLEMENTED();
2868 }
2869 return;
2870 }
2871 case FRIM: {
2872 int frt = instr->RTValue();
2873 int frb = instr->RBValue();
2874 double frb_val = get_double_from_d_register(frb);
2875 double frt_val = std::floor(frb_val);
2876 set_d_register_from_double(frt, frt_val);
2877 if (instr->Bit(0)) { // RC bit set
2878 // UNIMPLEMENTED();
2879 }
2880 return;
2881 }
2882 case FRSP: {
2883 int frt = instr->RTValue();
2884 int frb = instr->RBValue();
2885 // frsp round 8-byte double-precision value to
2886 // single-precision value
2887 double frb_val = get_double_from_d_register(frb);
2888 double frt_val = static_cast<float>(frb_val);
2889 set_d_register_from_double(frt, frt_val);
2890 if (instr->Bit(0)) { // RC bit set
2891 // UNIMPLEMENTED();
2892 }
2893 return;
2894 }
2895 case FCFID: {
2896 int frt = instr->RTValue();
2897 int frb = instr->RBValue();
2898 int64_t frb_val = get_d_register(frb);
2899 double frt_val = static_cast<double>(frb_val);
2900 set_d_register_from_double(frt, frt_val);
2901 return;
2902 }
2903 case FCFIDU: {
2904 int frt = instr->RTValue();
2905 int frb = instr->RBValue();
2906 uint64_t frb_val = get_d_register(frb);
2907 double frt_val = static_cast<double>(frb_val);
2908 set_d_register_from_double(frt, frt_val);
2909 return;
2910 }
2911 case FCTID:
2912 case FCTIDZ: {
2913 int frt = instr->RTValue();
2914 int frb = instr->RBValue();
2915 double frb_val = get_double_from_d_register(frb);
2916 int mode = (opcode == FCTIDZ) ? kRoundToZero
2917 : (fp_condition_reg_ & kFPRoundingModeMask);
2918 int64_t frt_val;
2919 int64_t one = 1; // work-around gcc
2920 int64_t kMinVal = (one << 63);
2921 int64_t kMaxVal = kMinVal - 1;
2922 bool invalid_convert = false;
2923
2924 if (std::isnan(frb_val)) {
2925 frt_val = kMinVal;
2926 invalid_convert = true;
2927 } else {
2928 switch (mode) {
2929 case kRoundToZero:
2930 frb_val = std::trunc(frb_val);
2931 break;
2932 case kRoundToPlusInf:
2933 frb_val = std::ceil(frb_val);
2934 break;
2935 case kRoundToMinusInf:
2936 frb_val = std::floor(frb_val);
2937 break;
2938 default:
2939 UNIMPLEMENTED(); // Not used by V8.
2940 break;
2941 }
2942 if (frb_val < static_cast<double>(kMinVal)) {
2943 frt_val = kMinVal;
2944 invalid_convert = true;
2945 } else if (frb_val >= static_cast<double>(kMaxVal)) {
2946 frt_val = kMaxVal;
2947 invalid_convert = true;
2948 } else {
2949 frt_val = (int64_t)frb_val;
2950 }
2951 }
2952 set_d_register(frt, frt_val);
2953 if (invalid_convert) SetFPSCR(VXCVI);
2954 return;
2955 }
2956 case FCTIDU:
2957 case FCTIDUZ: {
2958 int frt = instr->RTValue();
2959 int frb = instr->RBValue();
2960 double frb_val = get_double_from_d_register(frb);
2961 int mode = (opcode == FCTIDUZ)
2962 ? kRoundToZero
2963 : (fp_condition_reg_ & kFPRoundingModeMask);
2964 uint64_t frt_val;
2965 uint64_t kMinVal = 0;
2966 uint64_t kMaxVal = kMinVal - 1;
2967 bool invalid_convert = false;
2968
2969 if (std::isnan(frb_val)) {
2970 frt_val = kMinVal;
2971 invalid_convert = true;
2972 } else {
2973 switch (mode) {
2974 case kRoundToZero:
2975 frb_val = std::trunc(frb_val);
2976 break;
2977 case kRoundToPlusInf:
2978 frb_val = std::ceil(frb_val);
2979 break;
2980 case kRoundToMinusInf:
2981 frb_val = std::floor(frb_val);
2982 break;
2983 default:
2984 UNIMPLEMENTED(); // Not used by V8.
2985 break;
2986 }
2987 if (frb_val < static_cast<double>(kMinVal)) {
2988 frt_val = kMinVal;
2989 invalid_convert = true;
2990 } else if (frb_val >= static_cast<double>(kMaxVal)) {
2991 frt_val = kMaxVal;
2992 invalid_convert = true;
2993 } else {
2994 frt_val = (uint64_t)frb_val;
2995 }
2996 }
2997 set_d_register(frt, frt_val);
2998 if (invalid_convert) SetFPSCR(VXCVI);
2999 return;
3000 }
3001 case FCTIW:
3002 case FCTIWZ: {
3003 int frt = instr->RTValue();
3004 int frb = instr->RBValue();
3005 double frb_val = get_double_from_d_register(frb);
3006 int mode = (opcode == FCTIWZ) ? kRoundToZero
3007 : (fp_condition_reg_ & kFPRoundingModeMask);
3008 int64_t frt_val;
3009 int64_t kMinVal = kMinInt;
3010 int64_t kMaxVal = kMaxInt;
3011
3012 if (std::isnan(frb_val)) {
3013 frt_val = kMinVal;
3014 } else {
3015 switch (mode) {
3016 case kRoundToZero:
3017 frb_val = std::trunc(frb_val);
3018 break;
3019 case kRoundToPlusInf:
3020 frb_val = std::ceil(frb_val);
3021 break;
3022 case kRoundToMinusInf:
3023 frb_val = std::floor(frb_val);
3024 break;
3025 case kRoundToNearest: {
3026 double orig = frb_val;
3027 frb_val = lround(frb_val);
3028 // Round to even if exactly halfway. (lround rounds up)
3029 if (std::fabs(frb_val - orig) == 0.5 && ((int64_t)frb_val % 2)) {
3030 frb_val += ((frb_val > 0) ? -1.0 : 1.0);
3031 }
3032 break;
3033 }
3034 default:
3035 UNIMPLEMENTED(); // Not used by V8.
3036 break;
3037 }
3038 if (frb_val < kMinVal) {
3039 frt_val = kMinVal;
3040 } else if (frb_val > kMaxVal) {
3041 frt_val = kMaxVal;
3042 } else {
3043 frt_val = (int64_t)frb_val;
3044 }
3045 }
3046 set_d_register(frt, frt_val);
3047 return;
3048 }
3049 case FNEG: {
3050 int frt = instr->RTValue();
3051 int frb = instr->RBValue();
3052 double frb_val = get_double_from_d_register(frb);
3053 double frt_val = -frb_val;
3054 set_d_register_from_double(frt, frt_val);
3055 return;
3056 }
3057 case FMR: {
3058 int frt = instr->RTValue();
3059 int frb = instr->RBValue();
3060 int64_t frb_val = get_d_register(frb);
3061 set_d_register(frt, frb_val);
3062 return;
3063 }
3064 case MTFSFI: {
3065 int bf = instr->Bits(25, 23);
3066 int imm = instr->Bits(15, 12);
3067 int fp_condition_mask = 0xF0000000 >> (bf * 4);
3068 fp_condition_reg_ &= ~fp_condition_mask;
3069 fp_condition_reg_ |= (imm << (28 - (bf * 4)));
3070 if (instr->Bit(0)) { // RC bit set
3071 condition_reg_ &= 0xF0FFFFFF;
3072 condition_reg_ |= (imm << 23);
3073 }
3074 return;
3075 }
3076 case MTFSF: {
3077 int frb = instr->RBValue();
3078 int64_t frb_dval = get_d_register(frb);
3079 int32_t frb_ival = static_cast<int32_t>((frb_dval)&0xffffffff);
3080 int l = instr->Bits(25, 25);
3081 if (l == 1) {
3082 fp_condition_reg_ = frb_ival;
3083 } else {
3084 UNIMPLEMENTED();
3085 }
3086 if (instr->Bit(0)) { // RC bit set
3087 UNIMPLEMENTED();
3088 // int w = instr->Bits(16, 16);
3089 // int flm = instr->Bits(24, 17);
3090 }
3091 return;
3092 }
3093 case MFFS: {
3094 int frt = instr->RTValue();
3095 int64_t lval = static_cast<int64_t>(fp_condition_reg_);
3096 set_d_register(frt, lval);
3097 return;
3098 }
3099 case MCRFS: {
3100 int bf = instr->Bits(25, 23);
3101 int bfa = instr->Bits(20, 18);
3102 int cr_shift = (7 - bf) * CRWIDTH;
3103 int fp_shift = (7 - bfa) * CRWIDTH;
3104 int field_val = (fp_condition_reg_ >> fp_shift) & 0xf;
3105 condition_reg_ &= ~(0x0f << cr_shift);
3106 condition_reg_ |= (field_val << cr_shift);
3107 // Clear copied exception bits
3108 switch (bfa) {
3109 case 5:
3110 ClearFPSCR(VXSOFT);
3111 ClearFPSCR(VXSQRT);
3112 ClearFPSCR(VXCVI);
3113 break;
3114 default:
3115 UNIMPLEMENTED();
3116 break;
3117 }
3118 return;
3119 }
3120 case MTFSB0: {
3121 int bt = instr->Bits(25, 21);
3122 ClearFPSCR(bt);
3123 if (instr->Bit(0)) { // RC bit set
3124 UNIMPLEMENTED();
3125 }
3126 return;
3127 }
3128 case MTFSB1: {
3129 int bt = instr->Bits(25, 21);
3130 SetFPSCR(bt);
3131 if (instr->Bit(0)) { // RC bit set
3132 UNIMPLEMENTED();
3133 }
3134 return;
3135 }
3136 case FABS: {
3137 int frt = instr->RTValue();
3138 int frb = instr->RBValue();
3139 double frb_val = get_double_from_d_register(frb);
3140 double frt_val = std::fabs(frb_val);
3141 set_d_register_from_double(frt, frt_val);
3142 return;
