1 //--------------------------------------------------------------------*/
2 //--- Massif: a heap profiling tool. ms_main.c ---*/
3 //--------------------------------------------------------------------*/
4
5 /*
6 This file is part of Massif, a Valgrind tool for profiling memory
7 usage of programs.
8
9 Copyright (C) 2003-2015 Nicholas Nethercote
10 njn@valgrind.org
11
12 This program is free software; you can redistribute it and/or
13 modify it under the terms of the GNU General Public License as
14 published by the Free Software Foundation; either version 2 of the
15 License, or (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful, but
18 WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
25 02111-1307, USA.
26
27 The GNU General Public License is contained in the file COPYING.
28 */
29
30 //---------------------------------------------------------------------------
31 // XXX:
32 //---------------------------------------------------------------------------
33 // Todo -- nice, but less critical:
34 // - do a graph-drawing test
35 // - make file format more generic. Obstacles:
36 // - unit prefixes are not generic
37 // - preset column widths for stats are not generic
38 // - preset column headers are not generic
39 // - "Massif arguments:" line is not generic
40 // - do snapshots on some specific client requests
41 // - "show me the extra allocations since the last snapshot"
42 // - "start/stop logging" (eg. quickly skip boring bits)
43 // - Add ability to draw multiple graphs, eg. heap-only, stack-only, total.
44 // Give each graph a title. (try to do it generically!)
45 // - make --show-below-main=no work
46 // - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)'
47 // don't work in a .valgrindrc file or in $VALGRIND_OPTS.
48 // m_commandline.c:add_args_from_string() needs to respect single quotes.
49 // - With --stack=yes, want to add a stack trace for detailed snapshots so
50 // it's clear where/why the peak is occurring. (Mattieu Castet) Also,
51 // possibly useful even with --stack=no? (Andi Yin)
52 //
53 // Performance:
54 // - To run the benchmarks:
55 //
56 // perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif
57 // time valgrind --tool=massif --depth=100 konqueror
58 //
59 // The other benchmarks don't do much allocation, and so give similar speeds
60 // to Nulgrind.
61 //
62 // Timing results on 'nevermore' (njn's machine) as of r7013:
63 //
64 // heap 0.53s ma:12.4s (23.5x, -----)
65 // tinycc 0.46s ma: 4.9s (10.7x, -----)
66 // many-xpts 0.08s ma: 2.0s (25.0x, -----)
67 // konqueror 29.6s real 0:21.0s user
68 //
69 // [Introduction of --time-unit=i as the default slowed things down by
70 // roughly 0--20%.]
71 //
72 // - get_XCon accounts for about 9% of konqueror startup time. Try
73 // keeping XPt children sorted by 'ip' and use binary search in get_XCon.
74 // Requires factoring out binary search code from various places into a
75 // VG_(bsearch) function.
76 //
77 // Todo -- low priority:
78 // - In each XPt, record both bytes and the number of allocations, and
79 // possibly the global number of allocations.
80 // - (Andy Lin) Give a stack trace on detailed snapshots?
81 // - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger
82 // than a certain size! Because: "linux's malloc allows to set a
83 // MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will
84 // be handled directly by the kernel, and are guaranteed to be returned to
85 // the system when freed. So we needed to profile only blocks below this
86 // limit."
87 //
88 // File format working notes:
89
90 #if 0
91 desc: --heap-admin=foo
92 cmd: date
93 time_unit: ms
94 #-----------
95 snapshot=0
96 #-----------
97 time=0
98 mem_heap_B=0
99 mem_heap_admin_B=0
100 mem_stacks_B=0
101 heap_tree=empty
102 #-----------
103 snapshot=1
104 #-----------
105 time=353
106 mem_heap_B=5
107 mem_heap_admin_B=0
108 mem_stacks_B=0
109 heap_tree=detailed
110 n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
111 n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
112 n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so)
113 n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so)
114 n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so)
115 n1: 5 0x8049821: (within /bin/date)
116 n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so)
117
118
119 n_events: n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B)
120 t_events: B
121 n 0 0 0 0 0
122 n 0 0 0 0 0
123 t1: 5 <string...>
124 t1: 6 <string...>
125
126 Ideas:
127 - each snapshot specifies an x-axis value and one or more y-axis values.
128 - can display the y-axis values separately if you like
129 - can completely separate connection between snapshots and trees.
130
131 Challenges:
132 - how to specify and scale/abbreviate units on axes?
133 - how to combine multiple values into the y-axis?
134
135 --------------------------------------------------------------------------------Command: date
136 Massif arguments: --heap-admin=foo
137 ms_print arguments: massif.out
138 --------------------------------------------------------------------------------
139 KB
140 6.472^ :#
141 | :# :: . .
142 ...
143 | ::@ :@ :@ :@:::# :: : ::::
144 0 +-----------------------------------@---@---@-----@--@---#-------------->ms 0 713
145
146 Number of snapshots: 50
147 Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)]
148 -------------------------------------------------------------------------------- n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B)
149 -------------------------------------------------------------------------------- 0 0 0 0 0 0
150 1 345 5 5 0 0
151 2 353 5 5 0 0
152 100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
153 ->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
154 #endif
155
156 //---------------------------------------------------------------------------
157
158 #include "pub_tool_basics.h"
159 #include "pub_tool_vki.h"
160 #include "pub_tool_aspacemgr.h"
161 #include "pub_tool_debuginfo.h"
162 #include "pub_tool_hashtable.h"
163 #include "pub_tool_libcbase.h"
164 #include "pub_tool_libcassert.h"
165 #include "pub_tool_libcfile.h"
166 #include "pub_tool_libcprint.h"
167 #include "pub_tool_libcproc.h"
168 #include "pub_tool_machine.h"
169 #include "pub_tool_mallocfree.h"
170 #include "pub_tool_options.h"
171 #include "pub_tool_replacemalloc.h"
172 #include "pub_tool_stacktrace.h"
173 #include "pub_tool_threadstate.h"
174 #include "pub_tool_tooliface.h"
175 #include "pub_tool_xarray.h"
176 #include "pub_tool_clientstate.h"
177 #include "pub_tool_gdbserver.h"
178
179 #include "pub_tool_clreq.h" // For {MALLOC,FREE}LIKE_BLOCK
180
181 //------------------------------------------------------------*/
182 //--- Overview of operation ---*/
183 //------------------------------------------------------------*/
184
185 // The size of the stacks and heap is tracked. The heap is tracked in a lot
186 // of detail, enough to tell how many bytes each line of code is responsible
187 // for, more or less. The main data structure is a tree representing the
188 // call tree beneath all the allocation functions like malloc().
189 // (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at
190 // the page level, and each page is treated much like a heap block. We use
191 // "heap" throughout below to cover this case because the concepts are all the
192 // same.)
193 //
194 // "Snapshots" are recordings of the memory usage. There are two basic
195 // kinds:
196 // - Normal: these record the current time, total memory size, total heap
197 // size, heap admin size and stack size.
198 // - Detailed: these record those things in a normal snapshot, plus a very
199 // detailed XTree (see below) indicating how the heap is structured.
200 //
201 // Snapshots are taken every so often. There are two storage classes of
202 // snapshots:
203 // - Temporary: Massif does a temporary snapshot every so often. The idea
204 // is to always have a certain number of temporary snapshots around. So
205 // we take them frequently to begin with, but decreasingly often as the
206 // program continues to run. Also, we remove some old ones after a while.
207 // Overall it's a kind of exponential decay thing. Most of these are
208 // normal snapshots, a small fraction are detailed snapshots.
209 // - Permanent: Massif takes a permanent (detailed) snapshot in some
210 // circumstances. They are:
211 // - Peak snapshot: When the memory usage peak is reached, it takes a
212 // snapshot. It keeps this, unless the peak is subsequently exceeded,
213 // in which case it will overwrite the peak snapshot.
214 // - User-requested snapshots: These are done in response to client
215 // requests. They are always kept.
216
217 // Used for printing things when clo_verbosity > 1.
218 #define VERB(verb, format, args...) \
219 if (VG_(clo_verbosity) > verb) { \
220 VG_(dmsg)("Massif: " format, ##args); \
221 }
222
223 //------------------------------------------------------------//
224 //--- Statistics ---//
225 //------------------------------------------------------------//
226
227 // Konqueror startup, to give an idea of the numbers involved with a biggish
228 // program, with default depth:
229 //
230 // depth=3 depth=40
231 // - 310,000 allocations
232 // - 300,000 frees
233 // - 15,000 XPts 800,000 XPts
234 // - 1,800 top-XPts
235
236 static UInt n_heap_allocs = 0;
237 static UInt n_heap_reallocs = 0;
238 static UInt n_heap_frees = 0;
239 static UInt n_ignored_heap_allocs = 0;
240 static UInt n_ignored_heap_frees = 0;
241 static UInt n_ignored_heap_reallocs = 0;
242 static UInt n_stack_allocs = 0;
243 static UInt n_stack_frees = 0;
244 static UInt n_xpts = 0;
245 static UInt n_xpt_init_expansions = 0;
246 static UInt n_xpt_later_expansions = 0;
247 static UInt n_sxpt_allocs = 0;
248 static UInt n_sxpt_frees = 0;
249 static UInt n_skipped_snapshots = 0;
250 static UInt n_real_snapshots = 0;
251 static UInt n_detailed_snapshots = 0;
252 static UInt n_peak_snapshots = 0;
253 static UInt n_cullings = 0;
254 static UInt n_XCon_redos = 0;
255
256 //------------------------------------------------------------//
257 //--- Globals ---//
258 //------------------------------------------------------------//
259
260 // Number of guest instructions executed so far. Only used with
261 // --time-unit=i.
262 static Long guest_instrs_executed = 0;
263
264 static SizeT heap_szB = 0; // Live heap size
265 static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes
266 static SizeT stacks_szB = 0; // Live stacks size
267
268 // This is the total size from the current peak snapshot, or 0 if no peak
269 // snapshot has been taken yet.
270 static SizeT peak_snapshot_total_szB = 0;
271
272 // Incremented every time memory is allocated/deallocated, by the
273 // allocated/deallocated amount; includes heap, heap-admin and stack
274 // memory. An alternative to milliseconds as a unit of program "time".
275 static ULong total_allocs_deallocs_szB = 0;
276
277 // When running with --heap=yes --pages-as-heap=no, we don't start taking
278 // snapshots until the first basic block is executed, rather than doing it in
279 // ms_post_clo_init (which is the obvious spot), for two reasons.
280 // - It lets us ignore stack events prior to that, because they're not
281 // really proper ones and just would screw things up.
282 // - Because there's still some core initialisation to do, and so there
283 // would be an artificial time gap between the first and second snapshots.
284 //
285 // When running with --heap=yes --pages-as-heap=yes, snapshots start much
286 // earlier due to new_mem_startup so this isn't relevant.
287 //
288 static Bool have_started_executing_code = False;
289
290 //------------------------------------------------------------//
291 //--- Alloc fns ---//
292 //------------------------------------------------------------//
293
294 static XArray* alloc_fns;
295 static XArray* ignore_fns;
296
init_alloc_fns(void)297 static void init_alloc_fns(void)
298 {
299 // Create the list, and add the default elements.
