1 
2 /*--------------------------------------------------------------------*/
3 /*--- begin                               guest_generic_bb_to_IR.c ---*/
4 /*--------------------------------------------------------------------*/
5 
6 /*
7    This file is part of Valgrind, a dynamic binary instrumentation
8    framework.
9 
10    Copyright (C) 2004-2015 OpenWorks LLP
11       info@open-works.net
12 
13    This program is free software; you can redistribute it and/or
14    modify it under the terms of the GNU General Public License as
15    published by the Free Software Foundation; either version 2 of the
16    License, or (at your option) any later version.
17 
18    This program is distributed in the hope that it will be useful, but
19    WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21    General Public License for more details.
22 
23    You should have received a copy of the GNU General Public License
24    along with this program; if not, write to the Free Software
25    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
26    02110-1301, USA.
27 
28    The GNU General Public License is contained in the file COPYING.
29 
30    Neither the names of the U.S. Department of Energy nor the
31    University of California nor the names of its contributors may be
32    used to endorse or promote products derived from this software
33    without prior written permission.
34 */
35 
36 #include "libvex_basictypes.h"
37 #include "libvex_ir.h"
38 #include "libvex.h"
39 #include "main_util.h"
40 #include "main_globals.h"
41 #include "guest_generic_bb_to_IR.h"
42 
43 
44 /* Forwards .. */
45 VEX_REGPARM(2)
46 static UInt genericg_compute_checksum_4al ( HWord first_w32, HWord n_w32s );
47 VEX_REGPARM(1)
48 static UInt genericg_compute_checksum_4al_1 ( HWord first_w32 );
49 VEX_REGPARM(1)
50 static UInt genericg_compute_checksum_4al_2 ( HWord first_w32 );
51 VEX_REGPARM(1)
52 static UInt genericg_compute_checksum_4al_3 ( HWord first_w32 );
53 VEX_REGPARM(1)
54 static UInt genericg_compute_checksum_4al_4 ( HWord first_w32 );
55 VEX_REGPARM(1)
56 static UInt genericg_compute_checksum_4al_5 ( HWord first_w32 );
57 VEX_REGPARM(1)
58 static UInt genericg_compute_checksum_4al_6 ( HWord first_w32 );
59 VEX_REGPARM(1)
60 static UInt genericg_compute_checksum_4al_7 ( HWord first_w32 );
61 VEX_REGPARM(1)
62 static UInt genericg_compute_checksum_4al_8 ( HWord first_w32 );
63 VEX_REGPARM(1)
64 static UInt genericg_compute_checksum_4al_9 ( HWord first_w32 );
65 VEX_REGPARM(1)
66 static UInt genericg_compute_checksum_4al_10 ( HWord first_w32 );
67 VEX_REGPARM(1)
68 static UInt genericg_compute_checksum_4al_11 ( HWord first_w32 );
69 VEX_REGPARM(1)
70 static UInt genericg_compute_checksum_4al_12 ( HWord first_w32 );
71 
72 VEX_REGPARM(2)
73 static ULong genericg_compute_checksum_8al ( HWord first_w64, HWord n_w64s );
74 VEX_REGPARM(1)
75 static ULong genericg_compute_checksum_8al_1 ( HWord first_w64 );
76 VEX_REGPARM(1)
77 static ULong genericg_compute_checksum_8al_2 ( HWord first_w64 );
78 VEX_REGPARM(1)
79 static ULong genericg_compute_checksum_8al_3 ( HWord first_w64 );
80 VEX_REGPARM(1)
81 static ULong genericg_compute_checksum_8al_4 ( HWord first_w64 );
82 VEX_REGPARM(1)
83 static ULong genericg_compute_checksum_8al_5 ( HWord first_w64 );
84 VEX_REGPARM(1)
85 static ULong genericg_compute_checksum_8al_6 ( HWord first_w64 );
86 VEX_REGPARM(1)
87 static ULong genericg_compute_checksum_8al_7 ( HWord first_w64 );
88 VEX_REGPARM(1)
89 static ULong genericg_compute_checksum_8al_8 ( HWord first_w64 );
90 VEX_REGPARM(1)
91 static ULong genericg_compute_checksum_8al_9 ( HWord first_w64 );
92 VEX_REGPARM(1)
93 static ULong genericg_compute_checksum_8al_10 ( HWord first_w64 );
94 VEX_REGPARM(1)
95 static ULong genericg_compute_checksum_8al_11 ( HWord first_w64 );
96 VEX_REGPARM(1)
97 static ULong genericg_compute_checksum_8al_12 ( HWord first_w64 );
98 
99 /* Small helpers */
const_False(void * callback_opaque,Addr a)100 static Bool const_False ( void* callback_opaque, Addr a ) {
101    return False;
102 }
103 
104 /* Disassemble a complete basic block, starting at guest_IP_start,
105    returning a new IRSB.  The disassembler may chase across basic
106    block boundaries if it wishes and if chase_into_ok allows it.
107    The precise guest address ranges from which code has been taken
108    are written into vge.  guest_IP_bbstart is taken to be the IP in
109    the guest's address space corresponding to the instruction at
110    &guest_code[0].
111 
112    dis_instr_fn is the arch-specific fn to disassemble on function; it
113    is this that does the real work.
114 
115    needs_self_check is a callback used to ask the caller which of the
116    extents, if any, a self check is required for.  The returned value
117    is a bitmask with a 1 in position i indicating that the i'th extent
118    needs a check.  Since there can be at most 3 extents, the returned
119    values must be between 0 and 7.
120 
121    The number of extents which did get a self check (0 to 3) is put in
122    n_sc_extents.  The caller already knows this because it told us
123    which extents to add checks for, via the needs_self_check callback,
124    but we ship the number back out here for the caller's convenience.
125 
126    preamble_function is a callback which allows the caller to add
127    its own IR preamble (following the self-check, if any).  May be
128    NULL.  If non-NULL, the IRSB under construction is handed to
129    this function, which presumably adds IR statements to it.  The
130    callback may optionally complete the block and direct bb_to_IR
131    not to disassemble any instructions into it; this is indicated
132    by the callback returning True.
133 
134    offB_CMADDR and offB_CMLEN are the offsets of guest_CMADDR and
135    guest_CMLEN.  Since this routine has to work for any guest state,
136    without knowing what it is, those offsets have to passed in.
137 
138    callback_opaque is a caller-supplied pointer to data which the
139    callbacks may want to see.  Vex has no idea what it is.
140    (In fact it's a VgInstrumentClosure.)
141 */
142 
143 /* Regarding IP updating.  dis_instr_fn (that does the guest specific
144    work of disassembling an individual instruction) must finish the
145    resulting IR with "PUT(guest_IP) = ".  Hence in all cases it must
146    state the next instruction address.