3143 }
3144 }
3145 UNIMPLEMENTED(); // Not used by V8.
3146 }
3147
3148 #if V8_TARGET_ARCH_PPC64
ExecuteExt5(Instruction * instr)3149 void Simulator::ExecuteExt5(Instruction* instr) {
3150 switch (instr->Bits(4, 2) << 2) {
3151 case RLDICL: {
3152 int ra = instr->RAValue();
3153 int rs = instr->RSValue();
3154 uintptr_t rs_val = get_register(rs);
3155 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3156 int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3157 DCHECK(sh >= 0 && sh <= 63);
3158 DCHECK(mb >= 0 && mb <= 63);
3159 uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3160 uintptr_t mask = 0xffffffffffffffff >> mb;
3161 result &= mask;
3162 set_register(ra, result);
3163 if (instr->Bit(0)) { // RC bit set
3164 SetCR0(result);
3165 }
3166 return;
3167 }
3168 case RLDICR: {
3169 int ra = instr->RAValue();
3170 int rs = instr->RSValue();
3171 uintptr_t rs_val = get_register(rs);
3172 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3173 int me = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3174 DCHECK(sh >= 0 && sh <= 63);
3175 DCHECK(me >= 0 && me <= 63);
3176 uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3177 uintptr_t mask = 0xffffffffffffffff << (63 - me);
3178 result &= mask;
3179 set_register(ra, result);
3180 if (instr->Bit(0)) { // RC bit set
3181 SetCR0(result);
3182 }
3183 return;
3184 }
3185 case RLDIC: {
3186 int ra = instr->RAValue();
3187 int rs = instr->RSValue();
3188 uintptr_t rs_val = get_register(rs);
3189 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3190 int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3191 DCHECK(sh >= 0 && sh <= 63);
3192 DCHECK(mb >= 0 && mb <= 63);
3193 uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3194 uintptr_t mask = (0xffffffffffffffff >> mb) & (0xffffffffffffffff << sh);
3195 result &= mask;
3196 set_register(ra, result);
3197 if (instr->Bit(0)) { // RC bit set
3198 SetCR0(result);
3199 }
3200 return;
3201 }
3202 case RLDIMI: {
3203 int ra = instr->RAValue();
3204 int rs = instr->RSValue();
3205 uintptr_t rs_val = get_register(rs);
3206 intptr_t ra_val = get_register(ra);
3207 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
3208 int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3209 int me = 63 - sh;
3210 uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3211 uintptr_t mask = 0;
3212 if (mb < me + 1) {
3213 uintptr_t bit = 0x8000000000000000 >> mb;
3214 for (; mb <= me; mb++) {
3215 mask |= bit;
3216 bit >>= 1;
3217 }
3218 } else if (mb == me + 1) {
3219 mask = 0xffffffffffffffff;
3220 } else { // mb > me+1
3221 uintptr_t bit = 0x8000000000000000 >> (me + 1); // needs to be tested
3222 mask = 0xffffffffffffffff;
3223 for (; me < mb; me++) {
3224 mask ^= bit;
3225 bit >>= 1;
3226 }
3227 }
3228 result &= mask;
3229 ra_val &= ~mask;
3230 result |= ra_val;
3231 set_register(ra, result);
3232 if (instr->Bit(0)) { // RC bit set
3233 SetCR0(result);
3234 }
3235 return;
3236 }
3237 }
3238 switch (instr->Bits(4, 1) << 1) {
3239 case RLDCL: {
3240 int ra = instr->RAValue();
3241 int rs = instr->RSValue();
3242 int rb = instr->RBValue();
3243 uintptr_t rs_val = get_register(rs);
3244 uintptr_t rb_val = get_register(rb);
3245 int sh = (rb_val & 0x3f);
3246 int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
3247 DCHECK(sh >= 0 && sh <= 63);
3248 DCHECK(mb >= 0 && mb <= 63);
3249 uintptr_t result = base::bits::RotateLeft64(rs_val, sh);
3250 uintptr_t mask = 0xffffffffffffffff >> mb;
3251 result &= mask;
3252 set_register(ra, result);
3253 if (instr->Bit(0)) { // RC bit set
3254 SetCR0(result);
3255 }
3256 return;