300 alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1",
301 VG_(free), sizeof(HChar*));
302 #define DO(x) { const HChar* s = x; VG_(addToXA)(alloc_fns, &s); }
303
304 // Ordered roughly according to (presumed) frequency.
305 // Nb: The C++ "operator new*" ones are overloadable. We include them
306 // always anyway, because even if they're overloaded, it would be a
307 // prodigiously stupid overloading that caused them to not allocate
308 // memory.
309 //
310 // XXX: because we don't look at the first stack entry (unless it's a
311 // custom allocation) there's not much point to having all these alloc
312 // functions here -- they should never appear anywhere (I think?) other
313 // than the top stack entry. The only exceptions are those that in
314 // vg_replace_malloc.c are partly or fully implemented in terms of another
315 // alloc function: realloc (which uses malloc); valloc,
316 // malloc_zone_valloc, posix_memalign and memalign_common (which use
317 // memalign).
318 //
319 DO("malloc" );
320 DO("__builtin_new" );
321 DO("operator new(unsigned)" );
322 DO("operator new(unsigned long)" );
323 DO("__builtin_vec_new" );
324 DO("operator new[](unsigned)" );
325 DO("operator new[](unsigned long)" );
326 DO("calloc" );
327 DO("realloc" );
328 DO("memalign" );
329 DO("posix_memalign" );
330 DO("valloc" );
331 DO("operator new(unsigned, std::nothrow_t const&)" );
332 DO("operator new[](unsigned, std::nothrow_t const&)" );
333 DO("operator new(unsigned long, std::nothrow_t const&)" );
334 DO("operator new[](unsigned long, std::nothrow_t const&)");
335 #if defined(VGO_darwin)
336 DO("malloc_zone_malloc" );
337 DO("malloc_zone_calloc" );
338 DO("malloc_zone_realloc" );
339 DO("malloc_zone_memalign" );
340 DO("malloc_zone_valloc" );
341 #endif
342 }
343
init_ignore_fns(void)344 static void init_ignore_fns(void)
345 {
346 // Create the (empty) list.
347 ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1",
348 VG_(free), sizeof(HChar*));
349 }
350
351 // Determines if the named function is a member of the XArray.
is_member_fn(const XArray * fns,const HChar * fnname)352 static Bool is_member_fn(const XArray* fns, const HChar* fnname)
353 {
354 HChar** fn_ptr;
355 Int i;
356
357 // Nb: It's a linear search through the list, because we're comparing
358 // strings rather than pointers to strings.
359 // Nb: This gets called a lot. It was an OSet, but they're quite slow to
360 // iterate through so it wasn't a good choice.
361 for (i = 0; i < VG_(sizeXA)(fns); i++) {
362 fn_ptr = VG_(indexXA)(fns, i);
363 if (VG_STREQ(fnname, *fn_ptr))
364 return True;
365 }
366 return False;
367 }
368
369
370 //------------------------------------------------------------//
371 //--- Command line args ---//
372 //------------------------------------------------------------//
373
374 #define MAX_DEPTH 200
375
376 typedef enum { TimeI, TimeMS, TimeB } TimeUnit;
377
TimeUnit_to_string(TimeUnit time_unit)378 static const HChar* TimeUnit_to_string(TimeUnit time_unit)
379 {
380 switch (time_unit) {
381 case TimeI: return "i";
382 case TimeMS: return "ms";
383 case TimeB: return "B";
384 default: tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit");
385 }
386 }
387
388 static Bool clo_heap = True;
389 // clo_heap_admin is deliberately a word-sized type. At one point it was
390 // a UInt, but this caused problems on 64-bit machines when it was
391 // multiplied by a small negative number and then promoted to a
392 // word-sized type -- it ended up with a value of 4.2 billion. Sigh.
393 static SSizeT clo_heap_admin = 8;
394 static Bool clo_pages_as_heap = False;
395 static Bool clo_stacks = False;
396 static Int clo_depth = 30;
397 static double clo_threshold = 1.0; // percentage
398 static double clo_peak_inaccuracy = 1.0; // percentage
399 static Int clo_time_unit = TimeI;
400 static Int clo_detailed_freq = 10;
401 static Int clo_max_snapshots = 100;
402 static const HChar* clo_massif_out_file = "massif.out.%p";
403
404 static XArray* args_for_massif;
405
ms_process_cmd_line_option(const HChar * arg)406 static Bool ms_process_cmd_line_option(const HChar* arg)
407 {
408 const HChar* tmp_str;
409
410 // Remember the arg for later use.
411 VG_(addToXA)(args_for_massif, &arg);
412
413 if VG_BOOL_CLO(arg, "--heap", clo_heap) {}
414 else if VG_BINT_CLO(arg, "--heap-admin", clo_heap_admin, 0, 1024) {}
415
416 else if VG_BOOL_CLO(arg, "--stacks", clo_stacks) {}
417
418 else if VG_BOOL_CLO(arg, "--pages-as-heap", clo_pages_as_heap) {}
419
420 else if VG_BINT_CLO(arg, "--depth", clo_depth, 1, MAX_DEPTH) {}
421
422 else if VG_STR_CLO(arg, "--alloc-fn", tmp_str) {
423 VG_(addToXA)(alloc_fns, &tmp_str);
424 }
425 else if VG_STR_CLO(arg, "--ignore-fn", tmp_str) {
426 VG_(addToXA)(ignore_fns, &tmp_str);
427 }
428
429 else if VG_DBL_CLO(arg, "--threshold", clo_threshold) {
430 if (clo_threshold < 0 || clo_threshold > 100) {
431 VG_(fmsg_bad_option)(arg,
432 "--threshold must be between 0.0 and 100.0\n");
433 }
434 }
435
436 else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {}
437
438 else if VG_XACT_CLO(arg, "--time-unit=i", clo_time_unit, TimeI) {}
439 else if VG_XACT_CLO(arg, "--time-unit=ms", clo_time_unit, TimeMS) {}
440 else if VG_XACT_CLO(arg, "--time-unit=B", clo_time_unit, TimeB) {}
441
442 else if VG_BINT_CLO(arg, "--detailed-freq", clo_detailed_freq, 1, 1000000) {}
443
444 else if VG_BINT_CLO(arg, "--max-snapshots", clo_max_snapshots, 10, 1000) {}
445
446 else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {}
447
448 else
449 return VG_(replacement_malloc_process_cmd_line_option)(arg);
450
451 return True;
452 }
453
ms_print_usage(void)454 static void ms_print_usage(void)
455 {
456 VG_(printf)(
457 " --heap=no|yes profile heap blocks [yes]\n"
458 " --heap-admin=<size> average admin bytes per heap block;\n"
459 " ignored if --heap=no [8]\n"
460 " --stacks=no|yes profile stack(s) [no]\n"
461 " --pages-as-heap=no|yes profile memory at the page level [no]\n"
462 " --depth=<number> depth of contexts [30]\n"
463 " --alloc-fn=<name> specify <name> as an alloc function [empty]\n"
464 " --ignore-fn=<name> ignore heap allocations within <name> [empty]\n"
465 " --threshold=<m.n> significance threshold, as a percentage [1.0]\n"
466 " --peak-inaccuracy=<m.n> maximum peak inaccuracy, as a percentage [1.0]\n"
467 " --time-unit=i|ms|B time unit: instructions executed, milliseconds\n"
468 " or heap bytes alloc'd/dealloc'd [i]\n"
469 " --detailed-freq=<N> every Nth snapshot should be detailed [10]\n"
470 " --max-snapshots=<N> maximum number of snapshots recorded [100]\n"
471 " --massif-out-file=<file> output file name [massif.out.%%p]\n"
472 );
473 }
474
ms_print_debug_usage(void)475 static void ms_print_debug_usage(void)
476 {
477 VG_(printf)(
478 " (none)\n"
479 );
480 }
481
482
483 //------------------------------------------------------------//
484 //--- XPts, XTrees and XCons ---//
485 //------------------------------------------------------------//
486
487 // An XPt represents an "execution point", ie. a code address. Each XPt is
488 // part of a tree of XPts (an "execution tree", or "XTree"). The details of
489 // the heap are represented by a single XTree.
490 //
491 // The root of the tree is 'alloc_xpt', which represents all allocation
492 // functions, eg:
493 // - malloc/calloc/realloc/memalign/new/new[];
494 // - user-specified allocation functions (using --alloc-fn);
495 // - custom allocation (MALLOCLIKE) points
496 // It's a bit of a fake XPt (ie. its 'ip' is zero), and is only used because
497 // it makes the code simpler.
498 //
499 // Any child of 'alloc_xpt' is called a "top-XPt". The XPts at the bottom
500 // of an XTree (leaf nodes) are "bottom-XPTs".
501 //
502 // Each path from a top-XPt to a bottom-XPt through an XTree gives an
503 // execution context ("XCon"), ie. a stack trace. (And sub-paths represent
504 // stack sub-traces.) The number of XCons in an XTree is equal to the
505 // number of bottom-XPTs in that XTree.
506 //
507 // alloc_xpt XTrees are bi-directional.
508 // | ^
509 // v |
510 // > parent < Example: if child1() calls parent() and child2()
511 // / | \ also calls parent(), and parent() calls malloc(),
512 // | / \ | the XTree will look like this.
513 // | v v |
514 // child1 child2
515 //
516 // (Note that malformed stack traces can lead to difficulties. See the
517 // comment at the bottom of get_XCon.)
518 //
519 // XTrees and XPts are mirrored by SXTrees and SXPts, where the 'S' is short
520 // for "saved". When the XTree is duplicated for a snapshot, we duplicate
521 // it as an SXTree, which is similar but omits some things it does not need,
522 // and aggregates up insignificant nodes. This is important as an SXTree is
523 // typically much smaller than an XTree.
524
525 // XXX: make XPt and SXPt extensible arrays, to avoid having to do two
526 // allocations per Pt.
527
528 typedef struct _XPt XPt;
529 struct _XPt {
530 Addr ip; // code address
531
532 // Bottom-XPts: space for the precise context.
533 // Other XPts: space of all the descendent bottom-XPts.
534 // Nb: this value goes up and down as the program executes.
535 SizeT szB;
536
537 XPt* parent; // pointer to parent XPt
538
539 // Children.
540 // n_children and max_children are 32-bit integers. 16-bit integers
541 // are too small -- a very big program might have more than 65536
542 // allocation points (ie. top-XPts) -- Konqueror starting up has 1800.
543 UInt n_children; // number of children
544 UInt max_children; // capacity of children array
545 XPt** children; // pointers to children XPts
546 };
547
548 typedef
549 enum {
550 SigSXPt,
551 InsigSXPt
552 }
553 SXPtTag;
554
555 typedef struct _SXPt SXPt;
556 struct _SXPt {
557 SXPtTag tag;
558 SizeT szB; // memory size for the node, be it Sig or Insig
559 union {
560 // An SXPt representing a single significant code location. Much like
561 // an XPt, minus the fields that aren't necessary.
