1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_MIPS64
6
7 #include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
8
9 #include "src/code-stubs.h"
10 #include "src/log.h"
11 #include "src/macro-assembler.h"
12 #include "src/regexp/regexp-macro-assembler.h"
13 #include "src/regexp/regexp-stack.h"
14 #include "src/unicode.h"
15
16 namespace v8 {
17 namespace internal {
18
19 #ifndef V8_INTERPRETED_REGEXP
20 /*
21 * This assembler uses the following register assignment convention
22 * - t3 : Temporarily stores the index of capture start after a matching pass
23 * for a global regexp.
24 * - a5 : Pointer to current code object (Code*) including heap object tag.
25 * - a6 : Current position in input, as negative offset from end of string.
26 * Please notice that this is the byte offset, not the character offset!
27 * - a7 : Currently loaded character. Must be loaded using
28 * LoadCurrentCharacter before using any of the dispatch methods.
29 * - t0 : Points to tip of backtrack stack
30 * - t1 : Unused.
31 * - t2 : End of input (points to byte after last character in input).
32 * - fp : Frame pointer. Used to access arguments, local variables and
33 * RegExp registers.
34 * - sp : Points to tip of C stack.
35 *
36 * The remaining registers are free for computations.
37 * Each call to a public method should retain this convention.
38 *
39 * TODO(plind): O32 documented here with intent of having single 32/64 codebase
40 * in the future.
41 *
42 * The O32 stack will have the following structure:
43 *
44 * - fp[76] Isolate* isolate (address of the current isolate)
45 * - fp[72] direct_call (if 1, direct call from JavaScript code,
46 * if 0, call through the runtime system).
47 * - fp[68] stack_area_base (High end of the memory area to use as
48 * backtracking stack).
49 * - fp[64] capture array size (may fit multiple sets of matches)
50 * - fp[60] int* capture_array (int[num_saved_registers_], for output).
51 * - fp[44..59] MIPS O32 four argument slots
52 * - fp[40] secondary link/return address used by native call.
53 * --- sp when called ---
54 * - fp[36] return address (lr).
55 * - fp[32] old frame pointer (r11).
56 * - fp[0..31] backup of registers s0..s7.
57 * --- frame pointer ----
58 * - fp[-4] end of input (address of end of string).
59 * - fp[-8] start of input (address of first character in string).
60 * - fp[-12] start index (character index of start).
61 * - fp[-16] void* input_string (location of a handle containing the string).
62 * - fp[-20] success counter (only for global regexps to count matches).
63 * - fp[-24] Offset of location before start of input (effectively character
64 * string start - 1). Used to initialize capture registers to a
65 * non-position.
66 * - fp[-28] At start (if 1, we are starting at the start of the
67 * string, otherwise 0)
68 * - fp[-32] register 0 (Only positions must be stored in the first
69 * - register 1 num_saved_registers_ registers)
70 * - ...
71 * - register num_registers-1
72 * --- sp ---
73 *
74 *
75 * The N64 stack will have the following structure:
76 *
77 * - fp[88] Isolate* isolate (address of the current isolate) kIsolate
78 * - fp[80] secondary link/return address used by exit frame on native call. kSecondaryReturnAddress
79 kStackFrameHeader
80 * --- sp when called ---
81 * - fp[72] ra Return from RegExp code (ra). kReturnAddress
82 * - fp[64] s9, old-fp Old fp, callee saved(s9).
83 * - fp[0..63] s0..s7 Callee-saved registers s0..s7.
84 * --- frame pointer ----
85 * - fp[-8] direct_call (1 = direct call from JS, 0 = from runtime) kDirectCall
86 * - fp[-16] stack_base (Top of backtracking stack). kStackHighEnd
87 * - fp[-24] capture array size (may fit multiple sets of matches) kNumOutputRegisters
88 * - fp[-32] int* capture_array (int[num_saved_registers_], for output). kRegisterOutput
89 * - fp[-40] end of input (address of end of string). kInputEnd
90 * - fp[-48] start of input (address of first character in string). kInputStart
91 * - fp[-56] start index (character index of start). kStartIndex
92 * - fp[-64] void* input_string (location of a handle containing the string). kInputString
93 * - fp[-72] success counter (only for global regexps to count matches). kSuccessfulCaptures
94 * - fp[-80] Offset of location before start of input (effectively character kStringStartMinusOne
95 * position -1). Used to initialize capture registers to a
96 * non-position.
97 * --------- The following output registers are 32-bit values. ---------
98 * - fp[-88] register 0 (Only positions must be stored in the first kRegisterZero
99 * - register 1 num_saved_registers_ registers)
100 * - ...
101 * - register num_registers-1
102 * --- sp ---
103 *
104 * The first num_saved_registers_ registers are initialized to point to
105 * "character -1" in the string (i.e., char_size() bytes before the first
106 * character of the string). The remaining registers start out as garbage.
107 *
108 * The data up to the return address must be placed there by the calling
109 * code and the remaining arguments are passed in registers, e.g. by calling the
110 * code entry as cast to a function with the signature:
111 * int (*match)(String* input_string,
112 * int start_index,
113 * Address start,
114 * Address end,
115 * Address secondary_return_address, // Only used by native call.
116 * int* capture_output_array,
117 * byte* stack_area_base,
118 * bool direct_call = false,
119 * void* return_address,
120 * Isolate* isolate);
121 * The call is performed by NativeRegExpMacroAssembler::Execute()
122 * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
123 * in mips/simulator-mips.h.
124 * When calling as a non-direct call (i.e., from C++ code), the return address
125 * area is overwritten with the ra register by the RegExp code. When doing a
126 * direct call from generated code, the return address is placed there by
127 * the calling code, as in a normal exit frame.
