1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_MIPS64
6 
7 #include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
8 
9 #include "src/code-stubs.h"
10 #include "src/log.h"
11 #include "src/macro-assembler.h"
12 #include "src/regexp/regexp-macro-assembler.h"
13 #include "src/regexp/regexp-stack.h"
14 #include "src/unicode.h"
15 
16 namespace v8 {
17 namespace internal {
18 
19 #ifndef V8_INTERPRETED_REGEXP
20 /*
21  * This assembler uses the following register assignment convention
22  * - t3 : Temporarily stores the index of capture start after a matching pass
23  *        for a global regexp.
24  * - a5 : Pointer to current code object (Code*) including heap object tag.
25  * - a6 : Current position in input, as negative offset from end of string.
26  *        Please notice that this is the byte offset, not the character offset!
27  * - a7 : Currently loaded character. Must be loaded using
28  *        LoadCurrentCharacter before using any of the dispatch methods.
29  * - t0 : Points to tip of backtrack stack
30  * - t1 : Unused.
31  * - t2 : End of input (points to byte after last character in input).
32  * - fp : Frame pointer. Used to access arguments, local variables and
33  *         RegExp registers.
34  * - sp : Points to tip of C stack.
35  *
36  * The remaining registers are free for computations.
37  * Each call to a public method should retain this convention.
38  *
39  * TODO(plind): O32 documented here with intent of having single 32/64 codebase
40  *              in the future.
41  *
42  * The O32 stack will have the following structure:
43  *
44  *  - fp[76]  Isolate* isolate   (address of the current isolate)
45  *  - fp[72]  direct_call  (if 1, direct call from JavaScript code,
46  *                          if 0, call through the runtime system).
47  *  - fp[68]  stack_area_base (High end of the memory area to use as
48  *                             backtracking stack).
49  *  - fp[64]  capture array size (may fit multiple sets of matches)
50  *  - fp[60]  int* capture_array (int[num_saved_registers_], for output).
51  *  - fp[44..59]  MIPS O32 four argument slots
52  *  - fp[40]  secondary link/return address used by native call.
53  *  --- sp when called ---
54  *  - fp[36]  return address      (lr).
55  *  - fp[32]  old frame pointer   (r11).
56  *  - fp[0..31]  backup of registers s0..s7.
57  *  --- frame pointer ----
58  *  - fp[-4]  end of input       (address of end of string).
59  *  - fp[-8]  start of input     (address of first character in string).
60  *  - fp[-12] start index        (character index of start).
61  *  - fp[-16] void* input_string (location of a handle containing the string).
62  *  - fp[-20] success counter    (only for global regexps to count matches).
63  *  - fp[-24] Offset of location before start of input (effectively character
64  *            string start - 1). Used to initialize capture registers to a
65  *            non-position.
66  *  - fp[-28] At start (if 1, we are starting at the start of the
67  *    string, otherwise 0)
68  *  - fp[-32] register 0         (Only positions must be stored in the first
69  *  -         register 1          num_saved_registers_ registers)
70  *  -         ...
71  *  -         register num_registers-1
72  *  --- sp ---
73  *
74  *
75  * The N64 stack will have the following structure:
76  *
77  *  - fp[88]  Isolate* isolate   (address of the current isolate)               kIsolate
78  *  - fp[80]  secondary link/return address used by exit frame on native call.  kSecondaryReturnAddress
79                                                                                 kStackFrameHeader
80  *  --- sp when called ---
81  *  - fp[72]  ra                 Return from RegExp code (ra).                  kReturnAddress
82  *  - fp[64]  s9, old-fp         Old fp, callee saved(s9).
83  *  - fp[0..63]  s0..s7          Callee-saved registers s0..s7.
84  *  --- frame pointer ----
85  *  - fp[-8]  direct_call        (1 = direct call from JS, 0 = from runtime)    kDirectCall
86  *  - fp[-16] stack_base         (Top of backtracking stack).                   kStackHighEnd
87  *  - fp[-24] capture array size (may fit multiple sets of matches)             kNumOutputRegisters
88  *  - fp[-32] int* capture_array (int[num_saved_registers_], for output).       kRegisterOutput
89  *  - fp[-40] end of input       (address of end of string).                    kInputEnd
90  *  - fp[-48] start of input     (address of first character in string).        kInputStart
91  *  - fp[-56] start index        (character index of start).                    kStartIndex
92  *  - fp[-64] void* input_string (location of a handle containing the string).  kInputString
93  *  - fp[-72] success counter    (only for global regexps to count matches).    kSuccessfulCaptures
94  *  - fp[-80] Offset of location before start of input (effectively character   kStringStartMinusOne
95  *            position -1). Used to initialize capture registers to a
96  *            non-position.
97  *  --------- The following output registers are 32-bit values. ---------
98  *  - fp[-88] register 0         (Only positions must be stored in the first    kRegisterZero
99  *  -         register 1          num_saved_registers_ registers)
100  *  -         ...
101  *  -         register num_registers-1
102  *  --- sp ---
103  *
104  * The first num_saved_registers_ registers are initialized to point to
105  * "character -1" in the string (i.e., char_size() bytes before the first
106  * character of the string). The remaining registers start out as garbage.
107  *
108  * The data up to the return address must be placed there by the calling
109  * code and the remaining arguments are passed in registers, e.g. by calling the
110  * code entry as cast to a function with the signature:
111  * int (*match)(String* input_string,
112  *              int start_index,
113  *              Address start,
114  *              Address end,
115  *              Address secondary_return_address,  // Only used by native call.
116  *              int* capture_output_array,
117  *              byte* stack_area_base,
118  *              bool direct_call = false,
119  *              void* return_address,
120  *              Isolate* isolate);
121  * The call is performed by NativeRegExpMacroAssembler::Execute()
122  * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
123  * in mips/simulator-mips.h.
124  * When calling as a non-direct call (i.e., from C++ code), the return address
125  * area is overwritten with the ra register by the RegExp code. When doing a
126  * direct call from generated code, the return address is placed there by
127  * the calling code, as in a normal exit frame.