562 struct {
563 Addr ip;
564 UInt n_children;
565 SXPt** children;
566 }
567 Sig;
568
569 // An SXPt representing one or more code locations, all below the
570 // significance threshold.
571 struct {
572 Int n_xpts; // number of aggregated XPts
573 }
574 Insig;
575 };
576 };
577
578 // Fake XPt representing all allocation functions like malloc(). Acts as
579 // parent node to all top-XPts.
580 static XPt* alloc_xpt;
581
new_XPt(Addr ip,XPt * parent)582 static XPt* new_XPt(Addr ip, XPt* parent)
583 {
584 // XPts are never freed, so we can use VG_(perm_malloc) to allocate them.
585 // Note that we cannot use VG_(perm_malloc) for the 'children' array, because
586 // that needs to be resizable.
587 XPt* xpt = VG_(perm_malloc)(sizeof(XPt), vg_alignof(XPt));
588 xpt->ip = ip;
589 xpt->szB = 0;
590 xpt->parent = parent;
591
592 // We don't initially allocate any space for children. We let that
593 // happen on demand. Many XPts (ie. all the bottom-XPts) don't have any
594 // children anyway.
595 xpt->n_children = 0;
596 xpt->max_children = 0;
597 xpt->children = NULL;
598
599 // Update statistics
600 n_xpts++;
601
602 return xpt;
603 }
604
add_child_xpt(XPt * parent,XPt * child)605 static void add_child_xpt(XPt* parent, XPt* child)
606 {
607 // Expand 'children' if necessary.
608 tl_assert(parent->n_children <= parent->max_children);
609 if (parent->n_children == parent->max_children) {
610 if (0 == parent->max_children) {
611 parent->max_children = 4;
612 parent->children = VG_(malloc)( "ms.main.acx.1",
613 parent->max_children * sizeof(XPt*) );
614 n_xpt_init_expansions++;
615 } else {
616 parent->max_children *= 2; // Double size
617 parent->children = VG_(realloc)( "ms.main.acx.2",
618 parent->children,
619 parent->max_children * sizeof(XPt*) );
620 n_xpt_later_expansions++;
621 }
622 }
623
624 // Insert new child XPt in parent's children list.
625 parent->children[ parent->n_children++ ] = child;
626 }
627
628 // Reverse comparison for a reverse sort -- biggest to smallest.
SXPt_revcmp_szB(const void * n1,const void * n2)629 static Int SXPt_revcmp_szB(const void* n1, const void* n2)
630 {
631 const SXPt* sxpt1 = *(const SXPt *const *)n1;
632 const SXPt* sxpt2 = *(const SXPt *const *)n2;
633 return ( sxpt1->szB < sxpt2->szB ? 1
634 : sxpt1->szB > sxpt2->szB ? -1
635 : 0);
636 }
637
638 //------------------------------------------------------------//
639 //--- XTree Operations ---//
640 //------------------------------------------------------------//
641
642 // Duplicates an XTree as an SXTree.
dup_XTree(XPt * xpt,SizeT total_szB)643 static SXPt* dup_XTree(XPt* xpt, SizeT total_szB)
644 {
645 Int i, n_sig_children, n_insig_children, n_child_sxpts;
646 SizeT sig_child_threshold_szB;
647 SXPt* sxpt;
648
649 // Number of XPt children Action for SXPT
650 // ------------------ ---------------
651 // 0 sig, 0 insig alloc 0 children
652 // N sig, 0 insig alloc N children, dup all
653 // N sig, M insig alloc N+1, dup first N, aggregate remaining M
654 // 0 sig, M insig alloc 1, aggregate M
655
656 // Work out how big a child must be to be significant. If the current
657 // total_szB is zero, then we set it to 1, which means everything will be
658 // judged insignificant -- this is sensible, as there's no point showing
659 // any detail for this case. Unless they used --threshold=0, in which
660 // case we show them everything because that's what they asked for.
661 //
662 // Nb: We do this once now, rather than once per child, because if we do
663 // that the cost of all the divisions adds up to something significant.
664 if (0 == total_szB && 0 != clo_threshold) {
665 sig_child_threshold_szB = 1;
666 } else {
667 sig_child_threshold_szB = (SizeT)((total_szB * clo_threshold) / 100);
668 }
669
670 // How many children are significant? And do we need an aggregate SXPt?
671 n_sig_children = 0;
672 for (i = 0; i < xpt->n_children; i++) {
673 if (xpt->children[i]->szB >= sig_child_threshold_szB) {
674 n_sig_children++;
675 }
676 }
677 n_insig_children = xpt->n_children - n_sig_children;
678 n_child_sxpts = n_sig_children + ( n_insig_children > 0 ? 1 : 0 );
679
680 // Duplicate the XPt.
681 sxpt = VG_(malloc)("ms.main.dX.1", sizeof(SXPt));
682 n_sxpt_allocs++;
683 sxpt->tag = SigSXPt;
684 sxpt->szB = xpt->szB;
685 sxpt->Sig.ip = xpt->ip;
686 sxpt->Sig.n_children = n_child_sxpts;
687
688 // Create the SXPt's children.
689 if (n_child_sxpts > 0) {
690 Int j;
691 SizeT sig_children_szB = 0, insig_children_szB = 0;
692 sxpt->Sig.children = VG_(malloc)("ms.main.dX.2",
693 n_child_sxpts * sizeof(SXPt*));
694
695 // Duplicate the significant children. (Nb: sig_children_szB +
696 // insig_children_szB doesn't necessarily equal xpt->szB.)
697 j = 0;
698 for (i = 0; i < xpt->n_children; i++) {
699 if (xpt->children[i]->szB >= sig_child_threshold_szB) {
700 sxpt->Sig.children[j++] = dup_XTree(xpt->children[i], total_szB);
701 sig_children_szB += xpt->children[i]->szB;
702 } else {
703 insig_children_szB += xpt->children[i]->szB;
704 }
705 }
706
707 // Create the SXPt for the insignificant children, if any, and put it
708 // in the last child entry.
709 if (n_insig_children > 0) {
710 // Nb: We 'n_sxpt_allocs' here because creating an Insig SXPt
711 // doesn't involve a call to dup_XTree().
712 SXPt* insig_sxpt = VG_(malloc)("ms.main.dX.3", sizeof(SXPt));
713 n_sxpt_allocs++;
714 insig_sxpt->tag = InsigSXPt;
715 insig_sxpt->szB = insig_children_szB;
716 insig_sxpt->Insig.n_xpts = n_insig_children;
717 sxpt->Sig.children[n_sig_children] = insig_sxpt;
718 }
719 } else {
720 sxpt->Sig.children = NULL;
721 }
722
723 return sxpt;
724 }
725
free_SXTree(SXPt * sxpt)726 static void free_SXTree(SXPt* sxpt)
727 {
728 Int i;
729 tl_assert(sxpt != NULL);
730
731 switch (sxpt->tag) {
732 case SigSXPt:
733 // Free all children SXPts, then the children array.
734 for (i = 0; i < sxpt->Sig.n_children; i++) {
735 free_SXTree(sxpt->Sig.children[i]);
736 sxpt->Sig.children[i] = NULL;
737 }
738 VG_(free)(sxpt->Sig.children); sxpt->Sig.children = NULL;
739 break;
740
741 case InsigSXPt:
742 break;
743
744 default: tl_assert2(0, "free_SXTree: unknown SXPt tag");
745 }
746
747 // Free the SXPt itself.
748 VG_(free)(sxpt); sxpt = NULL;
749 n_sxpt_frees++;
750 }
751
752 // Sanity checking: we periodically check the heap XTree with
753 // ms_expensive_sanity_check.
sanity_check_XTree(XPt * xpt,XPt * parent)754 static void sanity_check_XTree(XPt* xpt, XPt* parent)
755 {
756 tl_assert(xpt != NULL);
757
758 // Check back-pointer.
759 tl_assert2(xpt->parent == parent,
760 "xpt->parent = %p, parent = %p\n", xpt->parent, parent);
761
762 // Check children counts look sane.
763 tl_assert(xpt->n_children <= xpt->max_children);
764
765 // Unfortunately, xpt's size is not necessarily equal to the sum of xpt's
766 // children's sizes. See comment at the bottom of get_XCon.
767 }
768
769 // Sanity checking: we check SXTrees (which are in snapshots) after
770 // snapshots are created, before they are deleted, and before they are
771 // printed.
sanity_check_SXTree(SXPt * sxpt)772 static void sanity_check_SXTree(SXPt* sxpt)
773 {
774 Int i;
775
776 tl_assert(sxpt != NULL);
777
778 // Check the sum of any children szBs equals the SXPt's szB. Check the
779 // children at the same time.
780 switch (sxpt->tag) {
781 case SigSXPt: {
782 if (sxpt->Sig.n_children > 0) {
783 for (i = 0; i < sxpt->Sig.n_children; i++) {
784 sanity_check_SXTree(sxpt->Sig.children[i]);
785 }
786 }
787 break;
788 }
789 case InsigSXPt:
790 break; // do nothing
791
792 default: tl_assert2(0, "sanity_check_SXTree: unknown SXPt tag");
793 }
794 }
795
796
797 //------------------------------------------------------------//
798 //--- XCon Operations ---//
799 //------------------------------------------------------------//
800
801 // This is the limit on the number of removed alloc-fns that can be in a
802 // single XCon.
803 #define MAX_OVERESTIMATE 50
804 #define MAX_IPS (MAX_DEPTH + MAX_OVERESTIMATE)
805
806 // Determine if the given IP belongs to a function that should be ignored.
fn_should_be_ignored(Addr ip)807 static Bool fn_should_be_ignored(Addr ip)
808 {
809 const HChar *buf;
810 return
811 ( VG_(get_fnname)(ip, &buf) && is_member_fn(ignore_fns, buf)
812 ? True : False );
813 }
814
815 // Get the stack trace for an XCon, filtering out uninteresting entries:
816 // alloc-fns and entries above alloc-fns, and entries below main-or-below-main.
817 // Eg: alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c
818 // becomes: a / b / main
819 // Nb: it's possible to end up with an empty trace, eg. if 'main' is marked
820 // as an alloc-fn. This is ok.
821 static
get_IPs(ThreadId tid,Bool exclude_first_entry,Addr ips[])822 Int get_IPs( ThreadId tid, Bool exclude_first_entry, Addr ips[])
823 {
824 Int n_ips, i, n_alloc_fns_removed;
825 Int overestimate;
826 Bool redo;
827
828 // We ask for a few more IPs than clo_depth suggests we need. Then we
829 // remove every entry that is an alloc-fn. Depending on the
830 // circumstances, we may need to redo it all, asking for more IPs.
831 // Details:
832 // - If the original stack trace is smaller than asked-for, redo=False
833 // - Else if after filtering we have >= clo_depth IPs, redo=False
834 // - Else redo=True
835 // In other words, to redo, we'd have to get a stack trace as big as we
836 // asked for and remove more than 'overestimate' alloc-fns.
837
838 // Main loop.