128 */
129
130 #define __ ACCESS_MASM(masm_)
131
RegExpMacroAssemblerMIPS(Isolate * isolate,Zone * zone,Mode mode,int registers_to_save)132 RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone,
133 Mode mode,
134 int registers_to_save)
135 : NativeRegExpMacroAssembler(isolate, zone),
136 masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
137 CodeObjectRequired::kYes)),
138 mode_(mode),
139 num_registers_(registers_to_save),
140 num_saved_registers_(registers_to_save),
141 entry_label_(),
142 start_label_(),
143 success_label_(),
144 backtrack_label_(),
145 exit_label_(),
146 internal_failure_label_() {
147 DCHECK_EQ(0, registers_to_save % 2);
148 __ jmp(&entry_label_); // We'll write the entry code later.
149 // If the code gets too big or corrupted, an internal exception will be
150 // raised, and we will exit right away.
151 __ bind(&internal_failure_label_);
152 __ li(v0, Operand(FAILURE));
153 __ Ret();
154 __ bind(&start_label_); // And then continue from here.
155 }
156
157
~RegExpMacroAssemblerMIPS()158 RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
159 delete masm_;
160 // Unuse labels in case we throw away the assembler without calling GetCode.
161 entry_label_.Unuse();
162 start_label_.Unuse();
163 success_label_.Unuse();
164 backtrack_label_.Unuse();
165 exit_label_.Unuse();
166 check_preempt_label_.Unuse();
167 stack_overflow_label_.Unuse();
168 internal_failure_label_.Unuse();
169 }
170
171
stack_limit_slack()172 int RegExpMacroAssemblerMIPS::stack_limit_slack() {
173 return RegExpStack::kStackLimitSlack;
174 }
175
176
AdvanceCurrentPosition(int by)177 void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
178 if (by != 0) {
179 __ Daddu(current_input_offset(),
180 current_input_offset(), Operand(by * char_size()));
181 }
182 }
183
184
AdvanceRegister(int reg,int by)185 void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
186 DCHECK(reg >= 0);
187 DCHECK(reg < num_registers_);
188 if (by != 0) {
189 __ ld(a0, register_location(reg));
190 __ Daddu(a0, a0, Operand(by));
191 __ sd(a0, register_location(reg));
192 }
193 }
194
195
Backtrack()196 void RegExpMacroAssemblerMIPS::Backtrack() {
197 CheckPreemption();
198 // Pop Code* offset from backtrack stack, add Code* and jump to location.
199 Pop(a0);
200 __ Daddu(a0, a0, code_pointer());
201 __ Jump(a0);
202 }
203
204
Bind(Label * label)205 void RegExpMacroAssemblerMIPS::Bind(Label* label) {
206 __ bind(label);
207 }
208
209
CheckCharacter(uint32_t c,Label * on_equal)210 void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
211 BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
212 }
213
214
CheckCharacterGT(uc16 limit,Label * on_greater)215 void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
216 BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
217 }
218
219
CheckAtStart(Label * on_at_start)220 void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
221 __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
222 __ Daddu(a0, current_input_offset(), Operand(-char_size()));
223 BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
224 }
225
226
CheckNotAtStart(int cp_offset,Label * on_not_at_start)227 void RegExpMacroAssemblerMIPS::CheckNotAtStart(int cp_offset,
228 Label* on_not_at_start) {
229 __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
230 __ Daddu(a0, current_input_offset(),
231 Operand(-char_size() + cp_offset * char_size()));
232 BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
233 }
234
235
CheckCharacterLT(uc16 limit,Label * on_less)236 void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
237 BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
238 }
239
240
CheckGreedyLoop(Label * on_equal)241 void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
242 Label backtrack_non_equal;
243 __ lw(a0, MemOperand(backtrack_stackpointer(), 0));
244 __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
245 __ Daddu(backtrack_stackpointer(),
246 backtrack_stackpointer(),
247 Operand(kIntSize));
248 __ bind(&backtrack_non_equal);
249 BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
250 }
251
252
CheckNotBackReferenceIgnoreCase(int start_reg,bool read_backward,Label * on_no_match)253 void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
254 int start_reg, bool read_backward, Label* on_no_match) {
255 Label fallthrough;
256 __ ld(a0, register_location(start_reg)); // Index of start of capture.
257 __ ld(a1, register_location(start_reg + 1)); // Index of end of capture.
258 __ Dsubu(a1, a1, a0); // Length of capture.
259
260 // At this point, the capture registers are either both set or both cleared.
261 // If the capture length is zero, then the capture is either empty or cleared.
262 // Fall through in both cases.
263 __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
264
265 if (read_backward) {
266 __ ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
267 __ Daddu(t1, t1, a1);
268 BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
269 } else {
270 __ Daddu(t1, a1, current_input_offset());
271 // Check that there are enough characters left in the input.
272 BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
273 }
274
275 if (mode_ == LATIN1) {
276 Label success;
277 Label fail;
278 Label loop_check;
279
280 // a0 - offset of start of capture.
281 // a1 - length of capture.
282 __ Daddu(a0, a0, Operand(end_of_input_address()));
283 __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
284 if (read_backward) {
285 __ Dsubu(a2, a2, Operand(a1));
286 }
287 __ Daddu(a1, a0, Operand(a1));
288
289 // a0 - Address of start of capture.
290 // a1 - Address of end of capture.
291 // a2 - Address of current input position.
292
293 Label loop;
294 __ bind(&loop);
295 __ lbu(a3, MemOperand(a0, 0));
296 __ daddiu(a0, a0, char_size());
297 __ lbu(a4, MemOperand(a2, 0));
298 __ daddiu(a2, a2, char_size());
299
300 __ Branch(&loop_check, eq, a4, Operand(a3));
301
302 // Mismatch, try case-insensitive match (converting letters to lower-case).
303 __ Or(a3, a3, Operand(0x20)); // Convert capture character to lower-case.
304 __ Or(a4, a4, Operand(0x20)); // Also convert input character.
305 __ Branch(&fail, ne, a4, Operand(a3));
306 __ Dsubu(a3, a3, Operand('a'));
307 __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
308 // Latin-1: Check for values in range [224,254] but not 247.
309 __ Dsubu(a3, a3, Operand(224 - 'a'));
310 // Weren't Latin-1 letters.
311 __ Branch(&fail, hi, a3, Operand(254 - 224));
312 // Check for 247.