3257 }
3258 }
3259 UNIMPLEMENTED(); // Not used by V8.
3260 }
3261 #endif
3262
3263
ExecuteGeneric(Instruction * instr)3264 void Simulator::ExecuteGeneric(Instruction* instr) {
3265 int opcode = instr->OpcodeValue() << 26;
3266 switch (opcode) {
3267 case SUBFIC: {
3268 int rt = instr->RTValue();
3269 int ra = instr->RAValue();
3270 intptr_t ra_val = get_register(ra);
3271 int32_t im_val = instr->Bits(15, 0);
3272 im_val = SIGN_EXT_IMM16(im_val);
3273 intptr_t alu_out = im_val - ra_val;
3274 set_register(rt, alu_out);
3275 // todo - handle RC bit
3276 break;
3277 }
3278 case CMPLI: {
3279 int ra = instr->RAValue();
3280 uint32_t im_val = instr->Bits(15, 0);
3281 int cr = instr->Bits(25, 23);
3282 uint32_t bf = 0;
3283 #if V8_TARGET_ARCH_PPC64
3284 int L = instr->Bit(21);
3285 if (L) {
3286 #endif
3287 uintptr_t ra_val = get_register(ra);
3288 if (ra_val < im_val) {
3289 bf |= 0x80000000;
3290 }
3291 if (ra_val > im_val) {
3292 bf |= 0x40000000;
3293 }
3294 if (ra_val == im_val) {
3295 bf |= 0x20000000;
3296 }
3297 #if V8_TARGET_ARCH_PPC64
3298 } else {
3299 uint32_t ra_val = get_register(ra);
3300 if (ra_val < im_val) {
3301 bf |= 0x80000000;
3302 }
3303 if (ra_val > im_val) {
3304 bf |= 0x40000000;
3305 }
3306 if (ra_val == im_val) {
3307 bf |= 0x20000000;
3308 }
3309 }
3310 #endif
3311 uint32_t condition_mask = 0xF0000000U >> (cr * 4);
3312 uint32_t condition = bf >> (cr * 4);
3313 condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
3314 break;
3315 }
3316 case CMPI: {
3317 int ra = instr->RAValue();
3318 int32_t im_val = instr->Bits(15, 0);
3319 im_val = SIGN_EXT_IMM16(im_val);
3320 int cr = instr->Bits(25, 23);
3321 uint32_t bf = 0;
3322 #if V8_TARGET_ARCH_PPC64
3323 int L = instr->Bit(21);
3324 if (L) {
3325 #endif
3326 intptr_t ra_val = get_register(ra);
3327 if (ra_val < im_val) {
3328 bf |= 0x80000000;
3329 }
3330 if (ra_val > im_val) {
3331 bf |= 0x40000000;
3332 }
3333 if (ra_val == im_val) {
3334 bf |= 0x20000000;
3335 }
3336 #if V8_TARGET_ARCH_PPC64
3337 } else {
3338 int32_t ra_val = get_register(ra);
3339 if (ra_val < im_val) {
3340 bf |= 0x80000000;
3341 }
3342 if (ra_val > im_val) {
3343 bf |= 0x40000000;
3344 }
3345 if (ra_val == im_val) {
3346 bf |= 0x20000000;
3347 }
3348 }
3349 #endif
3350 uint32_t condition_mask = 0xF0000000U >> (cr * 4);
3351 uint32_t condition = bf >> (cr * 4);
3352 condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
3353 break;
3354 }
3355 case ADDIC: {
3356 int rt = instr->RTValue();
3357 int ra = instr->RAValue();
3358 uintptr_t ra_val = get_register(ra);
3359 uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
3360 uintptr_t alu_out = ra_val + im_val;
3361 // Check overflow
3362 if (~ra_val < im_val) {
3363 special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
3364 } else {
3365 special_reg_xer_ &= ~0xF0000000;
3366 }
3367 set_register(rt, alu_out);
3368 break;
3369 }
3370 case ADDI: {
3371 int rt = instr->RTValue();
3372 int ra = instr->RAValue();
3373 int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
3374 intptr_t alu_out;
3375 if (ra == 0) {
3376 alu_out = im_val;
3377 } else {
3378 intptr_t ra_val = get_register(ra);
3379 alu_out = ra_val + im_val;
3380 }
3381 set_register(rt, alu_out);
3382 // todo - handle RC bit
3383 break;
3384 }
3385 case ADDIS: {
3386 int rt = instr->RTValue();
3387 int ra = instr->RAValue();
3388 int32_t im_val = (instr->Bits(15, 0) << 16);
3389 intptr_t alu_out;
3390 if (ra == 0) { // treat r0 as zero
3391 alu_out = im_val;
3392 } else {
3393 intptr_t ra_val = get_register(ra);
3394 alu_out = ra_val + im_val;
3395 }
3396 set_register(rt, alu_out);
3397 break;
3398 }
3399 case BCX: {
3400 ExecuteBranchConditional(instr, BC_OFFSET);
3401 break;
3402 }
3403 case BX: {
3404 int offset = (instr->Bits(25, 2) << 8) >> 6;
3405 if (instr->Bit(0) == 1) { // LK flag set
3406 special_reg_lr_ = get_pc() + 4;
3407 }
3408 set_pc(get_pc() + offset);
3409 // todo - AA flag
3410 break;
3411 }
3412 case EXT1: {
3413 ExecuteExt1(instr);
3414 break;
3415 }
3416 case RLWIMIX: {
3417 int ra = instr->RAValue();
3418 int rs = instr->RSValue();
3419 uint32_t rs_val = get_register(rs);
3420 int32_t ra_val = get_register(ra);
3421 int sh = instr->Bits(15, 11);
3422 int mb = instr->Bits(10, 6);
3423 int me = instr->Bits(5, 1);
3424 uint32_t result = base::bits::RotateLeft32(rs_val, sh);
3425 int mask = 0;
3426 if (mb < me + 1) {
3427 int bit = 0x80000000 >> mb;
3428 for (; mb <= me; mb++) {
3429 mask |= bit;
3430 bit >>= 1;
3431 }
3432 } else if (mb == me + 1) {
3433 mask = 0xffffffff;
3434 } else { // mb > me+1
3435 int bit = 0x80000000 >> (me + 1); // needs to be tested
3436 mask = 0xffffffff;
3437 for (; me < mb; me++) {
3438 mask ^= bit;
3439 bit >>= 1;
3440 }
3441 }
3442 result &= mask;
3443 ra_val &= ~mask;
3444 result |= ra_val;