147 
148    If the block is to be ended at that point, then this routine
149    (bb_to_IR) will set up the next/jumpkind/offsIP fields so as to
150    make a transfer (of the right kind) to "GET(guest_IP)".  Hence if
151    dis_instr_fn generates incorrect IP updates we will see it
152    immediately (due to jumping to the wrong next guest address).
153 
154    However it is also necessary to set this up so it can be optimised
155    nicely.  The IRSB exit is defined to update the guest IP, so that
156    chaining works -- since the chain_me stubs expect the chain-to
157    address to be in the guest state.  Hence what the IRSB next fields
158    will contain initially is (implicitly)
159 
160    PUT(guest_IP) [implicitly] = GET(guest_IP) [explicit expr on ::next]
161 
162    which looks pretty strange at first.  Eg so unconditional branch
163    to some address 0x123456 looks like this:
164 
165    PUT(guest_IP) = 0x123456;  // dis_instr_fn generates this
166    // the exit
167    PUT(guest_IP) [implicitly] = GET(guest_IP); exit-Boring
168 
169    after redundant-GET and -PUT removal by iropt, we get what we want:
170 
171    // the exit
172    PUT(guest_IP) [implicitly] = 0x123456; exit-Boring
173 
174    This makes the IRSB-end case the same as the side-exit case: update
175    IP, then transfer.  There is no redundancy of representation for
176    the destination, and we use the destination specified by
177    dis_instr_fn, so any errors it makes show up sooner.
178 */
179 
bb_to_IR(VexGuestExtents * vge,UInt * n_sc_extents,UInt * n_guest_instrs,VexRegisterUpdates * pxControl,void * callback_opaque,DisOneInstrFn dis_instr_fn,const UChar * guest_code,Addr guest_IP_bbstart,Bool (* chase_into_ok)(void *,Addr),VexEndness host_endness,Bool sigill_diag,VexArch arch_guest,const VexArchInfo * archinfo_guest,const VexAbiInfo * abiinfo_both,IRType guest_word_type,UInt (* needs_self_check)(void *,VexRegisterUpdates *,const VexGuestExtents *),Bool (* preamble_function)(void *,IRSB *),Int offB_GUEST_CMSTART,Int offB_GUEST_CMLEN,Int offB_GUEST_IP,Int szB_GUEST_IP)180 IRSB* bb_to_IR (
181          /*OUT*/VexGuestExtents* vge,
182          /*OUT*/UInt*            n_sc_extents,
183          /*OUT*/UInt*            n_guest_instrs, /* stats only */
184          /*MOD*/VexRegisterUpdates* pxControl,
185          /*IN*/ void*            callback_opaque,
186          /*IN*/ DisOneInstrFn    dis_instr_fn,
187          /*IN*/ const UChar*     guest_code,
188          /*IN*/ Addr             guest_IP_bbstart,
189          /*IN*/ Bool             (*chase_into_ok)(void*,Addr),
190          /*IN*/ VexEndness       host_endness,
191          /*IN*/ Bool             sigill_diag,
192          /*IN*/ VexArch          arch_guest,
193          /*IN*/ const VexArchInfo* archinfo_guest,
194          /*IN*/ const VexAbiInfo*  abiinfo_both,
195          /*IN*/ IRType           guest_word_type,
196          /*IN*/ UInt             (*needs_self_check)
197                                     (void*, /*MB_MOD*/VexRegisterUpdates*,
198                                             const VexGuestExtents*),
199          /*IN*/ Bool             (*preamble_function)(void*,IRSB*),
200          /*IN*/ Int              offB_GUEST_CMSTART,
201          /*IN*/ Int              offB_GUEST_CMLEN,
202          /*IN*/ Int              offB_GUEST_IP,
203          /*IN*/ Int              szB_GUEST_IP
204       )
205 {
206    Long       delta;
207    Int        i, n_instrs, first_stmt_idx;
208    Bool       resteerOK, debug_print;
209    DisResult  dres;
210    IRStmt*    imark;
211    IRStmt*    nop;
212    static Int n_resteers = 0;
213    Int        d_resteers = 0;
214    Int        selfcheck_idx = 0;
215    IRSB*      irsb;
216    Addr       guest_IP_curr_instr;
217    IRConst*   guest_IP_bbstart_IRConst = NULL;
218    Int        n_cond_resteers_allowed = 2;
219 
220    Bool (*resteerOKfn)(void*,Addr) = NULL;
221 
222    debug_print = toBool(vex_traceflags & VEX_TRACE_FE);
223 
224    /* check sanity .. */
225    vassert(sizeof(HWord) == sizeof(void*));
226    vassert(vex_control.guest_max_insns >= 1);
227    vassert(vex_control.guest_max_insns <= 100);
228    vassert(vex_control.guest_chase_thresh >= 0);
229    vassert(vex_control.guest_chase_thresh < vex_control.guest_max_insns);
230    vassert(guest_word_type == Ity_I32 || guest_word_type == Ity_I64);
231 
232    if (guest_word_type == Ity_I32) {
233       vassert(szB_GUEST_IP == 4);
234       vassert((offB_GUEST_IP % 4) == 0);
235    } else {
236       vassert(szB_GUEST_IP == 8);
237       vassert((offB_GUEST_IP % 8) == 0);
238    }
239 
240    /* Start a new, empty extent. */
241    vge->n_used  = 1;
242    vge->base[0] = guest_IP_bbstart;
243    vge->len[0]  = 0;
244    *n_sc_extents = 0;
245 
246    /* And a new IR superblock to dump the result into. */
247    irsb = emptyIRSB();
248 
249    /* Delta keeps track of how far along the guest_code array we have
250       so far gone. */
251    delta    = 0;
252    n_instrs = 0;
253    *n_guest_instrs = 0;
254 
255    /* Guest addresses as IRConsts.  Used in self-checks to specify the
256       restart-after-discard point. */
257    guest_IP_bbstart_IRConst
258       = guest_word_type==Ity_I32
259            ? IRConst_U32(toUInt(guest_IP_bbstart))
260            : IRConst_U64(guest_IP_bbstart);
261 
262    /* Leave 15 spaces in which to put the check statements for a self
263       checking translation (up to 3 extents, and 5 stmts required for
264       each).  We won't know until later the extents and checksums of
265       the areas, if any, that need to be checked. */
266    nop = IRStmt_NoOp();
267    selfcheck_idx = irsb->stmts_used;
268    for (i = 0; i < 3 * 5; i++)
269       addStmtToIRSB( irsb, nop );
270 
271    /* If the caller supplied a function to add its own preamble, use
272       it now. */
273    if (preamble_function) {
274       Bool stopNow = preamble_function( callback_opaque, irsb );
275       if (stopNow) {
276          /* The callback has completed the IR block without any guest
277             insns being disassembled into it, so just return it at
278             this point, even if a self-check was requested - as there
279             is nothing to self-check.  The 15 self-check no-ops will
280             still be in place, but they are harmless. */
281          return irsb;
282       }
283    }
284 
285    /* Process instructions. */
286    while (True) {
287       vassert(n_instrs < vex_control.guest_max_insns);
288 
289       /* Regardless of what chase_into_ok says, is chasing permissible
290          at all right now?  Set resteerOKfn accordingly. */
291       resteerOK
292          = toBool(
293               n_instrs < vex_control.guest_chase_thresh
294               /* we can't afford to have a resteer once we're on the
295                  last extent slot. */
296               && vge->n_used < 3
297            );
298 
299       resteerOKfn
300          = resteerOK ? chase_into_ok : const_False;
301 
302       /* n_cond_resteers_allowed keeps track of whether we're still
303          allowing dis_instr_fn to chase conditional branches.  It
304          starts (at 2) and gets decremented each time dis_instr_fn
305          tells us it has chased a conditional branch.  We then
306          decrement it, and use it to tell later calls to dis_instr_fn
307          whether or not it is allowed to chase conditional
308          branches. */
309       vassert(n_cond_resteers_allowed >= 0 && n_cond_resteers_allowed <= 2);
310 
311       /* This is the IP of the instruction we're just about to deal
312          with. */
313       guest_IP_curr_instr = guest_IP_bbstart + delta;
314 
315       /* This is the irsb statement array index of the first stmt in
316          this insn.  That will always be the instruction-mark
317          descriptor. */
318       first_stmt_idx = irsb->stmts_used;
319 
320       /* Add an instruction-mark statement.  We won't know until after
321          disassembling the instruction how long it instruction is, so
322          just put in a zero length and we'll fix it up later.