839 redo = True; // Assume this to begin with.
840 for (overestimate = 3; redo; overestimate += 6) {
841 // This should never happen -- would require MAX_OVERESTIMATE
842 // alloc-fns to be removed from the stack trace.
843 if (overestimate > MAX_OVERESTIMATE)
844 VG_(tool_panic)("get_IPs: ips[] too small, inc. MAX_OVERESTIMATE?");
845
846 // Ask for more IPs than clo_depth suggests we need.
847 n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate,
848 NULL/*array to dump SP values in*/,
849 NULL/*array to dump FP values in*/,
850 0/*first_ip_delta*/ );
851 tl_assert(n_ips > 0);
852
853 // If the original stack trace is smaller than asked-for, redo=False.
854 if (n_ips < clo_depth + overestimate) { redo = False; }
855
856 // Filter out alloc fns. If requested, we automatically remove the
857 // first entry (which presumably will be something like malloc or
858 // __builtin_new that we're sure to filter out) without looking at it,
859 // because VG_(get_fnname) is expensive.
860 n_alloc_fns_removed = ( exclude_first_entry ? 1 : 0 );
861 for (i = n_alloc_fns_removed; i < n_ips; i++) {
862 const HChar *buf;
863 if (VG_(get_fnname)(ips[i], &buf)) {
864 if (is_member_fn(alloc_fns, buf)) {
865 n_alloc_fns_removed++;
866 } else {
867 break;
868 }
869 }
870 }
871 // Remove the alloc fns by shuffling the rest down over them.
872 n_ips -= n_alloc_fns_removed;
873 for (i = 0; i < n_ips; i++) {
874 ips[i] = ips[i + n_alloc_fns_removed];
875 }
876
877 // If after filtering we have >= clo_depth IPs, redo=False
878 if (n_ips >= clo_depth) {
879 redo = False;
880 n_ips = clo_depth; // Ignore any IPs below --depth.
881 }
882
883 if (redo) {
884 n_XCon_redos++;
885 }
886 }
887 return n_ips;
888 }
889
890 // Gets an XCon and puts it in the tree. Returns the XCon's bottom-XPt.
891 // Unless the allocation should be ignored, in which case we return NULL.
get_XCon(ThreadId tid,Bool exclude_first_entry)892 static XPt* get_XCon( ThreadId tid, Bool exclude_first_entry )
893 {
894 static Addr ips[MAX_IPS];
895 Int i;
896 XPt* xpt = alloc_xpt;
897
898 // After this call, the IPs we want are in ips[0]..ips[n_ips-1].
899 Int n_ips = get_IPs(tid, exclude_first_entry, ips);
900
901 // Should we ignore this allocation? (Nb: n_ips can be zero, eg. if
902 // 'main' is marked as an alloc-fn.)
903 if (n_ips > 0 && fn_should_be_ignored(ips[0])) {
904 return NULL;
905 }
906
907 // Now do the search/insertion of the XCon.
908 for (i = 0; i < n_ips; i++) {
909 Addr ip = ips[i];
910 Int ch;
911 // Look for IP in xpt's children.
912 // Linear search, ugh -- about 10% of time for konqueror startup tried
913 // caching last result, only hit about 4% for konqueror.
914 // Nb: this search hits about 98% of the time for konqueror
915 for (ch = 0; True; ch++) {
916 if (ch == xpt->n_children) {
917 // IP not found in the children.
918 // Create and add new child XPt, then stop.
919 XPt* new_child_xpt = new_XPt(ip, xpt);
920 add_child_xpt(xpt, new_child_xpt);
921 xpt = new_child_xpt;
922 break;
923
924 } else if (ip == xpt->children[ch]->ip) {
925 // Found the IP in the children, stop.
926 xpt = xpt->children[ch];
927 break;
928 }
929 }
930 }
931
932 // [Note: several comments refer to this comment. Do not delete it
933 // without updating them.]
934 //
935 // A complication... If all stack traces were well-formed, then the
936 // returned xpt would always be a bottom-XPt. As a consequence, an XPt's
937 // size would always be equal to the sum of its children's sizes, which
938 // is an excellent sanity check.
939 //
940 // Unfortunately, stack traces occasionally are malformed, ie. truncated.
941 // This allows a stack trace to be a sub-trace of another, eg. a/b/c is a
942 // sub-trace of a/b/c/d. So we can't assume this xpt is a bottom-XPt;
943 // nor can we do sanity check an XPt's size against its children's sizes.
944 // This is annoying, but must be dealt with. (Older versions of Massif
945 // had this assertion in, and it was reported to fail by real users a
946 // couple of times.) Even more annoyingly, I can't come up with a simple
947 // test case that exhibit such a malformed stack trace, so I can't
948 // regression test it. Sigh.
949 //
950 // However, we can print a warning, so that if it happens (unexpectedly)
951 // in existing regression tests we'll know. Also, it warns users that
952 // the output snapshots may not add up the way they might expect.
953 //
954 //tl_assert(0 == xpt->n_children); // Must be bottom-XPt
955 if (0 != xpt->n_children) {
956 static Int n_moans = 0;
957 if (n_moans < 3) {
958 VG_(umsg)(
959 "Warning: Malformed stack trace detected. In Massif's output,\n");
960 VG_(umsg)(
961 " the size of an entry's child entries may not sum up\n");
962 VG_(umsg)(
963 " to the entry's size as they normally do.\n");
964 n_moans++;
965 if (3 == n_moans)
966 VG_(umsg)(
967 " (And Massif now won't warn about this again.)\n");
968 }
969 }
970 return xpt;
971 }
972
973 // Update 'szB' of every XPt in the XCon, by percolating upwards.
update_XCon(XPt * xpt,SSizeT space_delta)974 static void update_XCon(XPt* xpt, SSizeT space_delta)
975 {
976 tl_assert(clo_heap);
977 tl_assert(NULL != xpt);
978
979 if (0 == space_delta)
980 return;
981
982 while (xpt != alloc_xpt) {
983 if (space_delta < 0) tl_assert(xpt->szB >= -space_delta);
984 xpt->szB += space_delta;
985 xpt = xpt->parent;
986 }
987 if (space_delta < 0) tl_assert(alloc_xpt->szB >= -space_delta);
988 alloc_xpt->szB += space_delta;
989 }
990
991
992 //------------------------------------------------------------//
993 //--- Snapshots ---//
994 //------------------------------------------------------------//
995
996 // Snapshots are done in a way so that we always have a reasonable number of
997 // them. We start by taking them quickly. Once we hit our limit, we cull
998 // some (eg. half), and start taking them more slowly. Once we hit the
999 // limit again, we again cull and then take them even more slowly, and so
1000 // on.
1001
1002 // Time is measured either in i or ms or bytes, depending on the --time-unit
1003 // option. It's a Long because it can exceed 32-bits reasonably easily, and
1004 // because we need to allow negative values to represent unset times.
1005 typedef Long Time;
1006
1007 #define UNUSED_SNAPSHOT_TIME -333 // A conspicuous negative number.
1008
1009 typedef
1010 enum {
1011 Normal = 77,
1012 Peak,
1013 Unused
1014 }
1015 SnapshotKind;
1016
1017 typedef
1018 struct {
1019 SnapshotKind kind;
1020 Time time;
1021 SizeT heap_szB;
1022 SizeT heap_extra_szB;// Heap slop + admin bytes.
1023 SizeT stacks_szB;
1024 SXPt* alloc_sxpt; // Heap XTree root, if a detailed snapshot,
1025 } // otherwise NULL.
1026 Snapshot;
1027
1028 static UInt next_snapshot_i = 0; // Index of where next snapshot will go.
1029 static Snapshot* snapshots; // Array of snapshots.
1030
is_snapshot_in_use(Snapshot * snapshot)1031 static Bool is_snapshot_in_use(Snapshot* snapshot)
1032 {
1033 if (Unused == snapshot->kind) {
1034 // If snapshot is unused, check all the fields are unset.
1035 tl_assert(snapshot->time == UNUSED_SNAPSHOT_TIME);
1036 tl_assert(snapshot->heap_extra_szB == 0);
1037 tl_assert(snapshot->heap_szB == 0);
1038 tl_assert(snapshot->stacks_szB == 0);
1039 tl_assert(snapshot->alloc_sxpt == NULL);
1040 return False;
1041 } else {
1042 tl_assert(snapshot->time != UNUSED_SNAPSHOT_TIME);
1043 return True;
1044 }
1045 }
1046
is_detailed_snapshot(Snapshot * snapshot)1047 static Bool is_detailed_snapshot(Snapshot* snapshot)
1048 {
1049 return (snapshot->alloc_sxpt ? True : False);
1050 }
1051
is_uncullable_snapshot(Snapshot * snapshot)1052 static Bool is_uncullable_snapshot(Snapshot* snapshot)
1053 {
1054 return &snapshots[0] == snapshot // First snapshot
1055 || &snapshots[next_snapshot_i-1] == snapshot // Last snapshot
1056 || snapshot->kind == Peak; // Peak snapshot
1057 }
1058
sanity_check_snapshot(Snapshot * snapshot)1059 static void sanity_check_snapshot(Snapshot* snapshot)
1060 {
1061 if (snapshot->alloc_sxpt) {
1062 sanity_check_SXTree(snapshot->alloc_sxpt);
1063 }
1064 }
1065
1066 // All the used entries should look used, all the unused ones should be clear.
sanity_check_snapshots_array(void)1067 static void sanity_check_snapshots_array(void)
1068 {
1069 Int i;
1070 for (i = 0; i < next_snapshot_i; i++) {
1071 tl_assert( is_snapshot_in_use( & snapshots[i] ));
1072 }
1073 for ( ; i < clo_max_snapshots; i++) {
1074 tl_assert(!is_snapshot_in_use( & snapshots[i] ));
1075 }
1076 }
1077
1078 // This zeroes all the fields in the snapshot, but does not free the heap
1079 // XTree if present. It also does a sanity check unless asked not to; we
1080 // can't sanity check at startup when clearing the initial snapshots because
1081 // they're full of junk.
clear_snapshot(Snapshot * snapshot,Bool do_sanity_check)1082 static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check)
1083 {
1084 if (do_sanity_check) sanity_check_snapshot(snapshot);
1085 snapshot->kind = Unused;
1086 snapshot->time = UNUSED_SNAPSHOT_TIME;
1087 snapshot->heap_extra_szB = 0;
1088 snapshot->heap_szB = 0;
1089 snapshot->stacks_szB = 0;
1090 snapshot->alloc_sxpt = NULL;
1091 }
1092
1093 // This zeroes all the fields in the snapshot, and frees the heap XTree if
1094 // present.
delete_snapshot(Snapshot * snapshot)1095 static void delete_snapshot(Snapshot* snapshot)
1096 {
1097 // Nb: if there's an XTree, we free it after calling clear_snapshot,
1098 // because clear_snapshot does a sanity check which includes checking the
1099 // XTree.