3445 set_register(ra, result);
3446 if (instr->Bit(0)) { // RC bit set
3447 SetCR0(result);
3448 }
3449 break;
3450 }
3451 case RLWINMX:
3452 case RLWNMX: {
3453 int ra = instr->RAValue();
3454 int rs = instr->RSValue();
3455 uint32_t rs_val = get_register(rs);
3456 int sh = 0;
3457 if (opcode == RLWINMX) {
3458 sh = instr->Bits(15, 11);
3459 } else {
3460 int rb = instr->RBValue();
3461 uint32_t rb_val = get_register(rb);
3462 sh = (rb_val & 0x1f);
3463 }
3464 int mb = instr->Bits(10, 6);
3465 int me = instr->Bits(5, 1);
3466 uint32_t result = base::bits::RotateLeft32(rs_val, sh);
3467 int mask = 0;
3468 if (mb < me + 1) {
3469 int bit = 0x80000000 >> mb;
3470 for (; mb <= me; mb++) {
3471 mask |= bit;
3472 bit >>= 1;
3473 }
3474 } else if (mb == me + 1) {
3475 mask = 0xffffffff;
3476 } else { // mb > me+1
3477 int bit = 0x80000000 >> (me + 1); // needs to be tested
3478 mask = 0xffffffff;
3479 for (; me < mb; me++) {
3480 mask ^= bit;
3481 bit >>= 1;
3482 }
3483 }
3484 result &= mask;
3485 set_register(ra, result);
3486 if (instr->Bit(0)) { // RC bit set
3487 SetCR0(result);
3488 }
3489 break;
3490 }
3491 case ORI: {
3492 int rs = instr->RSValue();
3493 int ra = instr->RAValue();
3494 intptr_t rs_val = get_register(rs);
3495 uint32_t im_val = instr->Bits(15, 0);
3496 intptr_t alu_out = rs_val | im_val;
3497 set_register(ra, alu_out);
3498 break;
3499 }
3500 case ORIS: {
3501 int rs = instr->RSValue();
3502 int ra = instr->RAValue();
3503 intptr_t rs_val = get_register(rs);
3504 uint32_t im_val = instr->Bits(15, 0);
3505 intptr_t alu_out = rs_val | (im_val << 16);
3506 set_register(ra, alu_out);
3507 break;
3508 }
3509 case XORI: {
3510 int rs = instr->RSValue();
3511 int ra = instr->RAValue();
3512 intptr_t rs_val = get_register(rs);
3513 uint32_t im_val = instr->Bits(15, 0);
3514 intptr_t alu_out = rs_val ^ im_val;
3515 set_register(ra, alu_out);
3516 // todo - set condition based SO bit
3517 break;
3518 }
3519 case XORIS: {
3520 int rs = instr->RSValue();
3521 int ra = instr->RAValue();
3522 intptr_t rs_val = get_register(rs);
3523 uint32_t im_val = instr->Bits(15, 0);
3524 intptr_t alu_out = rs_val ^ (im_val << 16);
3525 set_register(ra, alu_out);
3526 break;
3527 }
3528 case ANDIx: {
3529 int rs = instr->RSValue();
3530 int ra = instr->RAValue();
3531 intptr_t rs_val = get_register(rs);
3532 uint32_t im_val = instr->Bits(15, 0);
3533 intptr_t alu_out = rs_val & im_val;
3534 set_register(ra, alu_out);
3535 SetCR0(alu_out);
3536 break;
3537 }
3538 case ANDISx: {
3539 int rs = instr->RSValue();
3540 int ra = instr->RAValue();
3541 intptr_t rs_val = get_register(rs);
3542 uint32_t im_val = instr->Bits(15, 0);
3543 intptr_t alu_out = rs_val & (im_val << 16);
3544 set_register(ra, alu_out);
3545 SetCR0(alu_out);
3546 break;
3547 }
3548 case EXT2: {
3549 ExecuteExt2(instr);
3550 break;
3551 }
3552
3553 case LWZU:
3554 case LWZ: {
3555 int ra = instr->RAValue();
3556 int rt = instr->RTValue();
3557 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3558 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3559 set_register(rt, ReadWU(ra_val + offset, instr));
3560 if (opcode == LWZU) {
3561 DCHECK(ra != 0);
3562 set_register(ra, ra_val + offset);
3563 }
3564 break;
3565 }
3566
3567 case LBZU:
3568 case LBZ: {
3569 int ra = instr->RAValue();
3570 int rt = instr->RTValue();
3571 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3572 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3573 set_register(rt, ReadB(ra_val + offset) & 0xFF);
3574 if (opcode == LBZU) {
3575 DCHECK(ra != 0);
3576 set_register(ra, ra_val + offset);
3577 }
3578 break;
3579 }
3580
3581 case STWU:
3582 case STW: {
3583 int ra = instr->RAValue();
3584 int rs = instr->RSValue();
3585 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3586 int32_t rs_val = get_register(rs);
3587 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3588 WriteW(ra_val + offset, rs_val, instr);
3589 if (opcode == STWU) {
3590 DCHECK(ra != 0);
3591 set_register(ra, ra_val + offset);
3592 }
3593 // printf("r%d %08x -> %08x\n", rs, rs_val, offset); // 0xdead
3594 break;
3595 }
3596
3597 case STBU:
3598 case STB: {
3599 int ra = instr->RAValue();
3600 int rs = instr->RSValue();
3601 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3602 int8_t rs_val = get_register(rs);
3603 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3604 WriteB(ra_val + offset, rs_val);
3605 if (opcode == STBU) {
3606 DCHECK(ra != 0);
3607 set_register(ra, ra_val + offset);
3608 }
3609 break;
3610 }
3611
3612 case LHZU:
3613 case LHZ: {
3614 int ra = instr->RAValue();
3615 int rt = instr->RTValue();
3616 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3617 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3618 uintptr_t result = ReadHU(ra_val + offset, instr) & 0xffff;