323 
324          On ARM, the least significant bit of the instr address
325          distinguishes ARM vs Thumb instructions.  All instructions
326          actually start on at least 2-aligned addresses.  So we need
327          to ignore the bottom bit of the insn address when forming the
328          IMark's address field, but put that bottom bit in the delta
329          field, so that comparisons against guest_R15T for Thumb can
330          be done correctly.  By inspecting the delta field,
331          instruction processors can determine whether the instruction
332          was originally Thumb or ARM.  For more details of this
333          convention, see comments on definition of guest_R15T in
334          libvex_guest_arm.h. */
335       if (arch_guest == VexArchARM && (guest_IP_curr_instr & 1)) {
336          /* Thumb insn => mask out the T bit, but put it in delta */
337          addStmtToIRSB( irsb,
338                         IRStmt_IMark(guest_IP_curr_instr & ~(Addr)1,
339                                      0, /* len */
340                                      1  /* delta */
341                         )
342          );
343       } else {
344          /* All other targets: store IP as-is, and set delta to zero. */
345          addStmtToIRSB( irsb,
346                         IRStmt_IMark(guest_IP_curr_instr,
347                                      0, /* len */
348                                      0  /* delta */
349                         )
350          );
351       }
352 
353       if (debug_print && n_instrs > 0)
354          vex_printf("\n");
355 
356       /* Finally, actually disassemble an instruction. */
357       vassert(irsb->next == NULL);
358       dres = dis_instr_fn ( irsb,
359                             resteerOKfn,
360                             toBool(n_cond_resteers_allowed > 0),
361                             callback_opaque,
362                             guest_code,
363                             delta,
364                             guest_IP_curr_instr,
365                             arch_guest,
366                             archinfo_guest,
367                             abiinfo_both,
368                             host_endness,
369                             sigill_diag );
370 
371       /* stay sane ... */
372       vassert(dres.whatNext == Dis_StopHere
373               || dres.whatNext == Dis_Continue
374               || dres.whatNext == Dis_ResteerU
375               || dres.whatNext == Dis_ResteerC);
376       /* ... disassembled insn length is sane ... */
377       vassert(dres.len >= 0 && dres.len <= 24);
378       /* ... continueAt is zero if no resteer requested ... */
379       if (dres.whatNext != Dis_ResteerU && dres.whatNext != Dis_ResteerC)
380          vassert(dres.continueAt == 0);
381       /* ... if we disallowed conditional resteers, check that one
382              didn't actually happen anyway ... */
383       if (n_cond_resteers_allowed == 0)
384          vassert(dres.whatNext != Dis_ResteerC);
385 
386       /* Fill in the insn-mark length field. */
387       vassert(first_stmt_idx >= 0 && first_stmt_idx < irsb->stmts_used);
388       imark = irsb->stmts[first_stmt_idx];
389       vassert(imark);
390       vassert(imark->tag == Ist_IMark);
391       vassert(imark->Ist.IMark.len == 0);
392       imark->Ist.IMark.len = dres.len;
393 
394       /* Print the resulting IR, if needed. */
395       if (vex_traceflags & VEX_TRACE_FE) {
396          for (i = first_stmt_idx; i < irsb->stmts_used; i++) {
397             vex_printf("              ");
398             ppIRStmt(irsb->stmts[i]);
399             vex_printf("\n");
400          }
401       }
402 
403       /* Individual insn disassembly may not mess with irsb->next.