313 __ Branch(&fail, eq, a3, Operand(247 - 224));
314
315 __ bind(&loop_check);
316 __ Branch(&loop, lt, a0, Operand(a1));
317 __ jmp(&success);
318
319 __ bind(&fail);
320 GoTo(on_no_match);
321
322 __ bind(&success);
323 // Compute new value of character position after the matched part.
324 __ Dsubu(current_input_offset(), a2, end_of_input_address());
325 if (read_backward) {
326 __ ld(t1, register_location(start_reg)); // Index of start of capture.
327 __ ld(a2, register_location(start_reg + 1)); // Index of end of capture.
328 __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
329 __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
330 }
331 } else {
332 DCHECK(mode_ == UC16);
333 // Put regexp engine registers on stack.
334 RegList regexp_registers_to_retain = current_input_offset().bit() |
335 current_character().bit() | backtrack_stackpointer().bit();
336 __ MultiPush(regexp_registers_to_retain);
337
338 int argument_count = 4;
339 __ PrepareCallCFunction(argument_count, a2);
340
341 // a0 - offset of start of capture.
342 // a1 - length of capture.
343
344 // Put arguments into arguments registers.
345 // Parameters are
346 // a0: Address byte_offset1 - Address captured substring's start.
347 // a1: Address byte_offset2 - Address of current character position.
348 // a2: size_t byte_length - length of capture in bytes(!).
349 // a3: Isolate* isolate.
350
351 // Address of start of capture.
352 __ Daddu(a0, a0, Operand(end_of_input_address()));
353 // Length of capture.
354 __ mov(a2, a1);
355 // Save length in callee-save register for use on return.
356 __ mov(s3, a1);
357 // Address of current input position.
358 __ Daddu(a1, current_input_offset(), Operand(end_of_input_address()));
359 if (read_backward) {
360 __ Dsubu(a1, a1, Operand(s3));
361 }
362 // Isolate.
363 __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
364
365 {
366 AllowExternalCallThatCantCauseGC scope(masm_);
367 ExternalReference function =
368 ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
369 __ CallCFunction(function, argument_count);
370 }
371
372 // Restore regexp engine registers.
373 __ MultiPop(regexp_registers_to_retain);
374 __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
375 __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
376
377 // Check if function returned non-zero for success or zero for failure.
378 BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
379 // On success, increment position by length of capture.
380 if (read_backward) {
381 __ Dsubu(current_input_offset(), current_input_offset(), Operand(s3));
382 } else {
383 __ Daddu(current_input_offset(), current_input_offset(), Operand(s3));
384 }
385 }
386
387 __ bind(&fallthrough);
388 }
389
390
CheckNotBackReference(int start_reg,bool read_backward,Label * on_no_match)391 void RegExpMacroAssemblerMIPS::CheckNotBackReference(int start_reg,
392 bool read_backward,
393 Label* on_no_match) {
394 Label fallthrough;
395 Label success;
396
397 // Find length of back-referenced capture.
398 __ ld(a0, register_location(start_reg));
399 __ ld(a1, register_location(start_reg + 1));
400 __ Dsubu(a1, a1, a0); // Length to check.
401
402 // At this point, the capture registers are either both set or both cleared.
403 // If the capture length is zero, then the capture is either empty or cleared.
404 // Fall through in both cases.
405 __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
406
407 if (read_backward) {
408 __ ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
409 __ Daddu(t1, t1, a1);
410 BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
411 } else {
412 __ Daddu(t1, a1, current_input_offset());
413 // Check that there are enough characters left in the input.
414 BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
415 }
416
417 // Compute pointers to match string and capture string.
418 __ Daddu(a0, a0, Operand(end_of_input_address()));
419 __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
420 if (read_backward) {
421 __ Dsubu(a2, a2, Operand(a1));
422 }
423 __ Daddu(a1, a1, Operand(a0));
424
425 Label loop;
426 __ bind(&loop);
427 if (mode_ == LATIN1) {
428 __ lbu(a3, MemOperand(a0, 0));
429 __ daddiu(a0, a0, char_size());
430 __ lbu(a4, MemOperand(a2, 0));
431 __ daddiu(a2, a2, char_size());
432 } else {
433 DCHECK(mode_ == UC16);
434 __ lhu(a3, MemOperand(a0, 0));
435 __ daddiu(a0, a0, char_size());
436 __ lhu(a4, MemOperand(a2, 0));
437 __ daddiu(a2, a2, char_size());
438 }
439 BranchOrBacktrack(on_no_match, ne, a3, Operand(a4));
440 __ Branch(&loop, lt, a0, Operand(a1));
441
442 // Move current character position to position after match.
443 __ Dsubu(current_input_offset(), a2, end_of_input_address());
444 if (read_backward) {
445 __ ld(t1, register_location(start_reg)); // Index of start of capture.
446 __ ld(a2, register_location(start_reg + 1)); // Index of end of capture.
447 __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
448 __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
449 }
450 __ bind(&fallthrough);
451 }
452
453
CheckNotCharacter(uint32_t c,Label * on_not_equal)454 void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
455 Label* on_not_equal) {
456 BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
457 }
458
459
CheckCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_equal)460 void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
461 uint32_t mask,
462 Label* on_equal) {
463 __ And(a0, current_character(), Operand(mask));
464 Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
465 BranchOrBacktrack(on_equal, eq, a0, rhs);
466 }
467
468
CheckNotCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_not_equal)469 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
470 uint32_t mask,
471 Label* on_not_equal) {
472 __ And(a0, current_character(), Operand(mask));
473 Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
474 BranchOrBacktrack(on_not_equal, ne, a0, rhs);
475 }
476
477
CheckNotCharacterAfterMinusAnd(uc16 c,uc16 minus,uc16 mask,Label * on_not_equal)478 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
479 uc16 c,
480 uc16 minus,
481 uc16 mask,
482 Label* on_not_equal) {
483 DCHECK(minus < String::kMaxUtf16CodeUnit);
484 __ Dsubu(a0, current_character(), Operand(minus));
485 __ And(a0, a0, Operand(mask));
486 BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
487 }
488
489
CheckCharacterInRange(uc16 from,uc16 to,Label * on_in_range)490 void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
491 uc16 from,
492 uc16 to,
493 Label* on_in_range) {
494 __ Dsubu(a0, current_character(), Operand(from));
495 // Unsigned lower-or-same condition.