3619 set_register(rt, result);
3620 if (opcode == LHZU) {
3621 set_register(ra, ra_val + offset);
3622 }
3623 break;
3624 }
3625
3626 case LHA:
3627 case LHAU: {
3628 int ra = instr->RAValue();
3629 int rt = instr->RTValue();
3630 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3631 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3632 intptr_t result = ReadH(ra_val + offset, instr);
3633 set_register(rt, result);
3634 if (opcode == LHAU) {
3635 set_register(ra, ra_val + offset);
3636 }
3637 break;
3638 }
3639
3640 case STHU:
3641 case STH: {
3642 int ra = instr->RAValue();
3643 int rs = instr->RSValue();
3644 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3645 int16_t rs_val = get_register(rs);
3646 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3647 WriteH(ra_val + offset, rs_val, instr);
3648 if (opcode == STHU) {
3649 DCHECK(ra != 0);
3650 set_register(ra, ra_val + offset);
3651 }
3652 break;
3653 }
3654
3655 case LMW:
3656 case STMW: {
3657 UNIMPLEMENTED();
3658 break;
3659 }
3660
3661 case LFSU:
3662 case LFS: {
3663 int frt = instr->RTValue();
3664 int ra = instr->RAValue();
3665 int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3666 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3667 int32_t val = ReadW(ra_val + offset, instr);
3668 float* fptr = reinterpret_cast<float*>(&val);
3669 set_d_register_from_double(frt, static_cast<double>(*fptr));
3670 if (opcode == LFSU) {
3671 DCHECK(ra != 0);
3672 set_register(ra, ra_val + offset);
3673 }
3674 break;
3675 }
3676
3677 case LFDU:
3678 case LFD: {
3679 int frt = instr->RTValue();
3680 int ra = instr->RAValue();
3681 int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3682 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3683 int64_t* dptr = reinterpret_cast<int64_t*>(ReadDW(ra_val + offset));
3684 set_d_register(frt, *dptr);
3685 if (opcode == LFDU) {
3686 DCHECK(ra != 0);
3687 set_register(ra, ra_val + offset);
3688 }
3689 break;
3690 }
3691
3692 case STFSU: {
3693 case STFS:
3694 int frs = instr->RSValue();
3695 int ra = instr->RAValue();
3696 int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3697 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3698 float frs_val = static_cast<float>(get_double_from_d_register(frs));
3699 int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
3700 WriteW(ra_val + offset, *p, instr);
3701 if (opcode == STFSU) {
3702 DCHECK(ra != 0);
3703 set_register(ra, ra_val + offset);
3704 }
3705 break;
3706 }
3707
3708 case STFDU:
3709 case STFD: {
3710 int frs = instr->RSValue();
3711 int ra = instr->RAValue();
3712 int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3713 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3714 int64_t frs_val = get_d_register(frs);
3715 WriteDW(ra_val + offset, frs_val);
3716 if (opcode == STFDU) {
3717 DCHECK(ra != 0);
3718 set_register(ra, ra_val + offset);
3719 }
3720 break;
3721 }
3722
3723 case EXT3: {
3724 ExecuteExt3(instr);
3725 break;
3726 }
3727 case EXT4: {
3728 ExecuteExt4(instr);
3729 break;
3730 }
3731
3732 #if V8_TARGET_ARCH_PPC64
3733 case EXT5: {
3734 ExecuteExt5(instr);
3735 break;
3736 }
3737 case LD: {
3738 int ra = instr->RAValue();
3739 int rt = instr->RTValue();
3740 int64_t ra_val = ra == 0 ? 0 : get_register(ra);
3741 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
3742 switch (instr->Bits(1, 0)) {
3743 case 0: { // ld
3744 intptr_t* result = ReadDW(ra_val + offset);
3745 set_register(rt, *result);
3746 break;
3747 }
3748 case 1: { // ldu
3749 intptr_t* result = ReadDW(ra_val + offset);
3750 set_register(rt, *result);
3751 DCHECK(ra != 0);
3752 set_register(ra, ra_val + offset);
3753 break;
3754 }
3755 case 2: { // lwa
3756 intptr_t result = ReadW(ra_val + offset, instr);
3757 set_register(rt, result);
3758 break;
3759 }
3760 }
3761 break;
3762 }
3763
3764 case STD: {
3765 int ra = instr->RAValue();
3766 int rs = instr->RSValue();
3767 int64_t ra_val = ra == 0 ? 0 : get_register(ra);
3768 int64_t rs_val = get_register(rs);
3769 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
3770 WriteDW(ra_val + offset, rs_val);
3771 if (instr->Bit(0) == 1) { // This is the STDU form
3772 DCHECK(ra != 0);
3773 set_register(ra, ra_val + offset);
3774 }
3775 break;
3776 }
3777 #endif
3778
3779 default: {
3780 UNIMPLEMENTED();
3781 break;
3782 }
3783 }
3784 } // NOLINT
3785
3786
Trace(Instruction * instr)3787 void Simulator::Trace(Instruction* instr) {
3788 disasm::NameConverter converter;
3789 disasm::Disassembler dasm(converter);
3790 // use a reasonably large buffer
3791 v8::internal::EmbeddedVector<char, 256> buffer;
3792 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
3793 PrintF("%05d %08" V8PRIxPTR " %s\n", icount_,
3794 reinterpret_cast<intptr_t>(instr), buffer.start());
3795 }
3796
3797
3798 // Executes the current instruction.