404          This function is the only place where it can be set. */
405       vassert(irsb->next == NULL);
406       vassert(irsb->jumpkind == Ijk_Boring);
407       vassert(irsb->offsIP == 0);
408 
409       /* Individual insn disassembly must finish the IR for each
410          instruction with an assignment to the guest PC. */
411       vassert(first_stmt_idx < irsb->stmts_used);
412       /* it follows that irsb->stmts_used must be > 0 */
413       { IRStmt* st = irsb->stmts[irsb->stmts_used-1];
414         vassert(st);
415         vassert(st->tag == Ist_Put);
416         vassert(st->Ist.Put.offset == offB_GUEST_IP);
417         /* Really we should also check that the type of the Put'd data
418            == guest_word_type, but that's a bit expensive. */
419       }
420 
421       /* Update the VexGuestExtents we are constructing. */
422       /* If vex_control.guest_max_insns is required to be < 100 and
423          each insn is at max 20 bytes long, this limit of 5000 then
424          seems reasonable since the max possible extent length will be
425          100 * 20 == 2000. */
426       vassert(vge->len[vge->n_used-1] < 5000);
427       vge->len[vge->n_used-1]
428          = toUShort(toUInt( vge->len[vge->n_used-1] + dres.len ));
429       n_instrs++;
430 
431       /* Advance delta (inconspicuous but very important :-) */
432       delta += (Long)dres.len;
433 
434       switch (dres.whatNext) {
435          case Dis_Continue:
436             vassert(dres.continueAt == 0);
437             vassert(dres.jk_StopHere == Ijk_INVALID);
438             if (n_instrs < vex_control.guest_max_insns) {
439                /* keep going */
440             } else {
441                /* We have to stop.  See comment above re irsb field
442                   settings here. */
443                irsb->next = IRExpr_Get(offB_GUEST_IP, guest_word_type);
444                /* irsb->jumpkind must already by Ijk_Boring */
445                irsb->offsIP = offB_GUEST_IP;
446                goto done;
447             }
448             break;
449          case Dis_StopHere:
450             vassert(dres.continueAt == 0);
451             vassert(dres.jk_StopHere != Ijk_INVALID);
452             /* See comment above re irsb field settings here. */
453             irsb->next = IRExpr_Get(offB_GUEST_IP, guest_word_type);
454             irsb->jumpkind = dres.jk_StopHere;
455             irsb->offsIP = offB_GUEST_IP;
456             goto done;
457 
458          case Dis_ResteerU:
459          case Dis_ResteerC:
460             /* Check that we actually allowed a resteer .. */
461             vassert(resteerOK);
462             if (dres.whatNext == Dis_ResteerC) {
463                vassert(n_cond_resteers_allowed > 0);
464                n_cond_resteers_allowed--;
465             }
466             /* figure out a new delta to continue at. */
467             vassert(resteerOKfn(callback_opaque,dres.continueAt));
468             delta = dres.continueAt - guest_IP_bbstart;
469             /* we now have to start a new extent slot. */
470             vge->n_used++;
471             vassert(vge->n_used <= 3);
472             vge->base[vge->n_used-1] = dres.continueAt;
473             vge->len[vge->n_used-1] = 0;
474             n_resteers++;
475             d_resteers++;
476             if (0 && (n_resteers & 0xFF) == 0)
477             vex_printf("resteer[%d,%d] to 0x%lx (delta = %lld)\n",
478                        n_resteers, d_resteers,
479                        dres.continueAt, delta);
480             break;
481          default:
482             vpanic("bb_to_IR");
483       }
484    }
485    /*NOTREACHED*/
486    vassert(0);
487 
488   done:
489    /* We're done.  The only thing that might need attending to is that
490       a self-checking preamble may need to be created.  If so it gets
491       placed in the 15 slots reserved above.
492 
493       The scheme is to compute a rather crude checksum of the code
494       we're making a translation of, and add to the IR a call to a
495       helper routine which recomputes the checksum every time the
496       translation is run, and requests a retranslation if it doesn't
497       match.  This is obviously very expensive and considerable
498       efforts are made to speed it up:
499 
500       * the checksum is computed from all the naturally aligned
501         host-sized words that overlap the translated code.  That means
502         it could depend on up to 7 bytes before and 7 bytes after
503         which aren't part of the translated area, and so if those
504         change then we'll unnecessarily have to discard and
505         retranslate.  This seems like a pretty remote possibility and
506         it seems as if the benefit of not having to deal with the ends
507         of the range at byte precision far outweigh any possible extra
508         translations needed.
509 
510       * there's a generic routine and 12 specialised cases, which
511         handle the cases of 1 through 12-word lengths respectively.
512         They seem to cover about 90% of the cases that occur in
513         practice.
514 
515       We ask the caller, via needs_self_check, which of the 3 vge
516       extents needs a check, and only generate check code for those
517       that do.
518    */
519    {
520       Addr     base2check;
521       UInt     len2check;
522       HWord    expectedhW;
523       IRTemp   tistart_tmp, tilen_tmp;
524       HWord    VEX_REGPARM(2) (*fn_generic)(HWord, HWord);
525       HWord    VEX_REGPARM(1) (*fn_spec)(HWord);
526       const HChar* nm_generic;
527       const HChar* nm_spec;
528       HWord    fn_generic_entry = 0;
529       HWord    fn_spec_entry = 0;
530       UInt     host_word_szB = sizeof(HWord);
531       IRType   host_word_type = Ity_INVALID;
532 
533       UInt extents_needing_check
534          = needs_self_check(callback_opaque, pxControl, vge);
535 
536       if (host_word_szB == 4) host_word_type = Ity_I32;
537       if (host_word_szB == 8) host_word_type = Ity_I64;
538       vassert(host_word_type != Ity_INVALID);
539 
540       vassert(vge->n_used >= 1 && vge->n_used <= 3);
541 
542       /* Caller shouldn't claim that nonexistent extents need a
543          check. */
544       vassert((extents_needing_check >> vge->n_used) == 0);
545 
546       for (i = 0; i < vge->n_used; i++) {
547 
548          /* Do we need to generate a check for this extent? */
549          if ((extents_needing_check & (1 << i)) == 0)
550             continue;
551 
552          /* Tell the caller */
553          (*n_sc_extents)++;
554 
555          /* the extent we're generating a check for */
556          base2check = vge->base[i];
557          len2check  = vge->len[i];
558 
559          /* stay sane */
560          vassert(len2check >= 0 && len2check < 1000/*arbitrary*/);
561 
562          /* Skip the check if the translation involved zero bytes */
563          if (len2check == 0)
564             continue;
565 
566          HWord first_hW = ((HWord)base2check)
567                           & ~(HWord)(host_word_szB-1);
568          HWord last_hW  = (((HWord)base2check) + len2check - 1)
569                           & ~(HWord)(host_word_szB-1);
570          vassert(first_hW <= last_hW);
571          HWord hW_diff = last_hW - first_hW;
572          vassert(0 == (hW_diff & (host_word_szB-1)));
573          HWord hWs_to_check = (hW_diff + host_word_szB) / host_word_szB;
574          vassert(hWs_to_check > 0
575                  && hWs_to_check < 1004/*arbitrary*/ / host_word_szB);
576 
577          /* vex_printf("%lx %lx  %ld\n", first_hW, last_hW, hWs_to_check); */
578 
579          if (host_word_szB == 8) {
580             fn_generic =  (VEX_REGPARM(2) HWord(*)(HWord, HWord))
581                           genericg_compute_checksum_8al;
582             nm_generic = "genericg_compute_checksum_8al";
583          } else {
584             fn_generic =  (VEX_REGPARM(2) HWord(*)(HWord, HWord))
585                           genericg_compute_checksum_4al;
586             nm_generic = "genericg_compute_checksum_4al";
587          }
588 
589          fn_spec = NULL;
590          nm_spec = NULL;