496 BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
497 }
498
499
CheckCharacterNotInRange(uc16 from,uc16 to,Label * on_not_in_range)500 void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
501 uc16 from,
502 uc16 to,
503 Label* on_not_in_range) {
504 __ Dsubu(a0, current_character(), Operand(from));
505 // Unsigned higher condition.
506 BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
507 }
508
509
CheckBitInTable(Handle<ByteArray> table,Label * on_bit_set)510 void RegExpMacroAssemblerMIPS::CheckBitInTable(
511 Handle<ByteArray> table,
512 Label* on_bit_set) {
513 __ li(a0, Operand(table));
514 if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
515 __ And(a1, current_character(), Operand(kTableSize - 1));
516 __ Daddu(a0, a0, a1);
517 } else {
518 __ Daddu(a0, a0, current_character());
519 }
520
521 __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
522 BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
523 }
524
525
CheckSpecialCharacterClass(uc16 type,Label * on_no_match)526 bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
527 Label* on_no_match) {
528 // Range checks (c in min..max) are generally implemented by an unsigned
529 // (c - min) <= (max - min) check.
530 switch (type) {
531 case 's':
532 // Match space-characters.
533 if (mode_ == LATIN1) {
534 // One byte space characters are '\t'..'\r', ' ' and \u00a0.
535 Label success;
536 __ Branch(&success, eq, current_character(), Operand(' '));
537 // Check range 0x09..0x0d.
538 __ Dsubu(a0, current_character(), Operand('\t'));
539 __ Branch(&success, ls, a0, Operand('\r' - '\t'));
540 // \u00a0 (NBSP).
541 BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t'));
542 __ bind(&success);
543 return true;
544 }
545 return false;
546 case 'S':
547 // The emitted code for generic character classes is good enough.
548 return false;
549 case 'd':
550 // Match Latin1 digits ('0'..'9').
551 __ Dsubu(a0, current_character(), Operand('0'));
552 BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
553 return true;
554 case 'D':
555 // Match non Latin1-digits.
556 __ Dsubu(a0, current_character(), Operand('0'));
557 BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
558 return true;
559 case '.': {
560 // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
561 __ Xor(a0, current_character(), Operand(0x01));
562 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
563 __ Dsubu(a0, a0, Operand(0x0b));
564 BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b));
565 if (mode_ == UC16) {
566 // Compare original value to 0x2028 and 0x2029, using the already
567 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
568 // 0x201d (0x2028 - 0x0b) or 0x201e.
569 __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
570 BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
571 }
572 return true;
573 }
574 case 'n': {
575 // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
576 __ Xor(a0, current_character(), Operand(0x01));
577 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
578 __ Dsubu(a0, a0, Operand(0x0b));
579 if (mode_ == LATIN1) {
580 BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b));
581 } else {
582 Label done;
583 BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b));
584 // Compare original value to 0x2028 and 0x2029, using the already
585 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
586 // 0x201d (0x2028 - 0x0b) or 0x201e.
587 __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
588 BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
589 __ bind(&done);
590 }
591 return true;
592 }
593 case 'w': {
594 if (mode_ != LATIN1) {
595 // Table is 256 entries, so all Latin1 characters can be tested.
596 BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
597 }
598 ExternalReference map = ExternalReference::re_word_character_map();
599 __ li(a0, Operand(map));
600 __ Daddu(a0, a0, current_character());
601 __ lbu(a0, MemOperand(a0, 0));
602 BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
603 return true;
604 }
605 case 'W': {
606 Label done;
607 if (mode_ != LATIN1) {
608 // Table is 256 entries, so all Latin1 characters can be tested.
609 __ Branch(&done, hi, current_character(), Operand('z'));
610 }
611 ExternalReference map = ExternalReference::re_word_character_map();
612 __ li(a0, Operand(map));
613 __ Daddu(a0, a0, current_character());
614 __ lbu(a0, MemOperand(a0, 0));
615 BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
616 if (mode_ != LATIN1) {
617 __ bind(&done);
618 }
619 return true;
620 }
621 case '*':
622 // Match any character.
623 return true;
624 // No custom implementation (yet): s(UC16), S(UC16).
625 default:
626 return false;
627 }
628 }
629
630
Fail()631 void RegExpMacroAssemblerMIPS::Fail() {
632 __ li(v0, Operand(FAILURE));
633 __ jmp(&exit_label_);
634 }
635
636
GetCode(Handle<String> source)637 Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
638 Label return_v0;
639 if (masm_->has_exception()) {
640 // If the code gets corrupted due to long regular expressions and lack of
641 // space on trampolines, an internal exception flag is set. If this case
642 // is detected, we will jump into exit sequence right away.
643 __ bind_to(&entry_label_, internal_failure_label_.pos());
644 } else {
645 // Finalize code - write the entry point code now we know how many
646 // registers we need.
647
648 // Entry code:
649 __ bind(&entry_label_);
650
651 // Tell the system that we have a stack frame. Because the type is MANUAL,
652 // no is generated.
653 FrameScope scope(masm_, StackFrame::MANUAL);
654
655 // Actually emit code to start a new stack frame.
656 // Push arguments
657 // Save callee-save registers.
658 // Start new stack frame.
659 // Store link register in existing stack-cell.
660 // Order here should correspond to order of offset constants in header file.
661 // TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs
662 // or dont save.
663 RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
664 s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
665 RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
666
667 if (kMipsAbi == kN64) {
668 // TODO(plind): Should probably alias a4-a7, for clarity.
669 argument_registers |= a4.bit() | a5.bit() | a6.bit() | a7.bit();
670 }
671
672 __ MultiPush(argument_registers | registers_to_retain | ra.bit());
673 // Set frame pointer in space for it if this is not a direct call
674 // from generated code.