128  */
129 
130 #define __ ACCESS_MASM(masm_)
131 
RegExpMacroAssemblerMIPS(Isolate * isolate,Zone * zone,Mode mode,int registers_to_save)132 RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone,
133                                                    Mode mode,
134                                                    int registers_to_save)
135     : NativeRegExpMacroAssembler(isolate, zone),
136       masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
137                                CodeObjectRequired::kYes)),
138       mode_(mode),
139       num_registers_(registers_to_save),
140       num_saved_registers_(registers_to_save),
141       entry_label_(),
142       start_label_(),
143       success_label_(),
144       backtrack_label_(),
145       exit_label_(),
146       internal_failure_label_() {
147   DCHECK_EQ(0, registers_to_save % 2);
148   __ jmp(&entry_label_);   // We'll write the entry code later.
149   // If the code gets too big or corrupted, an internal exception will be
150   // raised, and we will exit right away.
151   __ bind(&internal_failure_label_);
152   __ li(v0, Operand(FAILURE));
153   __ Ret();
154   __ bind(&start_label_);  // And then continue from here.
155 }
156 
157 
~RegExpMacroAssemblerMIPS()158 RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
159   delete masm_;
160   // Unuse labels in case we throw away the assembler without calling GetCode.
161   entry_label_.Unuse();
162   start_label_.Unuse();
163   success_label_.Unuse();
164   backtrack_label_.Unuse();
165   exit_label_.Unuse();
166   check_preempt_label_.Unuse();
167   stack_overflow_label_.Unuse();
168   internal_failure_label_.Unuse();
169 }
170 
171 
stack_limit_slack()172 int RegExpMacroAssemblerMIPS::stack_limit_slack()  {
173   return RegExpStack::kStackLimitSlack;
174 }
175 
176 
AdvanceCurrentPosition(int by)177 void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
178   if (by != 0) {
179     __ Daddu(current_input_offset(),
180             current_input_offset(), Operand(by * char_size()));
181   }
182 }
183 
184 
AdvanceRegister(int reg,int by)185 void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
186   DCHECK(reg >= 0);
187   DCHECK(reg < num_registers_);
188   if (by != 0) {
189     __ ld(a0, register_location(reg));
190     __ Daddu(a0, a0, Operand(by));
191     __ sd(a0, register_location(reg));
192   }
193 }
194 
195 
Backtrack()196 void RegExpMacroAssemblerMIPS::Backtrack() {
197   CheckPreemption();
198   // Pop Code* offset from backtrack stack, add Code* and jump to location.
199   Pop(a0);
200   __ Daddu(a0, a0, code_pointer());
201   __ Jump(a0);
202 }
203 
204 
Bind(Label * label)205 void RegExpMacroAssemblerMIPS::Bind(Label* label) {
206   __ bind(label);
207 }
208 
209 
CheckCharacter(uint32_t c,Label * on_equal)210 void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
211   BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
212 }
213 
214 
CheckCharacterGT(uc16 limit,Label * on_greater)215 void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
216   BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
217 }
218 
219 
CheckAtStart(Label * on_at_start)220 void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
221   __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
222   __ Daddu(a0, current_input_offset(), Operand(-char_size()));
223   BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
224 }
225 
226 
CheckNotAtStart(int cp_offset,Label * on_not_at_start)227 void RegExpMacroAssemblerMIPS::CheckNotAtStart(int cp_offset,
228                                                Label* on_not_at_start) {
229   __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
230   __ Daddu(a0, current_input_offset(),
231            Operand(-char_size() + cp_offset * char_size()));
232   BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
233 }
234 
235 
CheckCharacterLT(uc16 limit,Label * on_less)236 void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
237   BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
238 }
239 
240 
CheckGreedyLoop(Label * on_equal)241 void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
242   Label backtrack_non_equal;
243   __ lw(a0, MemOperand(backtrack_stackpointer(), 0));
244   __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
245   __ Daddu(backtrack_stackpointer(),
246           backtrack_stackpointer(),
247           Operand(kIntSize));
248   __ bind(&backtrack_non_equal);
249   BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
250 }
251 
252 
CheckNotBackReferenceIgnoreCase(int start_reg,bool read_backward,Label * on_no_match)253 void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
254     int start_reg, bool read_backward, Label* on_no_match) {
255   Label fallthrough;
256   __ ld(a0, register_location(start_reg));  // Index of start of capture.
257   __ ld(a1, register_location(start_reg + 1));  // Index of end of capture.
258   __ Dsubu(a1, a1, a0);  // Length of capture.
259 
260   // At this point, the capture registers are either both set or both cleared.
261   // If the capture length is zero, then the capture is either empty or cleared.
262   // Fall through in both cases.
263   __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
264 
265   if (read_backward) {
266     __ ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
267     __ Daddu(t1, t1, a1);
268     BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
269   } else {
270     __ Daddu(t1, a1, current_input_offset());
271     // Check that there are enough characters left in the input.
272     BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
273   }
274 
275   if (mode_ == LATIN1) {
276     Label success;
277     Label fail;
278     Label loop_check;
279 
280     // a0 - offset of start of capture.
281     // a1 - length of capture.
282     __ Daddu(a0, a0, Operand(end_of_input_address()));
283     __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
284     if (read_backward) {
285       __ Dsubu(a2, a2, Operand(a1));
286     }
287     __ Daddu(a1, a0, Operand(a1));
288 
289     // a0 - Address of start of capture.
290     // a1 - Address of end of capture.
291     // a2 - Address of current input position.
292 
293     Label loop;
294     __ bind(&loop);
295     __ lbu(a3, MemOperand(a0, 0));
296     __ daddiu(a0, a0, char_size());
297     __ lbu(a4, MemOperand(a2, 0));
298     __ daddiu(a2, a2, char_size());
299 
300     __ Branch(&loop_check, eq, a4, Operand(a3));
301 
302     // Mismatch, try case-insensitive match (converting letters to lower-case).
303     __ Or(a3, a3, Operand(0x20));  // Convert capture character to lower-case.
304     __ Or(a4, a4, Operand(0x20));  // Also convert input character.
305     __ Branch(&fail, ne, a4, Operand(a3));
306     __ Dsubu(a3, a3, Operand('a'));
307     __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
308     // Latin-1: Check for values in range [224,254] but not 247.