1100 SXPt* tmp_sxpt = snapshot->alloc_sxpt;
1101 clear_snapshot(snapshot, /*do_sanity_check*/True);
1102 if (tmp_sxpt) {
1103 free_SXTree(tmp_sxpt);
1104 }
1105 }
1106
VERB_snapshot(Int verbosity,const HChar * prefix,Int i)1107 static void VERB_snapshot(Int verbosity, const HChar* prefix, Int i)
1108 {
1109 Snapshot* snapshot = &snapshots[i];
1110 const HChar* suffix;
1111 switch (snapshot->kind) {
1112 case Peak: suffix = "p"; break;
1113 case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break;
1114 case Unused: suffix = "u"; break;
1115 default:
1116 tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind);
1117 }
1118 VERB(verbosity, "%s S%s%3d (t:%lld, hp:%lu, ex:%lu, st:%lu)\n",
1119 prefix, suffix, i,
1120 snapshot->time,
1121 snapshot->heap_szB,
1122 snapshot->heap_extra_szB,
1123 snapshot->stacks_szB
1124 );
1125 }
1126
1127 // Cull half the snapshots; we choose those that represent the smallest
1128 // time-spans, because that gives us the most even distribution of snapshots
1129 // over time. (It's possible to lose interesting spikes, however.)
1130 //
1131 // Algorithm for N snapshots: We find the snapshot representing the smallest
1132 // timeframe, and remove it. We repeat this until (N/2) snapshots are gone.
1133 // We have to do this one snapshot at a time, rather than finding the (N/2)
1134 // smallest snapshots in one hit, because when a snapshot is removed, its
1135 // neighbours immediately cover greater timespans. So it's O(N^2), but N is
1136 // small, and it's not done very often.
1137 //
1138 // Once we're done, we return the new smallest interval between snapshots.
1139 // That becomes our minimum time interval.
cull_snapshots(void)1140 static UInt cull_snapshots(void)
1141 {
1142 Int i, jp, j, jn, min_timespan_i;
1143 Int n_deleted = 0;
1144 Time min_timespan;
1145
1146 n_cullings++;
1147
1148 // Sets j to the index of the first not-yet-removed snapshot at or after i
1149 #define FIND_SNAPSHOT(i, j) \
1150 for (j = i; \
1151 j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \
1152 j++) { }
1153
1154 VERB(2, "Culling...\n");
1155
1156 // First we remove enough snapshots by clearing them in-place. Once
1157 // that's done, we can slide the remaining ones down.
1158 for (i = 0; i < clo_max_snapshots/2; i++) {
1159 // Find the snapshot representing the smallest timespan. The timespan
1160 // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between
1161 // snapshot A and B. We don't consider the first and last snapshots for
1162 // removal.
1163 Snapshot* min_snapshot;
1164 Int min_j;
1165
1166 // Initial triple: (prev, curr, next) == (jp, j, jn)
1167 // Initial min_timespan is the first one.
1168 jp = 0;
1169 FIND_SNAPSHOT(1, j);
1170 FIND_SNAPSHOT(j+1, jn);
1171 min_timespan = 0x7fffffffffffffffLL;
1172 min_j = -1;
1173 while (jn < clo_max_snapshots) {
1174 Time timespan = snapshots[jn].time - snapshots[jp].time;
1175 tl_assert(timespan >= 0);
1176 // Nb: We never cull the peak snapshot.
1177 if (Peak != snapshots[j].kind && timespan < min_timespan) {
1178 min_timespan = timespan;
1179 min_j = j;
1180 }
1181 // Move on to next triple
1182 jp = j;
1183 j = jn;
1184 FIND_SNAPSHOT(jn+1, jn);
1185 }
1186 // We've found the least important snapshot, now delete it. First
1187 // print it if necessary.
1188 tl_assert(-1 != min_j); // Check we found a minimum.
1189 min_snapshot = & snapshots[ min_j ];
1190 if (VG_(clo_verbosity) > 1) {
1191 HChar buf[64]; // large enough
1192 VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan);
1193 VERB_snapshot(2, buf, min_j);
1194 }
1195 delete_snapshot(min_snapshot);
1196 n_deleted++;
1197 }
1198
1199 // Slide down the remaining snapshots over the removed ones. First set i
1200 // to point to the first empty slot, and j to the first full slot after
1201 // i. Then slide everything down.
1202 for (i = 0; is_snapshot_in_use( &snapshots[i] ); i++) { }
1203 for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { }
1204 for ( ; j < clo_max_snapshots; j++) {
1205 if (is_snapshot_in_use( &snapshots[j] )) {
1206 snapshots[i++] = snapshots[j];
1207 clear_snapshot(&snapshots[j], /*do_sanity_check*/True);
1208 }
1209 }
1210 next_snapshot_i = i;
1211
1212 // Check snapshots array looks ok after changes.
1213 sanity_check_snapshots_array();
1214
1215 // Find the minimum timespan remaining; that will be our new minimum
1216 // time interval. Note that above we were finding timespans by measuring
1217 // two intervals around a snapshot that was under consideration for
1218 // deletion. Here we only measure single intervals because all the
1219 // deletions have occurred.
1220 //
1221 // But we have to be careful -- some snapshots (eg. snapshot 0, and the
1222 // peak snapshot) are uncullable. If two uncullable snapshots end up
1223 // next to each other, they'll never be culled (assuming the peak doesn't
1224 // change), and the time gap between them will not change. However, the
1225 // time between the remaining cullable snapshots will grow ever larger.
1226 // This means that the min_timespan found will always be that between the
1227 // two uncullable snapshots, and it will be much smaller than it should
1228 // be. To avoid this problem, when computing the minimum timespan, we
1229 // ignore any timespans between two uncullable snapshots.
1230 tl_assert(next_snapshot_i > 1);
1231 min_timespan = 0x7fffffffffffffffLL;
1232 min_timespan_i = -1;
1233 for (i = 1; i < next_snapshot_i; i++) {
1234 if (is_uncullable_snapshot(&snapshots[i]) &&
1235 is_uncullable_snapshot(&snapshots[i-1]))
1236 {
1237 VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i);
1238 } else {
1239 Time timespan = snapshots[i].time - snapshots[i-1].time;
1240 tl_assert(timespan >= 0);
1241 if (timespan < min_timespan) {
1242 min_timespan = timespan;
1243 min_timespan_i = i;
1244 }
1245 }
1246 }
1247 tl_assert(-1 != min_timespan_i); // Check we found a minimum.
1248
1249 // Print remaining snapshots, if necessary.
1250 if (VG_(clo_verbosity) > 1) {
1251 VERB(2, "Finished culling (%3d of %3d deleted)\n",
1252 n_deleted, clo_max_snapshots);
1253 for (i = 0; i < next_snapshot_i; i++) {
1254 VERB_snapshot(2, " post-cull", i);
1255 }
1256 VERB(2, "New time interval = %lld (between snapshots %d and %d)\n",
1257 min_timespan, min_timespan_i-1, min_timespan_i);
1258 }
1259
1260 return min_timespan;
1261 }
1262
get_time(void)1263 static Time get_time(void)
1264 {
1265 // Get current time, in whatever time unit we're using.
1266 if (clo_time_unit == TimeI) {
1267 return guest_instrs_executed;
1268 } else if (clo_time_unit == TimeMS) {
1269 // Some stuff happens between the millisecond timer being initialised
1270 // to zero and us taking our first snapshot. We determine that time
1271 // gap so we can subtract it from all subsequent times so that our
1272 // first snapshot is considered to be at t = 0ms. Unfortunately, a
1273 // bunch of symbols get read after the first snapshot is taken but
1274 // before the second one (which is triggered by the first allocation),
1275 // so when the time-unit is 'ms' we always have a big gap between the
1276 // first two snapshots. But at least users won't have to wonder why
1277 // the first snapshot isn't at t=0.
1278 static Bool is_first_get_time = True;
1279 static Time start_time_ms;
1280 if (is_first_get_time) {
1281 start_time_ms = VG_(read_millisecond_timer)();
1282 is_first_get_time = False;
1283 return 0;
1284 } else {
1285 return VG_(read_millisecond_timer)() - start_time_ms;
1286 }
1287 } else if (clo_time_unit == TimeB) {
1288 return total_allocs_deallocs_szB;
1289 } else {
1290 tl_assert2(0, "bad --time-unit value");
1291 }
1292 }
1293
1294 // Take a snapshot, and only that -- decisions on whether to take a
1295 // snapshot, or what kind of snapshot, are made elsewhere.
1296 // Nb: we call the arg "my_time" because "time" shadows a global declaration
1297 // in /usr/include/time.h on Darwin.
1298 static void
take_snapshot(Snapshot * snapshot,SnapshotKind kind,Time my_time,Bool is_detailed)1299 take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time,
1300 Bool is_detailed)
1301 {
1302 tl_assert(!is_snapshot_in_use(snapshot));
1303 if (!clo_pages_as_heap) {
1304 tl_assert(have_started_executing_code);
1305 }
1306
1307 // Heap and heap admin.
1308 if (clo_heap) {
1309 snapshot->heap_szB = heap_szB;
1310 if (is_detailed) {
1311 SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
1312 snapshot->alloc_sxpt = dup_XTree(alloc_xpt, total_szB);
1313 tl_assert( alloc_xpt->szB == heap_szB);
1314 tl_assert(snapshot->alloc_sxpt->szB == heap_szB);
1315 }
1316 snapshot->heap_extra_szB = heap_extra_szB;
1317 }
1318
1319 // Stack(s).
1320 if (clo_stacks) {
1321 snapshot->stacks_szB = stacks_szB;
1322 }
1323
1324 // Rest of snapshot.
1325 snapshot->kind = kind;
1326 snapshot->time = my_time;
1327 sanity_check_snapshot(snapshot);
1328
1329 // Update stats.
1330 if (Peak == kind) n_peak_snapshots++;
1331 if (is_detailed) n_detailed_snapshots++;
1332 n_real_snapshots++;
1333 }
1334
1335
1336 // Take a snapshot, if it's time, or if we've hit a peak.
1337 static void
maybe_take_snapshot(SnapshotKind kind,const HChar * what)1338 maybe_take_snapshot(SnapshotKind kind, const HChar* what)
1339 {
1340 // 'min_time_interval' is the minimum time interval between snapshots.
1341 // If we try to take a snapshot and less than this much time has passed,
1342 // we don't take it. It gets larger as the program runs longer. It's
1343 // initialised to zero so that we begin by taking snapshots as quickly as
1344 // possible.
1345 static Time min_time_interval = 0;
1346 // Zero allows startup snapshot.
1347 static Time earliest_possible_time_of_next_snapshot = 0;
1348 static Int n_snapshots_since_last_detailed = 0;
1349 static Int n_skipped_snapshots_since_last_snapshot = 0;
1350
1351 Snapshot* snapshot;
1352 Bool is_detailed;
1353 // Nb: we call this variable "my_time" because "time" shadows a global
1354 // declaration in /usr/include/time.h on Darwin.
1355 Time my_time = get_time();
1356
1357 switch (kind) {
1358 case Normal:
1359 // Only do a snapshot if it's time.