675 // TODO(plind): this 8 is the # of argument regs, should have definition.
676 __ Daddu(frame_pointer(), sp, Operand(8 * kPointerSize));
677 __ mov(a0, zero_reg);
678 __ push(a0); // Make room for success counter and initialize it to 0.
679 __ push(a0); // Make room for "string start - 1" constant.
680
681 // Check if we have space on the stack for registers.
682 Label stack_limit_hit;
683 Label stack_ok;
684
685 ExternalReference stack_limit =
686 ExternalReference::address_of_stack_limit(masm_->isolate());
687 __ li(a0, Operand(stack_limit));
688 __ ld(a0, MemOperand(a0));
689 __ Dsubu(a0, sp, a0);
690 // Handle it if the stack pointer is already below the stack limit.
691 __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
692 // Check if there is room for the variable number of registers above
693 // the stack limit.
694 __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
695 // Exit with OutOfMemory exception. There is not enough space on the stack
696 // for our working registers.
697 __ li(v0, Operand(EXCEPTION));
698 __ jmp(&return_v0);
699
700 __ bind(&stack_limit_hit);
701 CallCheckStackGuardState(a0);
702 // If returned value is non-zero, we exit with the returned value as result.
703 __ Branch(&return_v0, ne, v0, Operand(zero_reg));
704
705 __ bind(&stack_ok);
706 // Allocate space on stack for registers.
707 __ Dsubu(sp, sp, Operand(num_registers_ * kPointerSize));
708 // Load string end.
709 __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
710 // Load input start.
711 __ ld(a0, MemOperand(frame_pointer(), kInputStart));
712 // Find negative length (offset of start relative to end).
713 __ Dsubu(current_input_offset(), a0, end_of_input_address());
714 // Set a0 to address of char before start of the input string
715 // (effectively string position -1).
716 __ ld(a1, MemOperand(frame_pointer(), kStartIndex));
717 __ Dsubu(a0, current_input_offset(), Operand(char_size()));
718 __ dsll(t1, a1, (mode_ == UC16) ? 1 : 0);
719 __ Dsubu(a0, a0, t1);
720 // Store this value in a local variable, for use when clearing
721 // position registers.
722 __ sd(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
723
724 // Initialize code pointer register
725 __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
726
727 Label load_char_start_regexp, start_regexp;
728 // Load newline if index is at start, previous character otherwise.
729 __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
730 __ li(current_character(), Operand('\n'));
731 __ jmp(&start_regexp);
732
733 // Global regexp restarts matching here.
734 __ bind(&load_char_start_regexp);
735 // Load previous char as initial value of current character register.
736 LoadCurrentCharacterUnchecked(-1, 1);
737 __ bind(&start_regexp);
738
739 // Initialize on-stack registers.
740 if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
741 // Fill saved registers with initial value = start offset - 1.
742 if (num_saved_registers_ > 8) {
743 // Address of register 0.
744 __ Daddu(a1, frame_pointer(), Operand(kRegisterZero));
745 __ li(a2, Operand(num_saved_registers_));
746 Label init_loop;
747 __ bind(&init_loop);
748 __ sd(a0, MemOperand(a1));
749 __ Daddu(a1, a1, Operand(-kPointerSize));
750 __ Dsubu(a2, a2, Operand(1));
751 __ Branch(&init_loop, ne, a2, Operand(zero_reg));
752 } else {
753 for (int i = 0; i < num_saved_registers_; i++) {
754 __ sd(a0, register_location(i));
755 }
756 }
757 }
758
759 // Initialize backtrack stack pointer.
760 __ ld(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
761
762 __ jmp(&start_label_);
763
764
765 // Exit code:
766 if (success_label_.is_linked()) {
767 // Save captures when successful.
768 __ bind(&success_label_);
769 if (num_saved_registers_ > 0) {
770 // Copy captures to output.
771 __ ld(a1, MemOperand(frame_pointer(), kInputStart));
772 __ ld(a0, MemOperand(frame_pointer(), kRegisterOutput));
773 __ ld(a2, MemOperand(frame_pointer(), kStartIndex));
774 __ Dsubu(a1, end_of_input_address(), a1);
775 // a1 is length of input in bytes.
776 if (mode_ == UC16) {
777 __ dsrl(a1, a1, 1);
778 }
779 // a1 is length of input in characters.
780 __ Daddu(a1, a1, Operand(a2));
781 // a1 is length of string in characters.
782
783 DCHECK_EQ(0, num_saved_registers_ % 2);
784 // Always an even number of capture registers. This allows us to
785 // unroll the loop once to add an operation between a load of a register
786 // and the following use of that register.
787 for (int i = 0; i < num_saved_registers_; i += 2) {
788 __ ld(a2, register_location(i));
789 __ ld(a3, register_location(i + 1));
790 if (i == 0 && global_with_zero_length_check()) {
791 // Keep capture start in a4 for the zero-length check later.
792 __ mov(t3, a2);
793 }
794 if (mode_ == UC16) {
795 __ dsra(a2, a2, 1);
796 __ Daddu(a2, a2, a1);
797 __ dsra(a3, a3, 1);
798 __ Daddu(a3, a3, a1);
799 } else {
800 __ Daddu(a2, a1, Operand(a2));
801 __ Daddu(a3, a1, Operand(a3));
802 }
803 // V8 expects the output to be an int32_t array.
804 __ sw(a2, MemOperand(a0));
805 __ Daddu(a0, a0, kIntSize);
806 __ sw(a3, MemOperand(a0));
807 __ Daddu(a0, a0, kIntSize);
808 }
809 }
810
811 if (global()) {
812 // Restart matching if the regular expression is flagged as global.
813 __ ld(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
814 __ ld(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
815 __ ld(a2, MemOperand(frame_pointer(), kRegisterOutput));
816 // Increment success counter.
817 __ Daddu(a0, a0, 1);
818 __ sd(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
819 // Capture results have been stored, so the number of remaining global
820 // output registers is reduced by the number of stored captures.