309     __ Dsubu(a3, a3, Operand(224 - 'a'));
310     // Weren't Latin-1 letters.
311     __ Branch(&fail, hi, a3, Operand(254 - 224));
312     // Check for 247.
313     __ Branch(&fail, eq, a3, Operand(247 - 224));
314 
315     __ bind(&loop_check);
316     __ Branch(&loop, lt, a0, Operand(a1));
317     __ jmp(&success);
318 
319     __ bind(&fail);
320     GoTo(on_no_match);
321 
322     __ bind(&success);
323     // Compute new value of character position after the matched part.
324     __ Dsubu(current_input_offset(), a2, end_of_input_address());
325     if (read_backward) {
326       __ ld(t1, register_location(start_reg));  // Index of start of capture.
327       __ ld(a2, register_location(start_reg + 1));  // Index of end of capture.
328       __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
329       __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
330     }
331   } else {
332     DCHECK(mode_ == UC16);
333     // Put regexp engine registers on stack.
334     RegList regexp_registers_to_retain = current_input_offset().bit() |
335         current_character().bit() | backtrack_stackpointer().bit();
336     __ MultiPush(regexp_registers_to_retain);
337 
338     int argument_count = 4;
339     __ PrepareCallCFunction(argument_count, a2);
340 
341     // a0 - offset of start of capture.
342     // a1 - length of capture.
343 
344     // Put arguments into arguments registers.
345     // Parameters are
346     //   a0: Address byte_offset1 - Address captured substring's start.
347     //   a1: Address byte_offset2 - Address of current character position.
348     //   a2: size_t byte_length - length of capture in bytes(!).
349     //   a3: Isolate* isolate.
350 
351     // Address of start of capture.
352     __ Daddu(a0, a0, Operand(end_of_input_address()));
353     // Length of capture.
354     __ mov(a2, a1);
355     // Save length in callee-save register for use on return.
356     __ mov(s3, a1);
357     // Address of current input position.
358     __ Daddu(a1, current_input_offset(), Operand(end_of_input_address()));
359     if (read_backward) {
360       __ Dsubu(a1, a1, Operand(s3));
361     }
362     // Isolate.
363     __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
364 
365     {
366       AllowExternalCallThatCantCauseGC scope(masm_);
367       ExternalReference function =
368           ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
369       __ CallCFunction(function, argument_count);
370     }
371 
372     // Restore regexp engine registers.
373     __ MultiPop(regexp_registers_to_retain);
374     __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
375     __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
376 
377     // Check if function returned non-zero for success or zero for failure.
378     BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
379     // On success, increment position by length of capture.
380     if (read_backward) {
381       __ Dsubu(current_input_offset(), current_input_offset(), Operand(s3));
382     } else {
383       __ Daddu(current_input_offset(), current_input_offset(), Operand(s3));
384     }
385   }
386 
387   __ bind(&fallthrough);
388 }
389 
390 
CheckNotBackReference(int start_reg,bool read_backward,Label * on_no_match)391 void RegExpMacroAssemblerMIPS::CheckNotBackReference(int start_reg,
392                                                      bool read_backward,
393                                                      Label* on_no_match) {
394   Label fallthrough;
395   Label success;
396 
397   // Find length of back-referenced capture.
398   __ ld(a0, register_location(start_reg));
399   __ ld(a1, register_location(start_reg + 1));
400   __ Dsubu(a1, a1, a0);  // Length to check.
401 
402   // At this point, the capture registers are either both set or both cleared.
403   // If the capture length is zero, then the capture is either empty or cleared.
404   // Fall through in both cases.
405   __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
406 
407   if (read_backward) {
408     __ ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
409     __ Daddu(t1, t1, a1);
410     BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
411   } else {
412     __ Daddu(t1, a1, current_input_offset());
413     // Check that there are enough characters left in the input.
414     BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
415   }
416 
417   // Compute pointers to match string and capture string.
418   __ Daddu(a0, a0, Operand(end_of_input_address()));
419   __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
420   if (read_backward) {
421     __ Dsubu(a2, a2, Operand(a1));
422   }
423   __ Daddu(a1, a1, Operand(a0));
424 
425   Label loop;
426   __ bind(&loop);
427   if (mode_ == LATIN1) {
428     __ lbu(a3, MemOperand(a0, 0));
429     __ daddiu(a0, a0, char_size());
430     __ lbu(a4, MemOperand(a2, 0));
431     __ daddiu(a2, a2, char_size());
432   } else {
433     DCHECK(mode_ == UC16);
434     __ lhu(a3, MemOperand(a0, 0));
435     __ daddiu(a0, a0, char_size());
436     __ lhu(a4, MemOperand(a2, 0));
437     __ daddiu(a2, a2, char_size());
438   }
439   BranchOrBacktrack(on_no_match, ne, a3, Operand(a4));
440   __ Branch(&loop, lt, a0, Operand(a1));
441 
442   // Move current character position to position after match.
443   __ Dsubu(current_input_offset(), a2, end_of_input_address());
444   if (read_backward) {
445     __ ld(t1, register_location(start_reg));      // Index of start of capture.
446     __ ld(a2, register_location(start_reg + 1));  // Index of end of capture.
447     __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
448     __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
449   }
450   __ bind(&fallthrough);
451 }
452 
453 
CheckNotCharacter(uint32_t c,Label * on_not_equal)454 void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
455                                                  Label* on_not_equal) {
456   BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
457 }
458 
459 
CheckCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_equal)460 void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
461                                                       uint32_t mask,
462                                                       Label* on_equal) {
463   __ And(a0, current_character(), Operand(mask));
464   Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
465   BranchOrBacktrack(on_equal, eq, a0, rhs);
466 }
467 
468 
CheckNotCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_not_equal)469 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
470                                                          uint32_t mask,
471                                                          Label* on_not_equal) {
472   __ And(a0, current_character(), Operand(mask));
473   Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
474   BranchOrBacktrack(on_not_equal, ne, a0, rhs);
475 }
476 
477 
CheckNotCharacterAfterMinusAnd(uc16 c,uc16 minus,uc16 mask,Label * on_not_equal)478 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
479     uc16 c,
480     uc16 minus,
481     uc16 mask,
482     Label* on_not_equal) {
483   DCHECK(minus < String::kMaxUtf16CodeUnit);
484   __ Dsubu(a0, current_character(), Operand(minus));
485   __ And(a0, a0, Operand(mask));
486   BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
487 }
488 
489 
CheckCharacterInRange(uc16 from,uc16 to,Label * on_in_range)490 void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
491     uc16 from,
492     uc16 to,
493     Label* on_in_range) {
494   __ Dsubu(a0, current_character(), Operand(from));
495   // Unsigned lower-or-same condition.