ExecuteInstruction(Instruction * instr)3799 void Simulator::ExecuteInstruction(Instruction* instr) {
3800 if (v8::internal::FLAG_check_icache) {
3801 CheckICache(isolate_->simulator_i_cache(), instr);
3802 }
3803 pc_modified_ = false;
3804 if (::v8::internal::FLAG_trace_sim) {
3805 Trace(instr);
3806 }
3807 int opcode = instr->OpcodeValue() << 26;
3808 if (opcode == TWI) {
3809 SoftwareInterrupt(instr);
3810 } else {
3811 ExecuteGeneric(instr);
3812 }
3813 if (!pc_modified_) {
3814 set_pc(reinterpret_cast<intptr_t>(instr) + Instruction::kInstrSize);
3815 }
3816 }
3817
3818
Execute()3819 void Simulator::Execute() {
3820 // Get the PC to simulate. Cannot use the accessor here as we need the
3821 // raw PC value and not the one used as input to arithmetic instructions.
3822 intptr_t program_counter = get_pc();
3823
3824 if (::v8::internal::FLAG_stop_sim_at == 0) {
3825 // Fast version of the dispatch loop without checking whether the simulator
3826 // should be stopping at a particular executed instruction.
3827 while (program_counter != end_sim_pc) {
3828 Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
3829 icount_++;
3830 ExecuteInstruction(instr);
3831 program_counter = get_pc();
3832 }
3833 } else {
3834 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
3835 // we reach the particular instuction count.
3836 while (program_counter != end_sim_pc) {
3837 Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
3838 icount_++;
3839 if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
3840 PPCDebugger dbg(this);
3841 dbg.Debug();
3842 } else {
3843 ExecuteInstruction(instr);
3844 }
3845 program_counter = get_pc();
3846 }
3847 }
3848 }
3849
3850
CallInternal(byte * entry)3851 void Simulator::CallInternal(byte* entry) {
3852 // Adjust JS-based stack limit to C-based stack limit.
3853 isolate_->stack_guard()->AdjustStackLimitForSimulator();
3854
3855 // Prepare to execute the code at entry
3856 #if ABI_USES_FUNCTION_DESCRIPTORS
3857 // entry is the function descriptor
3858 set_pc(*(reinterpret_cast<intptr_t*>(entry)));
3859 #else
3860 // entry is the instruction address
3861 set_pc(reinterpret_cast<intptr_t>(entry));
3862 #endif
3863
3864 // Put target address in ip (for JS prologue).
3865 set_register(r12, get_pc());
3866
3867 // Put down marker for end of simulation. The simulator will stop simulation
3868 // when the PC reaches this value. By saving the "end simulation" value into
3869 // the LR the simulation stops when returning to this call point.
3870 special_reg_lr_ = end_sim_pc;
3871
3872 // Remember the values of non-volatile registers.
3873 intptr_t r2_val = get_register(r2);
3874 intptr_t r13_val = get_register(r13);
3875 intptr_t r14_val = get_register(r14);
3876 intptr_t r15_val = get_register(r15);
3877 intptr_t r16_val = get_register(r16);
3878 intptr_t r17_val = get_register(r17);
3879 intptr_t r18_val = get_register(r18);
3880 intptr_t r19_val = get_register(r19);
3881 intptr_t r20_val = get_register(r20);
3882 intptr_t r21_val = get_register(r21);
3883 intptr_t r22_val = get_register(r22);
3884 intptr_t r23_val = get_register(r23);
3885 intptr_t r24_val = get_register(r24);
3886 intptr_t r25_val = get_register(r25);
3887 intptr_t r26_val = get_register(r26);
3888 intptr_t r27_val = get_register(r27);
3889 intptr_t r28_val = get_register(r28);
3890 intptr_t r29_val = get_register(r29);
3891 intptr_t r30_val = get_register(r30);
3892 intptr_t r31_val = get_register(fp);
3893
3894 // Set up the non-volatile registers with a known value. To be able to check
3895 // that they are preserved properly across JS execution.
3896 intptr_t callee_saved_value = icount_;
3897 set_register(r2, callee_saved_value);
3898 set_register(r13, callee_saved_value);
3899 set_register(r14, callee_saved_value);
3900 set_register(r15, callee_saved_value);
3901 set_register(r16, callee_saved_value);
3902 set_register(r17, callee_saved_value);
3903 set_register(r18, callee_saved_value);
3904 set_register(r19, callee_saved_value);
3905 set_register(r20, callee_saved_value);
3906 set_register(r21, callee_saved_value);
3907 set_register(r22, callee_saved_value);
3908 set_register(r23, callee_saved_value);
3909 set_register(r24, callee_saved_value);
3910 set_register(r25, callee_saved_value);
3911 set_register(r26, callee_saved_value);
3912 set_register(r27, callee_saved_value);
3913 set_register(r28, callee_saved_value);
3914 set_register(r29, callee_saved_value);
3915 set_register(r30, callee_saved_value);
3916 set_register(fp, callee_saved_value);
3917
3918 // Start the simulation
3919 Execute();
3920
3921 // Check that the non-volatile registers have been preserved.