821 __ Dsubu(a1, a1, num_saved_registers_);
822 // Check whether we have enough room for another set of capture results.
823 __ mov(v0, a0);
824 __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
825
826 __ sd(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
827 // Advance the location for output.
828 __ Daddu(a2, a2, num_saved_registers_ * kIntSize);
829 __ sd(a2, MemOperand(frame_pointer(), kRegisterOutput));
830
831 // Prepare a0 to initialize registers with its value in the next run.
832 __ ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
833
834 if (global_with_zero_length_check()) {
835 // Special case for zero-length matches.
836 // t3: capture start index
837 // Not a zero-length match, restart.
838 __ Branch(
839 &load_char_start_regexp, ne, current_input_offset(), Operand(t3));
840 // Offset from the end is zero if we already reached the end.
841 __ Branch(&exit_label_, eq, current_input_offset(),
842 Operand(zero_reg));
843 // Advance current position after a zero-length match.
844 __ Daddu(current_input_offset(),
845 current_input_offset(),
846 Operand((mode_ == UC16) ? 2 : 1));
847 }
848
849 __ Branch(&load_char_start_regexp);
850 } else {
851 __ li(v0, Operand(SUCCESS));
852 }
853 }
854 // Exit and return v0.
855 __ bind(&exit_label_);
856 if (global()) {
857 __ ld(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
858 }
859
860 __ bind(&return_v0);
861 // Skip sp past regexp registers and local variables..
862 __ mov(sp, frame_pointer());
863 // Restore registers s0..s7 and return (restoring ra to pc).
864 __ MultiPop(registers_to_retain | ra.bit());
865 __ Ret();
866
867 // Backtrack code (branch target for conditional backtracks).
868 if (backtrack_label_.is_linked()) {
869 __ bind(&backtrack_label_);
870 Backtrack();
871 }
872
873 Label exit_with_exception;
874
875 // Preempt-code.
876 if (check_preempt_label_.is_linked()) {
877 SafeCallTarget(&check_preempt_label_);
878 // Put regexp engine registers on stack.
879 RegList regexp_registers_to_retain = current_input_offset().bit() |
880 current_character().bit() | backtrack_stackpointer().bit();
881 __ MultiPush(regexp_registers_to_retain);
882 CallCheckStackGuardState(a0);
883 __ MultiPop(regexp_registers_to_retain);
884 // If returning non-zero, we should end execution with the given
885 // result as return value.
886 __ Branch(&return_v0, ne, v0, Operand(zero_reg));
887
888 // String might have moved: Reload end of string from frame.
889 __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
890 __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
891 SafeReturn();
892 }
893
894 // Backtrack stack overflow code.
895 if (stack_overflow_label_.is_linked()) {
896 SafeCallTarget(&stack_overflow_label_);
897 // Reached if the backtrack-stack limit has been hit.
898 // Put regexp engine registers on stack first.
899 RegList regexp_registers = current_input_offset().bit() |
900 current_character().bit();
901 __ MultiPush(regexp_registers);
902 Label grow_failed;
903 // Call GrowStack(backtrack_stackpointer(), &stack_base)
904 static const int num_arguments = 3;
905 __ PrepareCallCFunction(num_arguments, a0);
906 __ mov(a0, backtrack_stackpointer());
907 __ Daddu(a1, frame_pointer(), Operand(kStackHighEnd));
908 __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
909 ExternalReference grow_stack =
910 ExternalReference::re_grow_stack(masm_->isolate());
911 __ CallCFunction(grow_stack, num_arguments);
912 // Restore regexp registers.
913 __ MultiPop(regexp_registers);
914 // If return NULL, we have failed to grow the stack, and
915 // must exit with a stack-overflow exception.
916 __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
917 // Otherwise use return value as new stack pointer.
918 __ mov(backtrack_stackpointer(), v0);
919 // Restore saved registers and continue.
920 __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
921 __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
922 SafeReturn();
923 }
924
925 if (exit_with_exception.is_linked()) {
926 // If any of the code above needed to exit with an exception.
927 __ bind(&exit_with_exception);
928 // Exit with Result EXCEPTION(-1) to signal thrown exception.
929 __ li(v0, Operand(EXCEPTION));
930 __ jmp(&return_v0);
931 }
932 }
933
934 CodeDesc code_desc;
935 masm_->GetCode(&code_desc);
936 Handle<Code> code = isolate()->factory()->NewCode(
937 code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
938 LOG(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
939 return Handle<HeapObject>::cast(code);
940 }
941
942
GoTo(Label * to)943 void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
944 if (to == NULL) {
945 Backtrack();
946 return;
947 }
948 __ jmp(to);
949 return;
950 }
951
952
IfRegisterGE(int reg,int comparand,Label * if_ge)953 void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
954 int comparand,
955 Label* if_ge) {
956 __ ld(a0, register_location(reg));
957 BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
958 }
959
960
IfRegisterLT(int reg,int comparand,Label * if_lt)961 void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
962 int comparand,
963 Label* if_lt) {
964 __ ld(a0, register_location(reg));
965 BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
966 }
967
968
IfRegisterEqPos(int reg,Label * if_eq)969 void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
970 Label* if_eq) {
971 __ ld(a0, register_location(reg));
972 BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
973 }
974
975
976 RegExpMacroAssembler::IrregexpImplementation
Implementation()977 RegExpMacroAssemblerMIPS::Implementation() {
978 return kMIPSImplementation;
979 }
980
981
LoadCurrentCharacter(int cp_offset,Label * on_end_of_input,bool check_bounds,int characters)982 void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