496   BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
497 }
498 
499 
CheckCharacterNotInRange(uc16 from,uc16 to,Label * on_not_in_range)500 void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
501     uc16 from,
502     uc16 to,
503     Label* on_not_in_range) {
504   __ Dsubu(a0, current_character(), Operand(from));
505   // Unsigned higher condition.
506   BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
507 }
508 
509 
CheckBitInTable(Handle<ByteArray> table,Label * on_bit_set)510 void RegExpMacroAssemblerMIPS::CheckBitInTable(
511     Handle<ByteArray> table,
512     Label* on_bit_set) {
513   __ li(a0, Operand(table));
514   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
515     __ And(a1, current_character(), Operand(kTableSize - 1));
516     __ Daddu(a0, a0, a1);
517   } else {
518     __ Daddu(a0, a0, current_character());
519   }
520 
521   __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
522   BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
523 }
524 
525 
CheckSpecialCharacterClass(uc16 type,Label * on_no_match)526 bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
527                                                           Label* on_no_match) {
528   // Range checks (c in min..max) are generally implemented by an unsigned
529   // (c - min) <= (max - min) check.
530   switch (type) {
531   case 's':
532     // Match space-characters.
533     if (mode_ == LATIN1) {
534       // One byte space characters are '\t'..'\r', ' ' and \u00a0.
535       Label success;
536       __ Branch(&success, eq, current_character(), Operand(' '));
537       // Check range 0x09..0x0d.
538       __ Dsubu(a0, current_character(), Operand('\t'));
539       __ Branch(&success, ls, a0, Operand('\r' - '\t'));
540       // \u00a0 (NBSP).
541       BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t'));
542       __ bind(&success);
543       return true;
544     }
545     return false;
546   case 'S':
547     // The emitted code for generic character classes is good enough.
548     return false;
549   case 'd':
550     // Match Latin1 digits ('0'..'9').
551     __ Dsubu(a0, current_character(), Operand('0'));
552     BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
553     return true;
554   case 'D':
555     // Match non Latin1-digits.
556     __ Dsubu(a0, current_character(), Operand('0'));
557     BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
558     return true;
559   case '.': {
560     // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
561     __ Xor(a0, current_character(), Operand(0x01));
562     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
563     __ Dsubu(a0, a0, Operand(0x0b));
564     BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b));
565     if (mode_ == UC16) {
566       // Compare original value to 0x2028 and 0x2029, using the already
567       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
568       // 0x201d (0x2028 - 0x0b) or 0x201e.
569       __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
570       BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
571     }
572     return true;
573   }
574   case 'n': {
575     // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
576     __ Xor(a0, current_character(), Operand(0x01));
577     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
578     __ Dsubu(a0, a0, Operand(0x0b));
579     if (mode_ == LATIN1) {
580       BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b));
581     } else {
582       Label done;
583       BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b));
584       // Compare original value to 0x2028 and 0x2029, using the already
585       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
586       // 0x201d (0x2028 - 0x0b) or 0x201e.
587       __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
588       BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
589       __ bind(&done);
590     }
591     return true;
592   }
593   case 'w': {
594     if (mode_ != LATIN1) {
595       // Table is 256 entries, so all Latin1 characters can be tested.
596       BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
597     }
598     ExternalReference map = ExternalReference::re_word_character_map();
599     __ li(a0, Operand(map));
600     __ Daddu(a0, a0, current_character());
601     __ lbu(a0, MemOperand(a0, 0));
602     BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
603     return true;
604   }
605   case 'W': {
606     Label done;
607     if (mode_ != LATIN1) {
608       // Table is 256 entries, so all Latin1 characters can be tested.
609       __ Branch(&done, hi, current_character(), Operand('z'));
610     }
611     ExternalReference map = ExternalReference::re_word_character_map();
612     __ li(a0, Operand(map));
613     __ Daddu(a0, a0, current_character());
614     __ lbu(a0, MemOperand(a0, 0));
615     BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
616     if (mode_ != LATIN1) {
617       __ bind(&done);
618     }
619     return true;
620   }
621   case '*':
622     // Match any character.
623     return true;
624   // No custom implementation (yet): s(UC16), S(UC16).
625   default:
626     return false;
627   }
628 }
629 
630 
Fail()631 void RegExpMacroAssemblerMIPS::Fail() {
632   __ li(v0, Operand(FAILURE));
633   __ jmp(&exit_label_);
634 }
635 
636 
GetCode(Handle<String> source)637 Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
638   Label return_v0;
639   if (masm_->has_exception()) {
640     // If the code gets corrupted due to long regular expressions and lack of
641     // space on trampolines, an internal exception flag is set. If this case
642     // is detected, we will jump into exit sequence right away.
643     __ bind_to(&entry_label_, internal_failure_label_.pos());
644   } else {
645     // Finalize code - write the entry point code now we know how many
646     // registers we need.
647 
648     // Entry code:
649     __ bind(&entry_label_);
650 
651     // Tell the system that we have a stack frame.  Because the type is MANUAL,
652     // no is generated.
653     FrameScope scope(masm_, StackFrame::MANUAL);
654 
655     // Actually emit code to start a new stack frame.
656     // Push arguments
657     // Save callee-save registers.
658     // Start new stack frame.
659     // Store link register in existing stack-cell.
660     // Order here should correspond to order of offset constants in header file.
661     // TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs
662     // or dont save.
663     RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
664         s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
665     RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
666 
667     if (kMipsAbi == kN64) {
668       // TODO(plind): Should probably alias a4-a7, for clarity.