591 
592          if (host_word_szB == 8) {
593             const HChar* nm = NULL;
594             ULong  VEX_REGPARM(1) (*fn)(HWord)  = NULL;
595             switch (hWs_to_check) {
596                case 1:  fn =  genericg_compute_checksum_8al_1;
597                         nm = "genericg_compute_checksum_8al_1"; break;
598                case 2:  fn =  genericg_compute_checksum_8al_2;
599                         nm = "genericg_compute_checksum_8al_2"; break;
600                case 3:  fn =  genericg_compute_checksum_8al_3;
601                         nm = "genericg_compute_checksum_8al_3"; break;
602                case 4:  fn =  genericg_compute_checksum_8al_4;
603                         nm = "genericg_compute_checksum_8al_4"; break;
604                case 5:  fn =  genericg_compute_checksum_8al_5;
605                         nm = "genericg_compute_checksum_8al_5"; break;
606                case 6:  fn =  genericg_compute_checksum_8al_6;
607                         nm = "genericg_compute_checksum_8al_6"; break;
608                case 7:  fn =  genericg_compute_checksum_8al_7;
609                         nm = "genericg_compute_checksum_8al_7"; break;
610                case 8:  fn =  genericg_compute_checksum_8al_8;
611                         nm = "genericg_compute_checksum_8al_8"; break;
612                case 9:  fn =  genericg_compute_checksum_8al_9;
613                         nm = "genericg_compute_checksum_8al_9"; break;
614                case 10: fn =  genericg_compute_checksum_8al_10;
615                         nm = "genericg_compute_checksum_8al_10"; break;
616                case 11: fn =  genericg_compute_checksum_8al_11;
617                         nm = "genericg_compute_checksum_8al_11"; break;
618                case 12: fn =  genericg_compute_checksum_8al_12;
619                         nm = "genericg_compute_checksum_8al_12"; break;
620                default: break;
621             }
622             fn_spec = (VEX_REGPARM(1) HWord(*)(HWord)) fn;
623             nm_spec = nm;
624          } else {
625             const HChar* nm = NULL;
626             UInt   VEX_REGPARM(1) (*fn)(HWord) = NULL;
627             switch (hWs_to_check) {
628                case 1:  fn =  genericg_compute_checksum_4al_1;
629                         nm = "genericg_compute_checksum_4al_1"; break;
630                case 2:  fn =  genericg_compute_checksum_4al_2;
631                         nm = "genericg_compute_checksum_4al_2"; break;
632                case 3:  fn =  genericg_compute_checksum_4al_3;
633                         nm = "genericg_compute_checksum_4al_3"; break;
634                case 4:  fn =  genericg_compute_checksum_4al_4;
635                         nm = "genericg_compute_checksum_4al_4"; break;
636                case 5:  fn =  genericg_compute_checksum_4al_5;
637                         nm = "genericg_compute_checksum_4al_5"; break;
638                case 6:  fn =  genericg_compute_checksum_4al_6;
639                         nm = "genericg_compute_checksum_4al_6"; break;
640                case 7:  fn =  genericg_compute_checksum_4al_7;
641                         nm = "genericg_compute_checksum_4al_7"; break;
642                case 8:  fn =  genericg_compute_checksum_4al_8;
643                         nm = "genericg_compute_checksum_4al_8"; break;
644                case 9:  fn =  genericg_compute_checksum_4al_9;
645                         nm = "genericg_compute_checksum_4al_9"; break;
646                case 10: fn =  genericg_compute_checksum_4al_10;
647                         nm = "genericg_compute_checksum_4al_10"; break;
648                case 11: fn =  genericg_compute_checksum_4al_11;
649                         nm = "genericg_compute_checksum_4al_11"; break;
650                case 12: fn =  genericg_compute_checksum_4al_12;
651                         nm = "genericg_compute_checksum_4al_12"; break;
652                default: break;
653             }
654             fn_spec = (VEX_REGPARM(1) HWord(*)(HWord))fn;
655             nm_spec = nm;
656          }
657 
658          expectedhW = fn_generic( first_hW, hWs_to_check );
659          /* If we got a specialised version, check it produces the same
660             result as the generic version! */
661          if (fn_spec) {
662             vassert(nm_spec);
663             vassert(expectedhW == fn_spec( first_hW ));
664          } else {
665             vassert(!nm_spec);
666          }
667 
668          /* Set CMSTART and CMLEN.  These will describe to the despatcher
669             the area of guest code to invalidate should we exit with a
670             self-check failure. */
671 
672          tistart_tmp = newIRTemp(irsb->tyenv, guest_word_type);
673          tilen_tmp   = newIRTemp(irsb->tyenv, guest_word_type);
674 
675          IRConst* base2check_IRConst
676             = guest_word_type==Ity_I32 ? IRConst_U32(toUInt(base2check))
677                                        : IRConst_U64(base2check);
678          IRConst* len2check_IRConst
679             = guest_word_type==Ity_I32 ? IRConst_U32(len2check)
680                                        : IRConst_U64(len2check);
681 
682          irsb->stmts[selfcheck_idx + i * 5 + 0]
683             = IRStmt_WrTmp(tistart_tmp, IRExpr_Const(base2check_IRConst) );
684 
685          irsb->stmts[selfcheck_idx + i * 5 + 1]
686             = IRStmt_WrTmp(tilen_tmp, IRExpr_Const(len2check_IRConst) );
687 
688          irsb->stmts[selfcheck_idx + i * 5 + 2]
689             = IRStmt_Put( offB_GUEST_CMSTART, IRExpr_RdTmp(tistart_tmp) );
690 
691          irsb->stmts[selfcheck_idx + i * 5 + 3]
692             = IRStmt_Put( offB_GUEST_CMLEN, IRExpr_RdTmp(tilen_tmp) );
693 
694          /* Generate the entry point descriptors */
695          if (abiinfo_both->host_ppc_calls_use_fndescrs) {
696             HWord* descr = (HWord*)fn_generic;
697             fn_generic_entry = descr[0];
698             if (fn_spec) {
699                descr = (HWord*)fn_spec;
700                fn_spec_entry = descr[0];
701             } else {
702                fn_spec_entry = (HWord)NULL;
703             }
704          } else {
705             fn_generic_entry = (HWord)fn_generic;
706             if (fn_spec) {
707                fn_spec_entry = (HWord)fn_spec;
708             } else {
709                fn_spec_entry = (HWord)NULL;
710             }
711          }
712 
713          IRExpr* callexpr = NULL;
714          if (fn_spec) {
715             callexpr = mkIRExprCCall(
716                           host_word_type, 1/*regparms*/,
717                           nm_spec, (void*)fn_spec_entry,
718                           mkIRExprVec_1(
719                              mkIRExpr_HWord( (HWord)first_hW )
720                           )
721                        );
722          } else {
723             callexpr = mkIRExprCCall(
724                           host_word_type, 2/*regparms*/,
725                           nm_generic, (void*)fn_generic_entry,
726                           mkIRExprVec_2(
727                              mkIRExpr_HWord( (HWord)first_hW ),
728                              mkIRExpr_HWord( (HWord)hWs_to_check )
729                           )
730                        );
731          }
732 
733          irsb->stmts[selfcheck_idx + i * 5 + 4]
734             = IRStmt_Exit(
735                  IRExpr_Binop(
736                     host_word_type==Ity_I64 ? Iop_CmpNE64 : Iop_CmpNE32,
737                     callexpr,
738                        host_word_type==Ity_I64
739                           ? IRExpr_Const(IRConst_U64(expectedhW))
740                           : IRExpr_Const(IRConst_U32(expectedhW))
741                  ),
742                  Ijk_InvalICache,
743                  /* Where we must restart if there's a failure: at the
744                     first extent, regardless of which extent the
745                     failure actually happened in. */
746                  guest_IP_bbstart_IRConst,
747                  offB_GUEST_IP
748               );
749       } /* for (i = 0; i < vge->n_used; i++) */
750    }
751 
752    /* irsb->next must now be set, since we've finished the block.