983 Label* on_end_of_input,
984 bool check_bounds,
985 int characters) {
986 DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works).
987 if (check_bounds) {
988 if (cp_offset >= 0) {
989 CheckPosition(cp_offset + characters - 1, on_end_of_input);
990 } else {
991 CheckPosition(cp_offset, on_end_of_input);
992 }
993 }
994 LoadCurrentCharacterUnchecked(cp_offset, characters);
995 }
996
997
PopCurrentPosition()998 void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
999 Pop(current_input_offset());
1000 }
1001
1002
PopRegister(int register_index)1003 void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
1004 Pop(a0);
1005 __ sd(a0, register_location(register_index));
1006 }
1007
1008
PushBacktrack(Label * label)1009 void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
1010 if (label->is_bound()) {
1011 int target = label->pos();
1012 __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
1013 } else {
1014 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
1015 Label after_constant;
1016 __ Branch(&after_constant);
1017 int offset = masm_->pc_offset();
1018 int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
1019 __ emit(0);
1020 masm_->label_at_put(label, offset);
1021 __ bind(&after_constant);
1022 if (is_int16(cp_offset)) {
1023 __ lwu(a0, MemOperand(code_pointer(), cp_offset));
1024 } else {
1025 __ Daddu(a0, code_pointer(), cp_offset);
1026 __ lwu(a0, MemOperand(a0, 0));
1027 }
1028 }
1029 Push(a0);
1030 CheckStackLimit();
1031 }
1032
1033
PushCurrentPosition()1034 void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
1035 Push(current_input_offset());
1036 }
1037
1038
PushRegister(int register_index,StackCheckFlag check_stack_limit)1039 void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
1040 StackCheckFlag check_stack_limit) {
1041 __ ld(a0, register_location(register_index));
1042 Push(a0);
1043 if (check_stack_limit) CheckStackLimit();
1044 }
1045
1046
ReadCurrentPositionFromRegister(int reg)1047 void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
1048 __ ld(current_input_offset(), register_location(reg));
1049 }
1050
1051
ReadStackPointerFromRegister(int reg)1052 void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
1053 __ ld(backtrack_stackpointer(), register_location(reg));
1054 __ ld(a0, MemOperand(frame_pointer(), kStackHighEnd));
1055 __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
1056 }
1057
1058
SetCurrentPositionFromEnd(int by)1059 void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
1060 Label after_position;
1061 __ Branch(&after_position,
1062 ge,
1063 current_input_offset(),
1064 Operand(-by * char_size()));
1065 __ li(current_input_offset(), -by * char_size());
1066 // On RegExp code entry (where this operation is used), the character before
1067 // the current position is expected to be already loaded.
1068 // We have advanced the position, so it's safe to read backwards.
1069 LoadCurrentCharacterUnchecked(-1, 1);
1070 __ bind(&after_position);
1071 }
1072
1073
SetRegister(int register_index,int to)1074 void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
1075 DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
1076 __ li(a0, Operand(to));
1077 __ sd(a0, register_location(register_index));
1078 }
1079
1080
Succeed()1081 bool RegExpMacroAssemblerMIPS::Succeed() {
1082 __ jmp(&success_label_);
1083 return global();
1084 }
1085
1086
WriteCurrentPositionToRegister(int reg,int cp_offset)1087 void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
1088 int cp_offset) {
1089 if (cp_offset == 0) {
1090 __ sd(current_input_offset(), register_location(reg));
1091 } else {
1092 __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1093 __ sd(a0, register_location(reg));
1094 }
1095 }
1096
1097
ClearRegisters(int reg_from,int reg_to)1098 void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
1099 DCHECK(reg_from <= reg_to);
1100 __ ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
1101 for (int reg = reg_from; reg <= reg_to; reg++) {
1102 __ sd(a0, register_location(reg));
1103 }
1104 }
1105
1106
WriteStackPointerToRegister(int reg)1107 void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
1108 __ ld(a1, MemOperand(frame_pointer(), kStackHighEnd));
1109 __ Dsubu(a0, backtrack_stackpointer(), a1);
1110 __ sd(a0, register_location(reg));
1111 }
1112
1113
CanReadUnaligned()1114 bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
1115 return false;
1116 }
1117
1118
1119 // Private methods:
1120
CallCheckStackGuardState(Register scratch)1121 void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
1122 int stack_alignment = base::OS::ActivationFrameAlignment();
1123
1124 // Align the stack pointer and save the original sp value on the stack.
1125 __ mov(scratch, sp);
1126 __ Dsubu(sp, sp, Operand(kPointerSize));
1127 DCHECK(base::bits::IsPowerOfTwo32(stack_alignment));
1128 __ And(sp, sp, Operand(-stack_alignment));
1129 __ sd(scratch, MemOperand(sp));
1130
1131 __ mov(a2, frame_pointer());
1132 // Code* of self.
1133 __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
1134
1135 // We need to make room for the return address on the stack.
1136 DCHECK(IsAligned(stack_alignment, kPointerSize));
1137 __ Dsubu(sp, sp, Operand(stack_alignment));
1138
1139 // Stack pointer now points to cell where return address is to be written.
1140 // Arguments are in registers, meaning we teat the return address as
1141 // argument 5. Since DirectCEntryStub will handleallocating space for the C
1142 // argument slots, we don't need to care about that here. This is how the
1143 // stack will look (sp meaning the value of sp at this moment):
1144 // [sp + 3] - empty slot if needed for alignment.
1145 // [sp + 2] - saved sp.
1146 // [sp + 1] - second word reserved for return value.
1147 // [sp + 0] - first word reserved for return value.
1148
1149 // a0 will point to the return address, placed by DirectCEntry.
1150 __ mov(a0, sp);
1151
1152 ExternalReference stack_guard_check =
1153 ExternalReference::re_check_stack_guard_state(masm_->isolate());
1154 __ li(t9, Operand(stack_guard_check));
1155 DirectCEntryStub stub(isolate());
1156 stub.GenerateCall(masm_, t9);
1157
1158 // DirectCEntryStub allocated space for the C argument slots so we have to
1159 // drop them with the return address from the stack with loading saved sp.
1160 // At this point stack must look:
1161 // [sp + 7] - empty slot if needed for alignment.
1162 // [sp + 6] - saved sp.
1163 // [sp + 5] - second word reserved for return value.
1164 // [sp + 4] - first word reserved for return value.
1165 // [sp + 3] - C argument slot.
1166 // [sp + 2] - C argument slot.