669       argument_registers |= a4.bit() | a5.bit() | a6.bit() | a7.bit();
670     }
671 
672     __ MultiPush(argument_registers | registers_to_retain | ra.bit());
673     // Set frame pointer in space for it if this is not a direct call
674     // from generated code.
675     // TODO(plind): this 8 is the # of argument regs, should have definition.
676     __ Daddu(frame_pointer(), sp, Operand(8 * kPointerSize));
677     __ mov(a0, zero_reg);
678     __ push(a0);  // Make room for success counter and initialize it to 0.
679     __ push(a0);  // Make room for "string start - 1" constant.
680 
681     // Check if we have space on the stack for registers.
682     Label stack_limit_hit;
683     Label stack_ok;
684 
685     ExternalReference stack_limit =
686         ExternalReference::address_of_stack_limit(masm_->isolate());
687     __ li(a0, Operand(stack_limit));
688     __ ld(a0, MemOperand(a0));
689     __ Dsubu(a0, sp, a0);
690     // Handle it if the stack pointer is already below the stack limit.
691     __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
692     // Check if there is room for the variable number of registers above
693     // the stack limit.
694     __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
695     // Exit with OutOfMemory exception. There is not enough space on the stack
696     // for our working registers.
697     __ li(v0, Operand(EXCEPTION));
698     __ jmp(&return_v0);
699 
700     __ bind(&stack_limit_hit);
701     CallCheckStackGuardState(a0);
702     // If returned value is non-zero, we exit with the returned value as result.
703     __ Branch(&return_v0, ne, v0, Operand(zero_reg));
704 
705     __ bind(&stack_ok);
706     // Allocate space on stack for registers.
707     __ Dsubu(sp, sp, Operand(num_registers_ * kPointerSize));
708     // Load string end.
709     __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
710     // Load input start.
711     __ ld(a0, MemOperand(frame_pointer(), kInputStart));
712     // Find negative length (offset of start relative to end).
713     __ Dsubu(current_input_offset(), a0, end_of_input_address());
714     // Set a0 to address of char before start of the input string
715     // (effectively string position -1).
716     __ ld(a1, MemOperand(frame_pointer(), kStartIndex));
717     __ Dsubu(a0, current_input_offset(), Operand(char_size()));
718     __ dsll(t1, a1, (mode_ == UC16) ? 1 : 0);
719     __ Dsubu(a0, a0, t1);
720     // Store this value in a local variable, for use when clearing
721     // position registers.
722     __ sd(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
723 
724     // Initialize code pointer register
725     __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
726 
727     Label load_char_start_regexp, start_regexp;
728     // Load newline if index is at start, previous character otherwise.
729     __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
730     __ li(current_character(), Operand('\n'));
731     __ jmp(&start_regexp);
732 
733     // Global regexp restarts matching here.
734     __ bind(&load_char_start_regexp);
735     // Load previous char as initial value of current character register.
736     LoadCurrentCharacterUnchecked(-1, 1);
737     __ bind(&start_regexp);
738 
739     // Initialize on-stack registers.
740     if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
741       // Fill saved registers with initial value = start offset - 1.
742       if (num_saved_registers_ > 8) {
743         // Address of register 0.
744         __ Daddu(a1, frame_pointer(), Operand(kRegisterZero));
745         __ li(a2, Operand(num_saved_registers_));
746         Label init_loop;
747         __ bind(&init_loop);
748         __ sd(a0, MemOperand(a1));
749         __ Daddu(a1, a1, Operand(-kPointerSize));
750         __ Dsubu(a2, a2, Operand(1));
751         __ Branch(&init_loop, ne, a2, Operand(zero_reg));
752       } else {
753         for (int i = 0; i < num_saved_registers_; i++) {
754           __ sd(a0, register_location(i));
755         }
756       }
757     }
758 
759     // Initialize backtrack stack pointer.
760     __ ld(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
761 
762     __ jmp(&start_label_);
763 
764 
765     // Exit code:
766     if (success_label_.is_linked()) {
767       // Save captures when successful.
768       __ bind(&success_label_);
769       if (num_saved_registers_ > 0) {
770         // Copy captures to output.
771         __ ld(a1, MemOperand(frame_pointer(), kInputStart));
772         __ ld(a0, MemOperand(frame_pointer(), kRegisterOutput));
773         __ ld(a2, MemOperand(frame_pointer(), kStartIndex));
774         __ Dsubu(a1, end_of_input_address(), a1);
775         // a1 is length of input in bytes.
776         if (mode_ == UC16) {
777           __ dsrl(a1, a1, 1);
778         }
779         // a1 is length of input in characters.
780         __ Daddu(a1, a1, Operand(a2));
781         // a1 is length of string in characters.
782 
783         DCHECK_EQ(0, num_saved_registers_ % 2);
784         // Always an even number of capture registers. This allows us to
785         // unroll the loop once to add an operation between a load of a register
786         // and the following use of that register.
787         for (int i = 0; i < num_saved_registers_; i += 2) {
788           __ ld(a2, register_location(i));
789           __ ld(a3, register_location(i + 1));
790           if (i == 0 && global_with_zero_length_check()) {
791             // Keep capture start in a4 for the zero-length check later.
792             __ mov(t3, a2);
793           }
794           if (mode_ == UC16) {
795             __ dsra(a2, a2, 1);
796             __ Daddu(a2, a2, a1);
797             __ dsra(a3, a3, 1);
798             __ Daddu(a3, a3, a1);
799           } else {
800             __ Daddu(a2, a1, Operand(a2));
801             __ Daddu(a3, a1, Operand(a3));
802           }
803           // V8 expects the output to be an int32_t array.
804           __ sw(a2, MemOperand(a0));
805           __ Daddu(a0, a0, kIntSize);
806           __ sw(a3, MemOperand(a0));
807           __ Daddu(a0, a0, kIntSize);
808         }
809       }
810 
811       if (global()) {
812         // Restart matching if the regular expression is flagged as global.
813         __ ld(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
814         __ ld(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
815         __ ld(a2, MemOperand(frame_pointer(), kRegisterOutput));
816         // Increment success counter.
817         __ Daddu(a0, a0, 1);
818         __ sd(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
819         // Capture results have been stored, so the number of remaining global
820         // output registers is reduced by the number of stored captures.