753       Print it if necessary.*/
754    vassert(irsb->next != NULL);
755    if (debug_print) {
756       vex_printf("              ");
757       vex_printf( "PUT(%d) = ", irsb->offsIP);
758       ppIRExpr( irsb->next );
759       vex_printf( "; exit-");
760       ppIRJumpKind(irsb->jumpkind);
761       vex_printf( "\n");
762       vex_printf( "\n");
763    }
764 
765    *n_guest_instrs = n_instrs;
766    return irsb;
767 }
768 
769 
770 /*-------------------------------------------------------------
771   A support routine for doing self-checking translations.
772   -------------------------------------------------------------*/
773 
774 /* CLEAN HELPER */
775 /* CALLED FROM GENERATED CODE */
776 
777 /* Compute a checksum of host memory at [addr .. addr+len-1], as fast
778    as possible.  All _4al versions assume that the supplied address is
779    4 aligned.  All length values are in 4-byte chunks.  These fns
780    arecalled once for every use of a self-checking translation, so
781    they needs to be as fast as possible. */
782 
783 /* --- 32-bit versions, used only on 32-bit hosts --- */
784 
ROL32(UInt w,Int n)785 static inline UInt ROL32 ( UInt w, Int n ) {
786    w = (w << n) | (w >> (32-n));
787    return w;
788 }
789 
790 VEX_REGPARM(2)
genericg_compute_checksum_4al(HWord first_w32,HWord n_w32s)791 static UInt genericg_compute_checksum_4al ( HWord first_w32, HWord n_w32s )
792 {
793    UInt  sum1 = 0, sum2 = 0;
794    UInt* p = (UInt*)first_w32;
795    /* unrolled */
796    while (n_w32s >= 4) {
797       UInt  w;
798       w = p[0];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
799       w = p[1];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
800       w = p[2];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
801       w = p[3];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
802       p += 4;
803       n_w32s -= 4;
804       sum1 ^= sum2;
805    }
806    while (n_w32s >= 1) {
807       UInt  w;
808       w = p[0];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
809       p += 1;
810       n_w32s -= 1;
811       sum1 ^= sum2;
812    }
813    return sum1 + sum2;
814 }
815 
816 /* Specialised versions of the above function */
817 
818 VEX_REGPARM(1)
genericg_compute_checksum_4al_1(HWord first_w32)819 static UInt genericg_compute_checksum_4al_1 ( HWord first_w32 )
820 {
821    UInt  sum1 = 0, sum2 = 0;
822    UInt* p = (UInt*)first_w32;
823    UInt  w;
824    w = p[0];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
825    sum1 ^= sum2;
826    return sum1 + sum2;
827 }
828 
829 VEX_REGPARM(1)
genericg_compute_checksum_4al_2(HWord first_w32)830 static UInt genericg_compute_checksum_4al_2 ( HWord first_w32 )
831 {
832    UInt  sum1 = 0, sum2 = 0;
833    UInt* p = (UInt*)first_w32;
834    UInt  w;
835    w = p[0];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
836    sum1 ^= sum2;
837    w = p[1];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
838    sum1 ^= sum2;
839    return sum1 + sum2;
840 }
841 
842 VEX_REGPARM(1)
genericg_compute_checksum_4al_3(HWord first_w32)843 static UInt genericg_compute_checksum_4al_3 ( HWord first_w32 )
844 {
845    UInt  sum1 = 0, sum2 = 0;
846    UInt* p = (UInt*)first_w32;
847    UInt  w;
848    w = p[0];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
849    sum1 ^= sum2;
850    w = p[1];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
851    sum1 ^= sum2;
852    w = p[2];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
853    sum1 ^= sum2;
854    return sum1 + sum2;
855 }
856 
857 VEX_REGPARM(1)
genericg_compute_checksum_4al_4(HWord first_w32)858 static UInt genericg_compute_checksum_4al_4 ( HWord first_w32 )
859 {
860    UInt  sum1 = 0, sum2 = 0;
861    UInt* p = (UInt*)first_w32;
862    UInt  w;
863    w = p[0];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
864    w = p[1];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
865    w = p[2];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
866    w = p[3];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
867    sum1 ^= sum2;
868    return sum1 + sum2;
869 }
870 
871 VEX_REGPARM(1)
genericg_compute_checksum_4al_5(HWord first_w32)872 static UInt genericg_compute_checksum_4al_5 ( HWord first_w32 )
873 {
874    UInt  sum1 = 0, sum2 = 0;
875    UInt* p = (UInt*)first_w32;
876    UInt  w;
877    w = p[0];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
878    w = p[1];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
879    w = p[2];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
880    w = p[3];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
881    sum1 ^= sum2;
882    w = p[4];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
883    sum1 ^= sum2;
884    return sum1 + sum2;
885 }
886 
887 VEX_REGPARM(1)
genericg_compute_checksum_4al_6(HWord first_w32)888 static UInt genericg_compute_checksum_4al_6 ( HWord first_w32 )
889 {
890    UInt  sum1 = 0, sum2 = 0;
891    UInt* p = (UInt*)first_w32;
892    UInt  w;
893    w = p[0];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
894    w = p[1];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
895    w = p[2];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
896    w = p[3];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
897    sum1 ^= sum2;
898    w = p[4];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
899    sum1 ^= sum2;
900    w = p[5];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
901    sum1 ^= sum2;
902    return sum1 + sum2;
903 }
904 
905 VEX_REGPARM(1)
genericg_compute_checksum_4al_7(HWord first_w32)906 static UInt genericg_compute_checksum_4al_7 ( HWord first_w32 )
907 {
908    UInt  sum1 = 0, sum2 = 0;
909    UInt* p = (UInt*)first_w32;
910    UInt  w;
911    w = p[0];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
912    w = p[1];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
913    w = p[2];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
914    w = p[3];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
915    sum1 ^= sum2;
916    w = p[4];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
917    sum1 ^= sum2;
918    w = p[5];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
919    sum1 ^= sum2;
920    w = p[6];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
921    sum1 ^= sum2;
922    return sum1 + sum2;
923 }
924 
925 VEX_REGPARM(1)
genericg_compute_checksum_4al_8(HWord first_w32)926 static UInt genericg_compute_checksum_4al_8 ( HWord first_w32 )
927 {
928    UInt  sum1 = 0, sum2 = 0;
929    UInt* p = (UInt*)first_w32;
930    UInt  w;
931    w = p[0];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
932    w = p[1];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
933    w = p[2];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
934    w = p[3];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
935    sum1 ^= sum2;
936    w = p[4];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
937    w = p[5];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
938    w = p[6];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
939    w = p[7];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
940    sum1 ^= sum2;
941    return sum1 + sum2;
942 }
943 
944 VEX_REGPARM(1)
genericg_compute_checksum_4al_9(HWord first_w32)945 static UInt genericg_compute_checksum_4al_9 ( HWord first_w32 )
946 {
947    UInt  sum1 = 0, sum2 = 0;
948    UInt* p = (UInt*)first_w32;
949    UInt  w;
950    w = p[0];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