1360 if (my_time < earliest_possible_time_of_next_snapshot) {
1361 n_skipped_snapshots++;
1362 n_skipped_snapshots_since_last_snapshot++;
1363 return;
1364 }
1365 is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed);
1366 break;
1367
1368 case Peak: {
1369 // Because we're about to do a deallocation, we're coming down from a
1370 // local peak. If it is (a) actually a global peak, and (b) a certain
1371 // amount bigger than the previous peak, then we take a peak snapshot.
1372 // By not taking a snapshot for every peak, we save a lot of effort --
1373 // because many peaks remain peak only for a short time.
1374 SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
1375 SizeT excess_szB_for_new_peak =
1376 (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100);
1377 if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) {
1378 return;
1379 }
1380 is_detailed = True;
1381 break;
1382 }
1383
1384 default:
1385 tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind");
1386 }
1387
1388 // Take the snapshot.
1389 snapshot = & snapshots[next_snapshot_i];
1390 take_snapshot(snapshot, kind, my_time, is_detailed);
1391
1392 // Record if it was detailed.
1393 if (is_detailed) {
1394 n_snapshots_since_last_detailed = 0;
1395 } else {
1396 n_snapshots_since_last_detailed++;
1397 }
1398
1399 // Update peak data, if it's a Peak snapshot.
1400 if (Peak == kind) {
1401 Int i, number_of_peaks_snapshots_found = 0;
1402
1403 // Sanity check the size, then update our recorded peak.
1404 SizeT snapshot_total_szB =
1405 snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
1406 tl_assert2(snapshot_total_szB > peak_snapshot_total_szB,
1407 "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB);
1408 peak_snapshot_total_szB = snapshot_total_szB;
1409
1410 // Find the old peak snapshot, if it exists, and mark it as normal.
1411 for (i = 0; i < next_snapshot_i; i++) {
1412 if (Peak == snapshots[i].kind) {
1413 snapshots[i].kind = Normal;
1414 number_of_peaks_snapshots_found++;
1415 }
1416 }
1417 tl_assert(number_of_peaks_snapshots_found <= 1);
1418 }
1419
1420 // Finish up verbosity and stats stuff.
1421 if (n_skipped_snapshots_since_last_snapshot > 0) {
1422 VERB(2, " (skipped %d snapshot%s)\n",
1423 n_skipped_snapshots_since_last_snapshot,
1424 ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") );
1425 }
1426 VERB_snapshot(2, what, next_snapshot_i);
1427 n_skipped_snapshots_since_last_snapshot = 0;
1428
1429 // Cull the entries, if our snapshot table is full.
1430 next_snapshot_i++;
1431 if (clo_max_snapshots == next_snapshot_i) {
1432 min_time_interval = cull_snapshots();
1433 }
1434
1435 // Work out the earliest time when the next snapshot can happen.
1436 earliest_possible_time_of_next_snapshot = my_time + min_time_interval;
1437 }
1438
1439
1440 //------------------------------------------------------------//
1441 //--- Sanity checking ---//
1442 //------------------------------------------------------------//
1443
ms_cheap_sanity_check(void)1444 static Bool ms_cheap_sanity_check ( void )
1445 {
1446 return True; // Nothing useful we can cheaply check.
1447 }
1448
ms_expensive_sanity_check(void)1449 static Bool ms_expensive_sanity_check ( void )
1450 {
1451 sanity_check_XTree(alloc_xpt, /*parent*/NULL);
1452 sanity_check_snapshots_array();
1453 return True;
1454 }
1455
1456
1457 //------------------------------------------------------------//
1458 //--- Heap management ---//
1459 //------------------------------------------------------------//
1460
1461 // Metadata for heap blocks. Each one contains a pointer to a bottom-XPt,
1462 // which is a foothold into the XCon at which it was allocated. From
1463 // HP_Chunks, XPt 'space' fields are incremented (at allocation) and
1464 // decremented (at deallocation).
1465 //
1466 // Nb: first two fields must match core's VgHashNode.
1467 typedef
1468 struct _HP_Chunk {
1469 struct _HP_Chunk* next;
1470 Addr data; // Ptr to actual block
1471 SizeT req_szB; // Size requested
1472 SizeT slop_szB; // Extra bytes given above those requested
1473 XPt* where; // Where allocated; bottom-XPt
1474 }
1475 HP_Chunk;
1476
1477 static VgHashTable *malloc_list = NULL; // HP_Chunks
1478
update_alloc_stats(SSizeT szB_delta)1479 static void update_alloc_stats(SSizeT szB_delta)
1480 {
1481 // Update total_allocs_deallocs_szB.
1482 if (szB_delta < 0) szB_delta = -szB_delta;
1483 total_allocs_deallocs_szB += szB_delta;
1484 }
1485
update_heap_stats(SSizeT heap_szB_delta,Int heap_extra_szB_delta)1486 static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta)
1487 {
1488 if (heap_szB_delta < 0)
1489 tl_assert(heap_szB >= -heap_szB_delta);
1490 if (heap_extra_szB_delta < 0)
1491 tl_assert(heap_extra_szB >= -heap_extra_szB_delta);
1492
1493 heap_extra_szB += heap_extra_szB_delta;
1494 heap_szB += heap_szB_delta;
1495
1496 update_alloc_stats(heap_szB_delta + heap_extra_szB_delta);
1497 }
1498
1499 static
record_block(ThreadId tid,void * p,SizeT req_szB,SizeT slop_szB,Bool exclude_first_entry,Bool maybe_snapshot)1500 void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB,
1501 Bool exclude_first_entry, Bool maybe_snapshot )
1502 {
1503 // Make new HP_Chunk node, add to malloc_list
1504 HP_Chunk* hc = VG_(malloc)("ms.main.rb.1", sizeof(HP_Chunk));
1505 hc->req_szB = req_szB;
1506 hc->slop_szB = slop_szB;
1507 hc->data = (Addr)p;
1508 hc->where = NULL;
1509 VG_(HT_add_node)(malloc_list, hc);
1510
1511 if (clo_heap) {
1512 VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB);
1513
1514 hc->where = get_XCon( tid, exclude_first_entry );
1515
1516 if (hc->where) {
1517 // Update statistics.
1518 n_heap_allocs++;
1519
1520 // Update heap stats.
1521 update_heap_stats(req_szB, clo_heap_admin + slop_szB);
1522
1523 // Update XTree.
1524 update_XCon(hc->where, req_szB);
1525
1526 // Maybe take a snapshot.
1527 if (maybe_snapshot) {
1528 maybe_take_snapshot(Normal, " alloc");
1529 }
1530
1531 } else {
1532 // Ignored allocation.
1533 n_ignored_heap_allocs++;
1534
1535 VERB(3, "(ignored)\n");
1536 }
1537
1538 VERB(3, ">>>\n");
1539 }
1540
1541 return p;
1542 }
1543
1544 static __inline__
alloc_and_record_block(ThreadId tid,SizeT req_szB,SizeT req_alignB,Bool is_zeroed)1545 void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB,
1546 Bool is_zeroed )
1547 {
1548 SizeT actual_szB, slop_szB;
1549 void* p;
1550
1551 if ((SSizeT)req_szB < 0) return NULL;
1552
1553 // Allocate and zero if necessary.
1554 p = VG_(cli_malloc)( req_alignB, req_szB );
1555 if (!p) {
1556 return NULL;
1557 }
1558 if (is_zeroed) VG_(memset)(p, 0, req_szB);
1559 actual_szB = VG_(cli_malloc_usable_size)(p);
1560 tl_assert(actual_szB >= req_szB);
1561 slop_szB = actual_szB - req_szB;
1562
1563 // Record block.
1564 record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True,
1565 /*maybe_snapshot*/True);
1566
1567 return p;
1568 }
1569
1570 static __inline__
unrecord_block(void * p,Bool maybe_snapshot)1571 void unrecord_block ( void* p, Bool maybe_snapshot )
1572 {
1573 // Remove HP_Chunk from malloc_list
1574 HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p);
1575 if (NULL == hc) {
1576 return; // must have been a bogus free()
1577 }
1578
1579 if (clo_heap) {
1580 VERB(3, "<<< unrecord_block\n");
1581
1582 if (hc->where) {
1583 // Update statistics.
1584 n_heap_frees++;
1585
1586 // Maybe take a peak snapshot, since it's a deallocation.
1587 if (maybe_snapshot) {
1588 maybe_take_snapshot(Peak, "de-PEAK");
1589 }
1590
1591 // Update heap stats.
1592 update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB);
1593
1594 // Update XTree.
1595 update_XCon(hc->where, -hc->req_szB);
1596
1597 // Maybe take a snapshot.
1598 if (maybe_snapshot) {
1599 maybe_take_snapshot(Normal, "dealloc");
1600 }
1601
1602 } else {
1603 n_ignored_heap_frees++;
1604
1605 VERB(3, "(ignored)\n");
1606 }
1607
1608 VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB);
1609 }
1610
1611 // Actually free the chunk, and the heap block (if necessary)
1612 VG_(free)( hc ); hc = NULL;
1613 }
1614
1615 // Nb: --ignore-fn is tricky for realloc. If the block's original alloc was
1616 // ignored, but the realloc is not requested to be ignored, and we are
1617 // shrinking the block, then we have to ignore the realloc -- otherwise we
1618 // could end up with negative heap sizes. This isn't a danger if we are
1619 // growing such a block, but for consistency (it also simplifies things) we
1620 // ignore such reallocs as well.
1621 static __inline__
realloc_block(ThreadId tid,void * p_old,SizeT new_req_szB)1622 void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB )
1623 {
1624 HP_Chunk* hc;
1625 void* p_new;
1626 SizeT old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB;
1627 XPt *old_where, *new_where;
1628 Bool is_ignored = False;
1629
1630 // Remove the old block
1631 hc = VG_(HT_remove)(malloc_list, (UWord)p_old);
1632 if (hc == NULL) {
1633 return NULL; // must have been a bogus realloc()
1634 }
1635
1636 old_req_szB = hc->req_szB;
1637 old_slop_szB = hc->slop_szB;
1638
1639 tl_assert(!clo_pages_as_heap); // Shouldn't be here if --pages-as-heap=yes.
1640 if (clo_heap) {
1641 VERB(3, "<<< realloc_block (%lu)\n", new_req_szB);
1642
1643 if (hc->where) {
1644 // Update statistics.
1645 n_heap_reallocs++;
1646
1647 // Maybe take a peak snapshot, if it's (effectively) a deallocation.
1648 if (new_req_szB < old_req_szB) {
1649 maybe_take_snapshot(Peak, "re-PEAK");
1650 }
1651 } else {
1652 // The original malloc was ignored, so we have to ignore the
1653 // realloc as well.
1654 is_ignored = True;
1655 }
1656 }
1657
1658 // Actually do the allocation, if necessary.
1659 if (new_req_szB <= old_req_szB + old_slop_szB) {
1660 // New size is smaller or same; block not moved.
1661 p_new = p_old;
1662 new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB);
1663
1664 } else {
1665 // New size is bigger; make new block, copy shared contents, free old.