821         __ Dsubu(a1, a1, num_saved_registers_);
822         // Check whether we have enough room for another set of capture results.
823         __ mov(v0, a0);
824         __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
825 
826         __ sd(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
827         // Advance the location for output.
828         __ Daddu(a2, a2, num_saved_registers_ * kIntSize);
829         __ sd(a2, MemOperand(frame_pointer(), kRegisterOutput));
830 
831         // Prepare a0 to initialize registers with its value in the next run.
832         __ ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
833 
834         if (global_with_zero_length_check()) {
835           // Special case for zero-length matches.
836           // t3: capture start index
837           // Not a zero-length match, restart.
838           __ Branch(
839               &load_char_start_regexp, ne, current_input_offset(), Operand(t3));
840           // Offset from the end is zero if we already reached the end.
841           __ Branch(&exit_label_, eq, current_input_offset(),
842                     Operand(zero_reg));
843           // Advance current position after a zero-length match.
844           __ Daddu(current_input_offset(),
845                   current_input_offset(),
846                   Operand((mode_ == UC16) ? 2 : 1));
847         }
848 
849         __ Branch(&load_char_start_regexp);
850       } else {
851         __ li(v0, Operand(SUCCESS));
852       }
853     }
854     // Exit and return v0.
855     __ bind(&exit_label_);
856     if (global()) {
857       __ ld(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
858     }
859 
860     __ bind(&return_v0);
861     // Skip sp past regexp registers and local variables..
862     __ mov(sp, frame_pointer());
863     // Restore registers s0..s7 and return (restoring ra to pc).
864     __ MultiPop(registers_to_retain | ra.bit());
865     __ Ret();
866 
867     // Backtrack code (branch target for conditional backtracks).
868     if (backtrack_label_.is_linked()) {
869       __ bind(&backtrack_label_);
870       Backtrack();
871     }
872 
873     Label exit_with_exception;
874 
875     // Preempt-code.
876     if (check_preempt_label_.is_linked()) {
877       SafeCallTarget(&check_preempt_label_);
878       // Put regexp engine registers on stack.
879       RegList regexp_registers_to_retain = current_input_offset().bit() |
880           current_character().bit() | backtrack_stackpointer().bit();
881       __ MultiPush(regexp_registers_to_retain);
882       CallCheckStackGuardState(a0);
883       __ MultiPop(regexp_registers_to_retain);
884       // If returning non-zero, we should end execution with the given
885       // result as return value.
886       __ Branch(&return_v0, ne, v0, Operand(zero_reg));
887 
888       // String might have moved: Reload end of string from frame.
889       __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
890       __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
891       SafeReturn();
892     }
893 
894     // Backtrack stack overflow code.
895     if (stack_overflow_label_.is_linked()) {
896       SafeCallTarget(&stack_overflow_label_);
897       // Reached if the backtrack-stack limit has been hit.
898       // Put regexp engine registers on stack first.
899       RegList regexp_registers = current_input_offset().bit() |
900           current_character().bit();
901       __ MultiPush(regexp_registers);
902       Label grow_failed;
903       // Call GrowStack(backtrack_stackpointer(), &stack_base)
904       static const int num_arguments = 3;
905       __ PrepareCallCFunction(num_arguments, a0);
906       __ mov(a0, backtrack_stackpointer());
907       __ Daddu(a1, frame_pointer(), Operand(kStackHighEnd));
908       __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
909       ExternalReference grow_stack =
910           ExternalReference::re_grow_stack(masm_->isolate());
911       __ CallCFunction(grow_stack, num_arguments);
912       // Restore regexp registers.
913       __ MultiPop(regexp_registers);
914       // If return NULL, we have failed to grow the stack, and
915       // must exit with a stack-overflow exception.
916       __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
917       // Otherwise use return value as new stack pointer.
918       __ mov(backtrack_stackpointer(), v0);
919       // Restore saved registers and continue.
920       __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
921       __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
922       SafeReturn();
923     }
924 
925     if (exit_with_exception.is_linked()) {
926       // If any of the code above needed to exit with an exception.
927       __ bind(&exit_with_exception);
928       // Exit with Result EXCEPTION(-1) to signal thrown exception.
929       __ li(v0, Operand(EXCEPTION));
930       __ jmp(&return_v0);
931     }
932   }
933 
934   CodeDesc code_desc;
935   masm_->GetCode(&code_desc);
936   Handle<Code> code = isolate()->factory()->NewCode(
937       code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
938   LOG(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
939   return Handle<HeapObject>::cast(code);
940 }
941 
942 
GoTo(Label * to)943 void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
944   if (to == NULL) {
945     Backtrack();
946     return;
947   }
948   __ jmp(to);
949   return;
950 }
951 
952 
IfRegisterGE(int reg,int comparand,Label * if_ge)953 void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
954                                             int comparand,
955                                             Label* if_ge) {
956   __ ld(a0, register_location(reg));
957     BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
958 }
959 
960 
IfRegisterLT(int reg,int comparand,Label * if_lt)961 void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
962                                             int comparand,
963                                             Label* if_lt) {
964   __ ld(a0, register_location(reg));
965   BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
966 }
967 
968 
IfRegisterEqPos(int reg,Label * if_eq)969 void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
970                                                Label* if_eq) {
971   __ ld(a0, register_location(reg));
972   BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
973 }
974 
975 
976 RegExpMacroAssembler::IrregexpImplementation
Implementation()977     RegExpMacroAssemblerMIPS::Implementation() {
978   return kMIPSImplementation;
979 }
980 
981 
LoadCurrentCharacter(int cp_offset,Label * on_end_of_input,bool check_bounds,int characters)982 void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