3922 CHECK_EQ(callee_saved_value, get_register(r2));
3923 CHECK_EQ(callee_saved_value, get_register(r13));
3924 CHECK_EQ(callee_saved_value, get_register(r14));
3925 CHECK_EQ(callee_saved_value, get_register(r15));
3926 CHECK_EQ(callee_saved_value, get_register(r16));
3927 CHECK_EQ(callee_saved_value, get_register(r17));
3928 CHECK_EQ(callee_saved_value, get_register(r18));
3929 CHECK_EQ(callee_saved_value, get_register(r19));
3930 CHECK_EQ(callee_saved_value, get_register(r20));
3931 CHECK_EQ(callee_saved_value, get_register(r21));
3932 CHECK_EQ(callee_saved_value, get_register(r22));
3933 CHECK_EQ(callee_saved_value, get_register(r23));
3934 CHECK_EQ(callee_saved_value, get_register(r24));
3935 CHECK_EQ(callee_saved_value, get_register(r25));
3936 CHECK_EQ(callee_saved_value, get_register(r26));
3937 CHECK_EQ(callee_saved_value, get_register(r27));
3938 CHECK_EQ(callee_saved_value, get_register(r28));
3939 CHECK_EQ(callee_saved_value, get_register(r29));
3940 CHECK_EQ(callee_saved_value, get_register(r30));
3941 CHECK_EQ(callee_saved_value, get_register(fp));
3942
3943 // Restore non-volatile registers with the original value.
3944 set_register(r2, r2_val);
3945 set_register(r13, r13_val);
3946 set_register(r14, r14_val);
3947 set_register(r15, r15_val);
3948 set_register(r16, r16_val);
3949 set_register(r17, r17_val);
3950 set_register(r18, r18_val);
3951 set_register(r19, r19_val);
3952 set_register(r20, r20_val);
3953 set_register(r21, r21_val);
3954 set_register(r22, r22_val);
3955 set_register(r23, r23_val);
3956 set_register(r24, r24_val);
3957 set_register(r25, r25_val);
3958 set_register(r26, r26_val);
3959 set_register(r27, r27_val);
3960 set_register(r28, r28_val);
3961 set_register(r29, r29_val);
3962 set_register(r30, r30_val);
3963 set_register(fp, r31_val);
3964 }
3965
3966
Call(byte * entry,int argument_count,...)3967 intptr_t Simulator::Call(byte* entry, int argument_count, ...) {
3968 va_list parameters;
3969 va_start(parameters, argument_count);
3970 // Set up arguments
3971
3972 // First eight arguments passed in registers r3-r10.
3973 int reg_arg_count = (argument_count > 8) ? 8 : argument_count;
3974 int stack_arg_count = argument_count - reg_arg_count;
3975 for (int i = 0; i < reg_arg_count; i++) {
3976 set_register(i + 3, va_arg(parameters, intptr_t));
3977 }
3978
3979 // Remaining arguments passed on stack.
3980 intptr_t original_stack = get_register(sp);
3981 // Compute position of stack on entry to generated code.
3982 intptr_t entry_stack =
3983 (original_stack -
3984 (kNumRequiredStackFrameSlots + stack_arg_count) * sizeof(intptr_t));
3985 if (base::OS::ActivationFrameAlignment() != 0) {
3986 entry_stack &= -base::OS::ActivationFrameAlignment();
3987 }
3988 // Store remaining arguments on stack, from low to high memory.
3989 // +2 is a hack for the LR slot + old SP on PPC
3990 intptr_t* stack_argument =
3991 reinterpret_cast<intptr_t*>(entry_stack) + kStackFrameExtraParamSlot;
3992 for (int i = 0; i < stack_arg_count; i++) {
3993 stack_argument[i] = va_arg(parameters, intptr_t);
3994 }
3995 va_end(parameters);
3996 set_register(sp, entry_stack);
3997
3998 CallInternal(entry);
3999
4000 // Pop stack passed arguments.
4001 CHECK_EQ(entry_stack, get_register(sp));
4002 set_register(sp, original_stack);
4003
4004 intptr_t result = get_register(r3);
4005 return result;
4006 }
4007
4008
CallFP(byte * entry,double d0,double d1)4009 void Simulator::CallFP(byte* entry, double d0, double d1) {
4010 set_d_register_from_double(1, d0);
4011 set_d_register_from_double(2, d1);
4012 CallInternal(entry);
4013 }
4014
4015
CallFPReturnsInt(byte * entry,double d0,double d1)4016 int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
4017 CallFP(entry, d0, d1);
4018 int32_t result = get_register(r3);
4019 return result;
4020 }
4021
4022
CallFPReturnsDouble(byte * entry,double d0,double d1)4023 double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
4024 CallFP(entry, d0, d1);
4025 return get_double_from_d_register(1);
4026 }
4027
4028
PushAddress(uintptr_t address)4029 uintptr_t Simulator::PushAddress(uintptr_t address) {
4030 uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t);
4031 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
4032 *stack_slot = address;
4033 set_register(sp, new_sp);
4034 return new_sp;
4035 }
4036
4037
PopAddress()4038 uintptr_t Simulator::PopAddress() {
4039 uintptr_t current_sp = get_register(sp);
4040 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
4041 uintptr_t address = *stack_slot;
4042 set_register(sp, current_sp + sizeof(uintptr_t));
4043 return address;
4044 }
4045 } // namespace internal
4046 } // namespace v8
4047
4048 #endif // USE_SIMULATOR
4049 #endif // V8_TARGET_ARCH_PPC
4050