951    w = p[1];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
952    w = p[2];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
953    w = p[3];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
954    sum1 ^= sum2;
955    w = p[4];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
956    w = p[5];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
957    w = p[6];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
958    w = p[7];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
959    sum1 ^= sum2;
960    w = p[8];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
961    sum1 ^= sum2;
962    return sum1 + sum2;
963 }
964 
965 VEX_REGPARM(1)
genericg_compute_checksum_4al_10(HWord first_w32)966 static UInt genericg_compute_checksum_4al_10 ( HWord first_w32 )
967 {
968    UInt  sum1 = 0, sum2 = 0;
969    UInt* p = (UInt*)first_w32;
970    UInt  w;
971    w = p[0];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
972    w = p[1];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
973    w = p[2];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
974    w = p[3];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
975    sum1 ^= sum2;
976    w = p[4];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
977    w = p[5];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
978    w = p[6];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
979    w = p[7];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
980    sum1 ^= sum2;
981    w = p[8];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
982    sum1 ^= sum2;
983    w = p[9];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
984    sum1 ^= sum2;
985    return sum1 + sum2;
986 }
987 
988 VEX_REGPARM(1)
genericg_compute_checksum_4al_11(HWord first_w32)989 static UInt genericg_compute_checksum_4al_11 ( HWord first_w32 )
990 {
991    UInt  sum1 = 0, sum2 = 0;
992    UInt* p = (UInt*)first_w32;
993    UInt  w;
994    w = p[0];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
995    w = p[1];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
996    w = p[2];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
997    w = p[3];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
998    sum1 ^= sum2;
999    w = p[4];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1000    w = p[5];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1001    w = p[6];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1002    w = p[7];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1003    sum1 ^= sum2;
1004    w = p[8];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1005    sum1 ^= sum2;
1006    w = p[9];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1007    sum1 ^= sum2;
1008    w = p[10]; sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1009    sum1 ^= sum2;
1010    return sum1 + sum2;
1011 }
1012 
1013 VEX_REGPARM(1)
genericg_compute_checksum_4al_12(HWord first_w32)1014 static UInt genericg_compute_checksum_4al_12 ( HWord first_w32 )
1015 {
1016    UInt  sum1 = 0, sum2 = 0;
1017    UInt* p = (UInt*)first_w32;
1018    UInt  w;
1019    w = p[0];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1020    w = p[1];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1021    w = p[2];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1022    w = p[3];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1023    sum1 ^= sum2;
1024    w = p[4];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1025    w = p[5];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1026    w = p[6];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1027    w = p[7];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1028    sum1 ^= sum2;
1029    w = p[8];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1030    w = p[9];  sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1031    w = p[10]; sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1032    w = p[11]; sum1 = ROL32(sum1 ^ w, 31);  sum2 += w;
1033    sum1 ^= sum2;
1034    return sum1 + sum2;
1035 }
1036 
1037 
1038 /* --- 64-bit versions, used only on 64-bit hosts --- */
1039 
ROL64(ULong w,Int n)1040 static inline ULong ROL64 ( ULong w, Int n ) {
1041    w = (w << n) | (w >> (64-n));
1042    return w;
1043 }
1044 
1045 VEX_REGPARM(2)
genericg_compute_checksum_8al(HWord first_w64,HWord n_w64s)1046 static ULong genericg_compute_checksum_8al ( HWord first_w64, HWord n_w64s )
1047 {
1048    ULong  sum1 = 0, sum2 = 0;
1049    ULong* p = (ULong*)first_w64;
1050    /* unrolled */
1051    while (n_w64s >= 4) {
1052       ULong  w;
1053       w = p[0];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1054       w = p[1];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1055       w = p[2];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1056       w = p[3];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1057       p += 4;
1058       n_w64s -= 4;
1059       sum1 ^= sum2;
1060    }
1061    while (n_w64s >= 1) {
1062       ULong  w;
1063       w = p[0];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1064       p += 1;
1065       n_w64s -= 1;
1066       sum1 ^= sum2;
1067    }
1068    return sum1 + sum2;
1069 }
1070 
1071 /* Specialised versions of the above function */
1072 
1073 VEX_REGPARM(1)
genericg_compute_checksum_8al_1(HWord first_w64)1074 static ULong genericg_compute_checksum_8al_1 ( HWord first_w64 )
1075 {
1076    ULong  sum1 = 0, sum2 = 0;
1077    ULong* p = (ULong*)first_w64;
1078    ULong  w;
1079    w = p[0];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1080    sum1 ^= sum2;
1081    return sum1 + sum2;
1082 }
1083 
1084 VEX_REGPARM(1)
genericg_compute_checksum_8al_2(HWord first_w64)1085 static ULong genericg_compute_checksum_8al_2 ( HWord first_w64 )
1086 {
1087    ULong  sum1 = 0, sum2 = 0;
1088    ULong* p = (ULong*)first_w64;
1089    ULong  w;
1090    w = p[0];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1091    sum1 ^= sum2;
1092    w = p[1];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1093    sum1 ^= sum2;
1094    return sum1 + sum2;
1095 }
1096 
1097 VEX_REGPARM(1)
genericg_compute_checksum_8al_3(HWord first_w64)1098 static ULong genericg_compute_checksum_8al_3 ( HWord first_w64 )
1099 {
1100    ULong  sum1 = 0, sum2 = 0;
1101    ULong* p = (ULong*)first_w64;
1102    ULong  w;
1103    w = p[0];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1104    sum1 ^= sum2;
1105    w = p[1];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1106    sum1 ^= sum2;
1107    w = p[2];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1108    sum1 ^= sum2;
1109    return sum1 + sum2;
1110 }
1111 
1112 VEX_REGPARM(1)
genericg_compute_checksum_8al_4(HWord first_w64)1113 static ULong genericg_compute_checksum_8al_4 ( HWord first_w64 )
1114 {
1115    ULong  sum1 = 0, sum2 = 0;
1116    ULong* p = (ULong*)first_w64;
1117    ULong  w;
1118    w = p[0];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1119    w = p[1];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1120    w = p[2];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1121    w = p[3];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1122    sum1 ^= sum2;
1123    return sum1 + sum2;
1124 }
1125 
1126 VEX_REGPARM(1)
genericg_compute_checksum_8al_5(HWord first_w64)1127 static ULong genericg_compute_checksum_8al_5 ( HWord first_w64 )
1128 {
1129    ULong  sum1 = 0, sum2 = 0;
1130    ULong* p = (ULong*)first_w64;
1131    ULong  w;