983                                                     Label* on_end_of_input,
984                                                     bool check_bounds,
985                                                     int characters) {
986   DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works).
987   if (check_bounds) {
988     if (cp_offset >= 0) {
989       CheckPosition(cp_offset + characters - 1, on_end_of_input);
990     } else {
991       CheckPosition(cp_offset, on_end_of_input);
992     }
993   }
994   LoadCurrentCharacterUnchecked(cp_offset, characters);
995 }
996 
997 
PopCurrentPosition()998 void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
999   Pop(current_input_offset());
1000 }
1001 
1002 
PopRegister(int register_index)1003 void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
1004   Pop(a0);
1005   __ sd(a0, register_location(register_index));
1006 }
1007 
1008 
PushBacktrack(Label * label)1009 void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
1010   if (label->is_bound()) {
1011     int target = label->pos();
1012     __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
1013   } else {
1014     Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
1015     Label after_constant;
1016     __ Branch(&after_constant);
1017     int offset = masm_->pc_offset();
1018     int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
1019     __ emit(0);
1020     masm_->label_at_put(label, offset);
1021     __ bind(&after_constant);
1022     if (is_int16(cp_offset)) {
1023       __ lwu(a0, MemOperand(code_pointer(), cp_offset));
1024     } else {
1025       __ Daddu(a0, code_pointer(), cp_offset);
1026       __ lwu(a0, MemOperand(a0, 0));
1027     }
1028   }
1029   Push(a0);
1030   CheckStackLimit();
1031 }
1032 
1033 
PushCurrentPosition()1034 void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
1035   Push(current_input_offset());
1036 }
1037 
1038 
PushRegister(int register_index,StackCheckFlag check_stack_limit)1039 void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
1040                                             StackCheckFlag check_stack_limit) {
1041   __ ld(a0, register_location(register_index));
1042   Push(a0);
1043   if (check_stack_limit) CheckStackLimit();
1044 }
1045 
1046 
ReadCurrentPositionFromRegister(int reg)1047 void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
1048   __ ld(current_input_offset(), register_location(reg));
1049 }
1050 
1051 
ReadStackPointerFromRegister(int reg)1052 void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
1053   __ ld(backtrack_stackpointer(), register_location(reg));
1054   __ ld(a0, MemOperand(frame_pointer(), kStackHighEnd));
1055   __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
1056 }
1057 
1058 
SetCurrentPositionFromEnd(int by)1059 void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
1060   Label after_position;
1061   __ Branch(&after_position,
1062             ge,
1063             current_input_offset(),
1064             Operand(-by * char_size()));
1065   __ li(current_input_offset(), -by * char_size());
1066   // On RegExp code entry (where this operation is used), the character before
1067   // the current position is expected to be already loaded.
1068   // We have advanced the position, so it's safe to read backwards.
1069   LoadCurrentCharacterUnchecked(-1, 1);
1070   __ bind(&after_position);
1071 }
1072 
1073 
SetRegister(int register_index,int to)1074 void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
1075   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
1076   __ li(a0, Operand(to));
1077   __ sd(a0, register_location(register_index));
1078 }
1079 
1080 
Succeed()1081 bool RegExpMacroAssemblerMIPS::Succeed() {
1082   __ jmp(&success_label_);
1083   return global();
1084 }
1085 
1086 
WriteCurrentPositionToRegister(int reg,int cp_offset)1087 void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
1088                                                               int cp_offset) {
1089   if (cp_offset == 0) {
1090     __ sd(current_input_offset(), register_location(reg));
1091   } else {
1092     __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1093     __ sd(a0, register_location(reg));
1094   }
1095 }
1096 
1097 
ClearRegisters(int reg_from,int reg_to)1098 void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
1099   DCHECK(reg_from <= reg_to);
1100   __ ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
1101   for (int reg = reg_from; reg <= reg_to; reg++) {
1102     __ sd(a0, register_location(reg));
1103   }
1104 }
1105 
1106 
WriteStackPointerToRegister(int reg)1107 void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
1108   __ ld(a1, MemOperand(frame_pointer(), kStackHighEnd));
1109   __ Dsubu(a0, backtrack_stackpointer(), a1);
1110   __ sd(a0, register_location(reg));
1111 }
1112 
1113 
CanReadUnaligned()1114 bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
1115   return false;
1116 }
1117 
1118 
1119 // Private methods:
1120 
CallCheckStackGuardState(Register scratch)1121 void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
1122   int stack_alignment = base::OS::ActivationFrameAlignment();
1123 
1124   // Align the stack pointer and save the original sp value on the stack.
1125   __ mov(scratch, sp);
1126   __ Dsubu(sp, sp, Operand(kPointerSize));
1127   DCHECK(base::bits::IsPowerOfTwo32(stack_alignment));
1128   __ And(sp, sp, Operand(-stack_alignment));
1129   __ sd(scratch, MemOperand(sp));
1130 
1131   __ mov(a2, frame_pointer());
1132   // Code* of self.
1133   __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
1134 
1135   // We need to make room for the return address on the stack.
1136   DCHECK(IsAligned(stack_alignment, kPointerSize));
1137   __ Dsubu(sp, sp, Operand(stack_alignment));
1138 
1139   // Stack pointer now points to cell where return address is to be written.
1140   // Arguments are in registers, meaning we teat the return address as
1141   // argument 5. Since DirectCEntryStub will handleallocating space for the C
1142   // argument slots, we don't need to care about that here. This is how the
1143   // stack will look (sp meaning the value of sp at this moment):
1144   // [sp + 3] - empty slot if needed for alignment.
1145   // [sp + 2] - saved sp.
1146   // [sp + 1] - second word reserved for return value.
1147   // [sp + 0] - first word reserved for return value.
1148 
1149   // a0 will point to the return address, placed by DirectCEntry.
1150   __ mov(a0, sp);
1151 
1152   ExternalReference stack_guard_check =
1153       ExternalReference::re_check_stack_guard_state(masm_->isolate());
1154   __ li(t9, Operand(stack_guard_check));
1155   DirectCEntryStub stub(isolate());
1156   stub.GenerateCall(masm_, t9);
1157 
1158   // DirectCEntryStub allocated space for the C argument slots so we have to
1159   // drop them with the return address from the stack with loading saved sp.
1160   // At this point stack must look:
1161   // [sp + 7] - empty slot if needed for alignment.
1162   // [sp + 6] - saved sp.
1163   // [sp + 5] - second word reserved for return value.
1164   // [sp + 4] - first word reserved for return value.
1165   // [sp + 3] - C argument slot.
1166   // [sp + 2] - C argument slot.
1167   // [sp + 1] - C argument slot.