1167 // [sp + 1] - C argument slot.
1168 // [sp + 0] - C argument slot.
1169 __ ld(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
1170
1171 __ li(code_pointer(), Operand(masm_->CodeObject()));
1172 }
1173
1174
1175 // Helper function for reading a value out of a stack frame.
1176 template <typename T>
frame_entry(Address re_frame,int frame_offset)1177 static T& frame_entry(Address re_frame, int frame_offset) {
1178 return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1179 }
1180
1181
1182 template <typename T>
frame_entry_address(Address re_frame,int frame_offset)1183 static T* frame_entry_address(Address re_frame, int frame_offset) {
1184 return reinterpret_cast<T*>(re_frame + frame_offset);
1185 }
1186
1187
CheckStackGuardState(Address * return_address,Code * re_code,Address re_frame)1188 int64_t RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
1189 Code* re_code,
1190 Address re_frame) {
1191 return NativeRegExpMacroAssembler::CheckStackGuardState(
1192 frame_entry<Isolate*>(re_frame, kIsolate),
1193 static_cast<int>(frame_entry<int64_t>(re_frame, kStartIndex)),
1194 frame_entry<int64_t>(re_frame, kDirectCall) == 1, return_address, re_code,
1195 frame_entry_address<String*>(re_frame, kInputString),
1196 frame_entry_address<const byte*>(re_frame, kInputStart),
1197 frame_entry_address<const byte*>(re_frame, kInputEnd));
1198 }
1199
1200
register_location(int register_index)1201 MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
1202 DCHECK(register_index < (1<<30));
1203 if (num_registers_ <= register_index) {
1204 num_registers_ = register_index + 1;
1205 }
1206 return MemOperand(frame_pointer(),
1207 kRegisterZero - register_index * kPointerSize);
1208 }
1209
1210
CheckPosition(int cp_offset,Label * on_outside_input)1211 void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
1212 Label* on_outside_input) {
1213 if (cp_offset >= 0) {
1214 BranchOrBacktrack(on_outside_input, ge, current_input_offset(),
1215 Operand(-cp_offset * char_size()));
1216 } else {
1217 __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
1218 __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1219 BranchOrBacktrack(on_outside_input, le, a0, Operand(a1));
1220 }
1221 }
1222
1223
BranchOrBacktrack(Label * to,Condition condition,Register rs,const Operand & rt)1224 void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
1225 Condition condition,
1226 Register rs,
1227 const Operand& rt) {
1228 if (condition == al) { // Unconditional.
1229 if (to == NULL) {
1230 Backtrack();
1231 return;
1232 }
1233 __ jmp(to);
1234 return;
1235 }
1236 if (to == NULL) {
1237 __ Branch(&backtrack_label_, condition, rs, rt);
1238 return;
1239 }
1240 __ Branch(to, condition, rs, rt);
1241 }
1242
1243
SafeCall(Label * to,Condition cond,Register rs,const Operand & rt)1244 void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
1245 Condition cond,
1246 Register rs,
1247 const Operand& rt) {
1248 __ BranchAndLink(to, cond, rs, rt);
1249 }
1250
1251
SafeReturn()1252 void RegExpMacroAssemblerMIPS::SafeReturn() {
1253 __ pop(ra);
1254 __ Daddu(t1, ra, Operand(masm_->CodeObject()));
1255 __ Jump(t1);
1256 }
1257
1258
SafeCallTarget(Label * name)1259 void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
1260 __ bind(name);
1261 __ Dsubu(ra, ra, Operand(masm_->CodeObject()));
1262 __ push(ra);
1263 }
1264
1265
Push(Register source)1266 void RegExpMacroAssemblerMIPS::Push(Register source) {
1267 DCHECK(!source.is(backtrack_stackpointer()));
1268 __ Daddu(backtrack_stackpointer(),
1269 backtrack_stackpointer(),
1270 Operand(-kIntSize));
1271 __ sw(source, MemOperand(backtrack_stackpointer()));
1272 }
1273
1274
Pop(Register target)1275 void RegExpMacroAssemblerMIPS::Pop(Register target) {
1276 DCHECK(!target.is(backtrack_stackpointer()));
1277 __ lw(target, MemOperand(backtrack_stackpointer()));
1278 __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize);
1279 }
1280
1281
CheckPreemption()1282 void RegExpMacroAssemblerMIPS::CheckPreemption() {
1283 // Check for preemption.
1284 ExternalReference stack_limit =
1285 ExternalReference::address_of_stack_limit(masm_->isolate());
1286 __ li(a0, Operand(stack_limit));
1287 __ ld(a0, MemOperand(a0));
1288 SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
1289 }
1290
1291
CheckStackLimit()1292 void RegExpMacroAssemblerMIPS::CheckStackLimit() {
1293 ExternalReference stack_limit =
1294 ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
1295
1296 __ li(a0, Operand(stack_limit));
1297 __ ld(a0, MemOperand(a0));
1298 SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
1299 }
1300
1301
LoadCurrentCharacterUnchecked(int cp_offset,int characters)1302 void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
1303 int characters) {
1304 Register offset = current_input_offset();
1305 if (cp_offset != 0) {
1306 // t3 is not being used to store the capture start index at this point.
1307 __ Daddu(t3, current_input_offset(), Operand(cp_offset * char_size()));
1308 offset = t3;
1309 }
1310 // We assume that we cannot do unaligned loads on MIPS, so this function
1311 // must only be used to load a single character at a time.
1312 DCHECK(characters == 1);
1313 __ Daddu(t1, end_of_input_address(), Operand(offset));
1314 if (mode_ == LATIN1) {
1315 __ lbu(current_character(), MemOperand(t1, 0));
1316 } else {
1317 DCHECK(mode_ == UC16);
1318 __ lhu(current_character(), MemOperand(t1, 0));
1319 }
1320 }
1321
1322 #undef __
1323
1324 #endif // V8_INTERPRETED_REGEXP
1325
1326 } // namespace internal
1327 } // namespace v8
1328
1329 #endif // V8_TARGET_ARCH_MIPS64
1330