1666 p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB);
1667 if (!p_new) {
1668 // Nb: if realloc fails, NULL is returned but the old block is not
1669 // touched. What an awful function.
1670 return NULL;
1671 }
1672 VG_(memcpy)(p_new, p_old, old_req_szB + old_slop_szB);
1673 VG_(cli_free)(p_old);
1674 new_actual_szB = VG_(cli_malloc_usable_size)(p_new);
1675 tl_assert(new_actual_szB >= new_req_szB);
1676 new_slop_szB = new_actual_szB - new_req_szB;
1677 }
1678
1679 if (p_new) {
1680 // Update HP_Chunk.
1681 hc->data = (Addr)p_new;
1682 hc->req_szB = new_req_szB;
1683 hc->slop_szB = new_slop_szB;
1684 old_where = hc->where;
1685 hc->where = NULL;
1686
1687 // Update XTree.
1688 if (clo_heap) {
1689 new_where = get_XCon( tid, /*exclude_first_entry*/True);
1690 if (!is_ignored && new_where) {
1691 hc->where = new_where;
1692 update_XCon(old_where, -old_req_szB);
1693 update_XCon(new_where, new_req_szB);
1694 } else {
1695 // The realloc itself is ignored.
1696 is_ignored = True;
1697
1698 // Update statistics.
1699 n_ignored_heap_reallocs++;
1700 }
1701 }
1702 }
1703
1704 // Now insert the new hc (with a possibly new 'data' field) into
1705 // malloc_list. If this realloc() did not increase the memory size, we
1706 // will have removed and then re-added hc unnecessarily. But that's ok
1707 // because shrinking a block with realloc() is (presumably) much rarer
1708 // than growing it, and this way simplifies the growing case.
1709 VG_(HT_add_node)(malloc_list, hc);
1710
1711 if (clo_heap) {
1712 if (!is_ignored) {
1713 // Update heap stats.
1714 update_heap_stats(new_req_szB - old_req_szB,
1715 new_slop_szB - old_slop_szB);
1716
1717 // Maybe take a snapshot.
1718 maybe_take_snapshot(Normal, "realloc");
1719 } else {
1720
1721 VERB(3, "(ignored)\n");
1722 }
1723
1724 VERB(3, ">>> (%ld, %ld)\n",
1725 (SSizeT)(new_req_szB - old_req_szB),
1726 (SSizeT)(new_slop_szB - old_slop_szB));
1727 }
1728
1729 return p_new;
1730 }
1731
1732
1733 //------------------------------------------------------------//
1734 //--- malloc() et al replacement wrappers ---//
1735 //------------------------------------------------------------//
1736
ms_malloc(ThreadId tid,SizeT szB)1737 static void* ms_malloc ( ThreadId tid, SizeT szB )
1738 {
1739 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1740 }
1741
ms___builtin_new(ThreadId tid,SizeT szB)1742 static void* ms___builtin_new ( ThreadId tid, SizeT szB )
1743 {
1744 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1745 }
1746
ms___builtin_vec_new(ThreadId tid,SizeT szB)1747 static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB )
1748 {
1749 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1750 }
1751
ms_calloc(ThreadId tid,SizeT m,SizeT szB)1752 static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB )
1753 {
1754 return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True );
1755 }
1756
ms_memalign(ThreadId tid,SizeT alignB,SizeT szB)1757 static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB )
1758 {
1759 return alloc_and_record_block( tid, szB, alignB, False );
1760 }
1761
ms_free(ThreadId tid,void * p)1762 static void ms_free ( ThreadId tid __attribute__((unused)), void* p )
1763 {
1764 unrecord_block(p, /*maybe_snapshot*/True);
1765 VG_(cli_free)(p);
1766 }
1767
ms___builtin_delete(ThreadId tid,void * p)1768 static void ms___builtin_delete ( ThreadId tid, void* p )
1769 {
1770 unrecord_block(p, /*maybe_snapshot*/True);
1771 VG_(cli_free)(p);
1772 }
1773
ms___builtin_vec_delete(ThreadId tid,void * p)1774 static void ms___builtin_vec_delete ( ThreadId tid, void* p )
1775 {
1776 unrecord_block(p, /*maybe_snapshot*/True);
1777 VG_(cli_free)(p);
1778 }
1779
ms_realloc(ThreadId tid,void * p_old,SizeT new_szB)1780 static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB )
1781 {
1782 return realloc_block(tid, p_old, new_szB);
1783 }
1784
ms_malloc_usable_size(ThreadId tid,void * p)1785 static SizeT ms_malloc_usable_size ( ThreadId tid, void* p )
1786 {
1787 HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p );
1788
1789 return ( hc ? hc->req_szB + hc->slop_szB : 0 );
1790 }
1791
1792 //------------------------------------------------------------//
1793 //--- Page handling ---//
1794 //------------------------------------------------------------//
1795
1796 static
ms_record_page_mem(Addr a,SizeT len)1797 void ms_record_page_mem ( Addr a, SizeT len )
1798 {
1799 ThreadId tid = VG_(get_running_tid)();
1800 Addr end;
1801 tl_assert(VG_IS_PAGE_ALIGNED(len));
1802 tl_assert(len >= VKI_PAGE_SIZE);
1803 // Record the first N-1 pages as blocks, but don't do any snapshots.
1804 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1805 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1806 /*exclude_first_entry*/False, /*maybe_snapshot*/False );
1807 }
1808 // Record the last page as a block, and maybe do a snapshot afterwards.
1809 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1810 /*exclude_first_entry*/False, /*maybe_snapshot*/True );
1811 }
1812
1813 static
ms_unrecord_page_mem(Addr a,SizeT len)1814 void ms_unrecord_page_mem( Addr a, SizeT len )
1815 {
1816 Addr end;
1817 tl_assert(VG_IS_PAGE_ALIGNED(len));
1818 tl_assert(len >= VKI_PAGE_SIZE);
1819 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1820 unrecord_block((void*)a, /*maybe_snapshot*/False);
1821 }
1822 unrecord_block((void*)a, /*maybe_snapshot*/True);
1823 }
1824
1825 //------------------------------------------------------------//
1826
1827 static
ms_new_mem_mmap(Addr a,SizeT len,Bool rr,Bool ww,Bool xx,ULong di_handle)1828 void ms_new_mem_mmap ( Addr a, SizeT len,
1829 Bool rr, Bool ww, Bool xx, ULong di_handle )
1830 {
1831 tl_assert(VG_IS_PAGE_ALIGNED(len));
1832 ms_record_page_mem(a, len);
1833 }
1834
1835 static
ms_new_mem_startup(Addr a,SizeT len,Bool rr,Bool ww,Bool xx,ULong di_handle)1836 void ms_new_mem_startup( Addr a, SizeT len,
1837 Bool rr, Bool ww, Bool xx, ULong di_handle )
1838 {
1839 // startup maps are always be page-sized, except the trampoline page is
1840 // marked by the core as only being the size of the trampoline itself,
1841 // which is something like 57 bytes. Round it up to page size.
1842 len = VG_PGROUNDUP(len);
1843 ms_record_page_mem(a, len);
1844 }
1845
1846 static
ms_new_mem_brk(Addr a,SizeT len,ThreadId tid)1847 void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid )
1848 {
1849 // brk limit is not necessarily aligned on a page boundary.
1850 // If new memory being brk-ed implies to allocate a new page,
1851 // then call ms_record_page_mem with page aligned parameters
1852 // otherwise just ignore.
1853 Addr old_bottom_page = VG_PGROUNDDN(a - 1);
1854 Addr new_top_page = VG_PGROUNDDN(a + len - 1);
1855 if (old_bottom_page != new_top_page)
1856 ms_record_page_mem(VG_PGROUNDDN(a),
1857 (new_top_page - old_bottom_page));
1858 }
1859
1860 static
ms_copy_mem_remap(Addr from,Addr to,SizeT len)1861 void ms_copy_mem_remap( Addr from, Addr to, SizeT len)
1862 {
1863 tl_assert(VG_IS_PAGE_ALIGNED(len));
1864 ms_unrecord_page_mem(from, len);
1865 ms_record_page_mem(to, len);
1866 }
1867
1868 static
ms_die_mem_munmap(Addr a,SizeT len)1869 void ms_die_mem_munmap( Addr a, SizeT len )
1870 {
1871 tl_assert(VG_IS_PAGE_ALIGNED(len));
1872 ms_unrecord_page_mem(a, len);
1873 }
1874
1875 static
ms_die_mem_brk(Addr a,SizeT len)1876 void ms_die_mem_brk( Addr a, SizeT len )
1877 {
1878 // Call ms_unrecord_page_mem only if one or more pages are de-allocated.
1879 // See ms_new_mem_brk for more details.
1880 Addr new_bottom_page = VG_PGROUNDDN(a - 1);
1881 Addr old_top_page = VG_PGROUNDDN(a + len - 1);
1882 if (old_top_page != new_bottom_page)
1883 ms_unrecord_page_mem(VG_PGROUNDDN(a),
1884 (old_top_page - new_bottom_page));
1885
1886 }
1887
1888 //------------------------------------------------------------//
1889 //--- Stacks ---//
1890 //------------------------------------------------------------//
1891
1892 // We really want the inlining to occur...
1893 #define INLINE inline __attribute__((always_inline))
1894
update_stack_stats(SSizeT stack_szB_delta)1895 static void update_stack_stats(SSizeT stack_szB_delta)
1896 {
1897 if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta);
1898 stacks_szB += stack_szB_delta;
1899
1900 update_alloc_stats(stack_szB_delta);
1901 }
1902
new_mem_stack_2(SizeT len,const HChar * what)1903 static INLINE void new_mem_stack_2(SizeT len, const HChar* what)
1904 {
1905 if (have_started_executing_code) {
1906 VERB(3, "<<< new_mem_stack (%lu)\n", len);
1907 n_stack_allocs++;
1908 update_stack_stats(len);
1909 maybe_take_snapshot(Normal, what);
1910 VERB(3, ">>>\n");
1911 }
1912 }
1913
die_mem_stack_2(SizeT len,const HChar * what)1914 static INLINE void die_mem_stack_2(SizeT len, const HChar* what)
1915 {
1916 if (have_started_executing_code) {
1917 VERB(3, "<<< die_mem_stack (-%lu)\n", len);
1918 n_stack_frees++;
1919 maybe_take_snapshot(Peak, "stkPEAK");
1920 update_stack_stats(-len);
1921 maybe_take_snapshot(Normal, what);
1922 VERB(3, ">>>\n");
1923 }
1924 }
1925
new_mem_stack(Addr a,SizeT len)1926 static void new_mem_stack(Addr a, SizeT len)
1927 {
1928 new_mem_stack_2(len, "stk-new");
1929 }
1930
die_mem_stack(Addr a,SizeT len)1931 static void die_mem_stack(Addr a, SizeT len)
1932 {
1933 die_mem_stack_2(len, "stk-die");
1934 }
1935
new_mem_stack_signal(Addr a,SizeT len,ThreadId tid)1936 static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid)
1937 {
1938 new_mem_stack_2(len, "sig-new");
1939 }
1940
die_mem_stack_signal(Addr a,SizeT len)1941 static void die_mem_stack_signal(Addr a, SizeT len)
1942 {
1943 die_mem_stack_2(len, "sig-die");
1944 }
1945
1946
1947 //------------------------------------------------------------//
1948 //--- Client Requests ---//
1949 //------------------------------------------------------------//
1950
print_monitor_help(void)1951 static void print_monitor_help ( void )
1952 {
1953 VG_(gdb_printf) ("\n");
1954 VG_(gdb_printf) ("massif monitor commands:\n");
1955 VG_(gdb_printf) (" snapshot [<filename>]\n");
1956 VG_(gdb_printf) (" detailed_snapshot [<filename>]\n");
1957 VG_(gdb_printf) (" takes a snapshot (or a detailed snapshot)\n");
1958 VG_(gdb_printf) (" and saves it in <filename>\n");
1959 VG_(gdb_printf) (" default <filename> is massif.vgdb.out\n");
1960 VG_(gdb_printf) (" all_snapshots [<filename>]\n");
1961 VG_(gdb_printf) (" saves all snapshot(s) taken so far in <filename>\n");
1962 VG_(gdb_printf) (" default <filename> is massif.vgdb.out\n");
1963 VG_(gdb_printf) ("\n");
1964 }
1965
1966
1967 /* Forward declaration.