1132    w = p[0];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1133    w = p[1];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1134    w = p[2];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1135    w = p[3];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1136    sum1 ^= sum2;
1137    w = p[4];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1138    sum1 ^= sum2;
1139    return sum1 + sum2;
1140 }
1141 
1142 VEX_REGPARM(1)
genericg_compute_checksum_8al_6(HWord first_w64)1143 static ULong genericg_compute_checksum_8al_6 ( HWord first_w64 )
1144 {
1145    ULong  sum1 = 0, sum2 = 0;
1146    ULong* p = (ULong*)first_w64;
1147    ULong  w;
1148    w = p[0];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1149    w = p[1];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1150    w = p[2];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1151    w = p[3];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1152    sum1 ^= sum2;
1153    w = p[4];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1154    sum1 ^= sum2;
1155    w = p[5];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1156    sum1 ^= sum2;
1157    return sum1 + sum2;
1158 }
1159 
1160 VEX_REGPARM(1)
genericg_compute_checksum_8al_7(HWord first_w64)1161 static ULong genericg_compute_checksum_8al_7 ( HWord first_w64 )
1162 {
1163    ULong  sum1 = 0, sum2 = 0;
1164    ULong* p = (ULong*)first_w64;
1165    ULong  w;
1166    w = p[0];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1167    w = p[1];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1168    w = p[2];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1169    w = p[3];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1170    sum1 ^= sum2;
1171    w = p[4];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1172    sum1 ^= sum2;
1173    w = p[5];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1174    sum1 ^= sum2;
1175    w = p[6];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1176    sum1 ^= sum2;
1177    return sum1 + sum2;
1178 }
1179 
1180 VEX_REGPARM(1)
genericg_compute_checksum_8al_8(HWord first_w64)1181 static ULong genericg_compute_checksum_8al_8 ( HWord first_w64 )
1182 {
1183    ULong  sum1 = 0, sum2 = 0;
1184    ULong* p = (ULong*)first_w64;
1185    ULong  w;
1186    w = p[0];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1187    w = p[1];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1188    w = p[2];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1189    w = p[3];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1190    sum1 ^= sum2;
1191    w = p[4];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1192    w = p[5];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1193    w = p[6];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1194    w = p[7];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1195    sum1 ^= sum2;
1196    return sum1 + sum2;
1197 }
1198 
1199 VEX_REGPARM(1)
genericg_compute_checksum_8al_9(HWord first_w64)1200 static ULong genericg_compute_checksum_8al_9 ( HWord first_w64 )
1201 {
1202    ULong  sum1 = 0, sum2 = 0;
1203    ULong* p = (ULong*)first_w64;
1204    ULong  w;
1205    w = p[0];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1206    w = p[1];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1207    w = p[2];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1208    w = p[3];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1209    sum1 ^= sum2;
1210    w = p[4];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1211    w = p[5];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1212    w = p[6];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1213    w = p[7];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1214    sum1 ^= sum2;
1215    w = p[8];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1216    sum1 ^= sum2;
1217    return sum1 + sum2;
1218 }
1219 
1220 VEX_REGPARM(1)
genericg_compute_checksum_8al_10(HWord first_w64)1221 static ULong genericg_compute_checksum_8al_10 ( HWord first_w64 )
1222 {
1223    ULong  sum1 = 0, sum2 = 0;
1224    ULong* p = (ULong*)first_w64;
1225    ULong  w;
1226    w = p[0];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1227    w = p[1];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1228    w = p[2];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1229    w = p[3];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1230    sum1 ^= sum2;
1231    w = p[4];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1232    w = p[5];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1233    w = p[6];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1234    w = p[7];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1235    sum1 ^= sum2;
1236    w = p[8];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1237    sum1 ^= sum2;
1238    w = p[9];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1239    sum1 ^= sum2;
1240    return sum1 + sum2;
1241 }
1242 
1243 VEX_REGPARM(1)
genericg_compute_checksum_8al_11(HWord first_w64)1244 static ULong genericg_compute_checksum_8al_11 ( HWord first_w64 )
1245 {
1246    ULong  sum1 = 0, sum2 = 0;
1247    ULong* p = (ULong*)first_w64;
1248    ULong  w;
1249    w = p[0];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1250    w = p[1];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1251    w = p[2];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1252    w = p[3];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1253    sum1 ^= sum2;
1254    w = p[4];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1255    w = p[5];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1256    w = p[6];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1257    w = p[7];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1258    sum1 ^= sum2;
1259    w = p[8];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1260    sum1 ^= sum2;
1261    w = p[9];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1262    sum1 ^= sum2;
1263    w = p[10]; sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1264    sum1 ^= sum2;
1265    return sum1 + sum2;
1266 }
1267 
1268 VEX_REGPARM(1)
genericg_compute_checksum_8al_12(HWord first_w64)1269 static ULong genericg_compute_checksum_8al_12 ( HWord first_w64 )
1270 {
1271    ULong  sum1 = 0, sum2 = 0;
1272    ULong* p = (ULong*)first_w64;
1273    ULong  w;
1274    w = p[0];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1275    w = p[1];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1276    w = p[2];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1277    w = p[3];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1278    sum1 ^= sum2;
1279    w = p[4];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1280    w = p[5];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1281    w = p[6];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1282    w = p[7];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1283    sum1 ^= sum2;
1284    w = p[8];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1285    w = p[9];  sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1286    w = p[10]; sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1287    w = p[11]; sum1 = ROL64(sum1 ^ w, 63);  sum2 += w;
1288    sum1 ^= sum2;
1289    return sum1 + sum2;
1290 }
1291 
1292 /*--------------------------------------------------------------------*/
1293 /*--- end                                 guest_generic_bb_to_IR.c ---*/
1294 /*--------------------------------------------------------------------*/
1295