1168   // [sp + 0] - C argument slot.
1169   __ ld(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
1170 
1171   __ li(code_pointer(), Operand(masm_->CodeObject()));
1172 }
1173 
1174 
1175 // Helper function for reading a value out of a stack frame.
1176 template <typename T>
frame_entry(Address re_frame,int frame_offset)1177 static T& frame_entry(Address re_frame, int frame_offset) {
1178   return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1179 }
1180 
1181 
1182 template <typename T>
frame_entry_address(Address re_frame,int frame_offset)1183 static T* frame_entry_address(Address re_frame, int frame_offset) {
1184   return reinterpret_cast<T*>(re_frame + frame_offset);
1185 }
1186 
1187 
CheckStackGuardState(Address * return_address,Code * re_code,Address re_frame)1188 int64_t RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
1189                                                        Code* re_code,
1190                                                        Address re_frame) {
1191   return NativeRegExpMacroAssembler::CheckStackGuardState(
1192       frame_entry<Isolate*>(re_frame, kIsolate),
1193       static_cast<int>(frame_entry<int64_t>(re_frame, kStartIndex)),
1194       frame_entry<int64_t>(re_frame, kDirectCall) == 1, return_address, re_code,
1195       frame_entry_address<String*>(re_frame, kInputString),
1196       frame_entry_address<const byte*>(re_frame, kInputStart),
1197       frame_entry_address<const byte*>(re_frame, kInputEnd));
1198 }
1199 
1200 
register_location(int register_index)1201 MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
1202   DCHECK(register_index < (1<<30));
1203   if (num_registers_ <= register_index) {
1204     num_registers_ = register_index + 1;
1205   }
1206   return MemOperand(frame_pointer(),
1207                     kRegisterZero - register_index * kPointerSize);
1208 }
1209 
1210 
CheckPosition(int cp_offset,Label * on_outside_input)1211 void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
1212                                              Label* on_outside_input) {
1213   if (cp_offset >= 0) {
1214     BranchOrBacktrack(on_outside_input, ge, current_input_offset(),
1215                       Operand(-cp_offset * char_size()));
1216   } else {
1217     __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
1218     __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1219     BranchOrBacktrack(on_outside_input, le, a0, Operand(a1));
1220   }
1221 }
1222 
1223 
BranchOrBacktrack(Label * to,Condition condition,Register rs,const Operand & rt)1224 void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
1225                                                  Condition condition,
1226                                                  Register rs,
1227                                                  const Operand& rt) {
1228   if (condition == al) {  // Unconditional.
1229     if (to == NULL) {
1230       Backtrack();
1231       return;
1232     }
1233     __ jmp(to);
1234     return;
1235   }
1236   if (to == NULL) {
1237     __ Branch(&backtrack_label_, condition, rs, rt);
1238     return;
1239   }
1240   __ Branch(to, condition, rs, rt);
1241 }
1242 
1243 
SafeCall(Label * to,Condition cond,Register rs,const Operand & rt)1244 void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
1245                                         Condition cond,
1246                                         Register rs,
1247                                         const Operand& rt) {
1248   __ BranchAndLink(to, cond, rs, rt);
1249 }
1250 
1251 
SafeReturn()1252 void RegExpMacroAssemblerMIPS::SafeReturn() {
1253   __ pop(ra);
1254   __ Daddu(t1, ra, Operand(masm_->CodeObject()));
1255   __ Jump(t1);
1256 }
1257 
1258 
SafeCallTarget(Label * name)1259 void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
1260   __ bind(name);
1261   __ Dsubu(ra, ra, Operand(masm_->CodeObject()));
1262   __ push(ra);
1263 }
1264 
1265 
Push(Register source)1266 void RegExpMacroAssemblerMIPS::Push(Register source) {
1267   DCHECK(!source.is(backtrack_stackpointer()));
1268   __ Daddu(backtrack_stackpointer(),
1269           backtrack_stackpointer(),
1270           Operand(-kIntSize));
1271   __ sw(source, MemOperand(backtrack_stackpointer()));
1272 }
1273 
1274 
Pop(Register target)1275 void RegExpMacroAssemblerMIPS::Pop(Register target) {
1276   DCHECK(!target.is(backtrack_stackpointer()));
1277   __ lw(target, MemOperand(backtrack_stackpointer()));
1278   __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize);
1279 }
1280 
1281 
CheckPreemption()1282 void RegExpMacroAssemblerMIPS::CheckPreemption() {
1283   // Check for preemption.
1284   ExternalReference stack_limit =
1285       ExternalReference::address_of_stack_limit(masm_->isolate());
1286   __ li(a0, Operand(stack_limit));
1287   __ ld(a0, MemOperand(a0));
1288   SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
1289 }
1290 
1291 
CheckStackLimit()1292 void RegExpMacroAssemblerMIPS::CheckStackLimit() {
1293   ExternalReference stack_limit =
1294       ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
1295 
1296   __ li(a0, Operand(stack_limit));
1297   __ ld(a0, MemOperand(a0));
1298   SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
1299 }
1300 
1301 
LoadCurrentCharacterUnchecked(int cp_offset,int characters)1302 void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
1303                                                              int characters) {
1304   Register offset = current_input_offset();
1305   if (cp_offset != 0) {
1306     // t3 is not being used to store the capture start index at this point.
1307     __ Daddu(t3, current_input_offset(), Operand(cp_offset * char_size()));
1308     offset = t3;
1309   }
1310   // We assume that we cannot do unaligned loads on MIPS, so this function
1311   // must only be used to load a single character at a time.
1312   DCHECK(characters == 1);
1313   __ Daddu(t1, end_of_input_address(), Operand(offset));
1314   if (mode_ == LATIN1) {
1315     __ lbu(current_character(), MemOperand(t1, 0));
1316   } else {
1317     DCHECK(mode_ == UC16);
1318     __ lhu(current_character(), MemOperand(t1, 0));
1319   }
1320 }
1321 
1322 #undef __
1323 
1324 #endif  // V8_INTERPRETED_REGEXP
1325 
1326 }  // namespace internal
1327 }  // namespace v8
1328 
1329 #endif  // V8_TARGET_ARCH_MIPS64
1330