1968 return True if request recognised, False otherwise */
1969 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req);
ms_handle_client_request(ThreadId tid,UWord * argv,UWord * ret)1970 static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret )
1971 {
1972 switch (argv[0]) {
1973 case VG_USERREQ__MALLOCLIKE_BLOCK: {
1974 void* p = (void*)argv[1];
1975 SizeT szB = argv[2];
1976 record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False,
1977 /*maybe_snapshot*/True );
1978 *ret = 0;
1979 return True;
1980 }
1981 case VG_USERREQ__RESIZEINPLACE_BLOCK: {
1982 void* p = (void*)argv[1];
1983 SizeT newSizeB = argv[3];
1984
1985 unrecord_block(p, /*maybe_snapshot*/True);
1986 record_block(tid, p, newSizeB, /*slop_szB*/0,
1987 /*exclude_first_entry*/False, /*maybe_snapshot*/True);
1988 return True;
1989 }
1990 case VG_USERREQ__FREELIKE_BLOCK: {
1991 void* p = (void*)argv[1];
1992 unrecord_block(p, /*maybe_snapshot*/True);
1993 *ret = 0;
1994 return True;
1995 }
1996 case VG_USERREQ__GDB_MONITOR_COMMAND: {
1997 Bool handled = handle_gdb_monitor_command (tid, (HChar*)argv[1]);
1998 if (handled)
1999 *ret = 1;
2000 else
2001 *ret = 0;
2002 return handled;
2003 }
2004
2005 default:
2006 *ret = 0;
2007 return False;
2008 }
2009 }
2010
2011 //------------------------------------------------------------//
2012 //--- Instrumentation ---//
2013 //------------------------------------------------------------//
2014
add_counter_update(IRSB * sbOut,Int n)2015 static void add_counter_update(IRSB* sbOut, Int n)
2016 {
2017 #if defined(VG_BIGENDIAN)
2018 # define END Iend_BE
2019 #elif defined(VG_LITTLEENDIAN)
2020 # define END Iend_LE
2021 #else
2022 # error "Unknown endianness"
2023 #endif
2024 // Add code to increment 'guest_instrs_executed' by 'n', like this:
2025 // WrTmp(t1, Load64(&guest_instrs_executed))
2026 // WrTmp(t2, Add64(RdTmp(t1), Const(n)))
2027 // Store(&guest_instrs_executed, t2)
2028 IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64);
2029 IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64);
2030 IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed );
2031
2032 IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr));
2033 IRStmt* st2 =
2034 IRStmt_WrTmp(t2,
2035 IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1),
2036 IRExpr_Const(IRConst_U64(n))));
2037 IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2));
2038
2039 addStmtToIRSB( sbOut, st1 );
2040 addStmtToIRSB( sbOut, st2 );
2041 addStmtToIRSB( sbOut, st3 );
2042 }
2043
ms_instrument2(IRSB * sbIn)2044 static IRSB* ms_instrument2( IRSB* sbIn )
2045 {
2046 Int i, n = 0;
2047 IRSB* sbOut;
2048
2049 // We increment the instruction count in two places:
2050 // - just before any Ist_Exit statements;
2051 // - just before the IRSB's end.
2052 // In the former case, we zero 'n' and then continue instrumenting.
2053
2054 sbOut = deepCopyIRSBExceptStmts(sbIn);
2055
2056 for (i = 0; i < sbIn->stmts_used; i++) {
2057 IRStmt* st = sbIn->stmts[i];
2058
2059 if (!st || st->tag == Ist_NoOp) continue;
2060
2061 if (st->tag == Ist_IMark) {
2062 n++;
2063 } else if (st->tag == Ist_Exit) {
2064 if (n > 0) {
2065 // Add an increment before the Exit statement, then reset 'n'.
2066 add_counter_update(sbOut, n);
2067 n = 0;
2068 }
2069 }
2070 addStmtToIRSB( sbOut, st );
2071 }
2072
2073 if (n > 0) {
2074 // Add an increment before the SB end.
2075 add_counter_update(sbOut, n);
2076 }
2077 return sbOut;
2078 }
2079
2080 static
ms_instrument(VgCallbackClosure * closure,IRSB * sbIn,const VexGuestLayout * layout,const VexGuestExtents * vge,const VexArchInfo * archinfo_host,IRType gWordTy,IRType hWordTy)2081 IRSB* ms_instrument ( VgCallbackClosure* closure,
2082 IRSB* sbIn,
2083 const VexGuestLayout* layout,
2084 const VexGuestExtents* vge,
2085 const VexArchInfo* archinfo_host,
2086 IRType gWordTy, IRType hWordTy )
2087 {
2088 if (! have_started_executing_code) {
2089 // Do an initial sample to guarantee that we have at least one.
2090 // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure
2091 // 'maybe_take_snapshot's internal static variables are initialised.
2092 have_started_executing_code = True;
2093 maybe_take_snapshot(Normal, "startup");
2094 }
2095
2096 if (clo_time_unit == TimeI) { return ms_instrument2(sbIn); }
2097 else if (clo_time_unit == TimeMS) { return sbIn; }
2098 else if (clo_time_unit == TimeB) { return sbIn; }
2099 else { tl_assert2(0, "bad --time-unit value"); }
2100 }
2101
2102
2103 //------------------------------------------------------------//
2104 //--- Writing snapshots ---//
2105 //------------------------------------------------------------//
2106
2107 #define FP(format, args...) ({ VG_(fprintf)(fp, format, ##args); })
2108
pp_snapshot_SXPt(VgFile * fp,SXPt * sxpt,Int depth,HChar * depth_str,Int depth_str_len,SizeT snapshot_heap_szB,SizeT snapshot_total_szB)2109 static void pp_snapshot_SXPt(VgFile *fp, SXPt* sxpt, Int depth,
2110 HChar* depth_str, Int depth_str_len,
2111 SizeT snapshot_heap_szB, SizeT snapshot_total_szB)
2112 {
2113 Int i, j, n_insig_children_sxpts;
2114 SXPt* child = NULL;
2115
2116 // Used for printing function names. Is made static to keep it out
2117 // of the stack frame -- this function is recursive. Obviously this
2118 // now means its contents are trashed across the recursive call.
2119 const HChar* ip_desc;
2120
2121 switch (sxpt->tag) {
2122 case SigSXPt:
2123 // Print the SXPt itself.
2124 if (0 == depth) {
2125 if (clo_heap) {
2126 ip_desc =
2127 ( clo_pages_as_heap
2128 ? "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc."
2129 : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc."
2130 );
2131 } else {
2132 // XXX: --alloc-fns?
2133
2134 // Nick thinks this case cannot happen. ip_desc would be
2135 // conceptually uninitialised here. Therefore:
2136 tl_assert2(0, "pp_snapshot_SXPt: unexpected");
2137 }
2138 } else {
2139 // If it's main-or-below-main, we (if appropriate) ignore everything
2140 // below it by pretending it has no children.
2141 if ( ! VG_(clo_show_below_main) ) {
2142 Vg_FnNameKind kind = VG_(get_fnname_kind_from_IP)(sxpt->Sig.ip);
2143 if (Vg_FnNameMain == kind || Vg_FnNameBelowMain == kind) {
2144 sxpt->Sig.n_children = 0;
2145 }
2146 }
2147
2148 // We need the -1 to get the line number right, But I'm not sure why.
2149 ip_desc = VG_(describe_IP)(sxpt->Sig.ip-1, NULL);
2150 }
2151
2152 // Do the non-ip_desc part first...
2153 FP("%sn%u: %lu ", depth_str, sxpt->Sig.n_children, sxpt->szB);
2154
2155 // For ip_descs beginning with "0xABCD...:" addresses, we first
2156 // measure the length of the "0xabcd: " address at the start of the
2157 // ip_desc.
2158 j = 0;
2159 if ('0' == ip_desc[0] && 'x' == ip_desc[1]) {
2160 j = 2;
2161 while (True) {
2162 if (ip_desc[j]) {
2163 if (':' == ip_desc[j]) break;
2164 j++;
2165 } else {
2166 tl_assert2(0, "ip_desc has unexpected form: %s\n", ip_desc);
2167 }
2168 }
2169 }
2170 // It used to be that ip_desc was truncated at the end.
2171 // But there does not seem to be a good reason for that. Besides,
2172 // the string was truncated at the right, which is less than ideal.
2173 // Truncation at the beginning of the string would have been preferable.
2174 // Think several nested namespaces in C++....
2175 // Anyhow, we spit out the full-length string now.
2176 FP("%s\n", ip_desc);
2177
2178 // Indent.
2179 tl_assert(depth+1 < depth_str_len-1); // -1 for end NUL char
2180 depth_str[depth+0] = ' ';
2181 depth_str[depth+1] = '\0';
2182
2183 // Sort SXPt's children by szB (reverse order: biggest to smallest).
2184 // Nb: we sort them here, rather than earlier (eg. in dup_XTree), for
2185 // two reasons. First, if we do it during dup_XTree, it can get
2186 // expensive (eg. 15% of execution time for konqueror
2187 // startup/shutdown). Second, this way we get the Insig SXPt (if one
2188 // is present) in its sorted position, not at the end.
2189 VG_(ssort)(sxpt->Sig.children, sxpt->Sig.n_children, sizeof(SXPt*),
2190 SXPt_revcmp_szB);
2191
2192 // Print the SXPt's children. They should already be in sorted order.
2193 n_insig_children_sxpts = 0;
2194 for (i = 0; i < sxpt->Sig.n_children; i++) {
2195 child = sxpt->Sig.children[i];
2196
2197 if (InsigSXPt == child->tag)
2198 n_insig_children_sxpts++;
2199
2200 // Ok, print the child. NB: contents of ip_desc will be
2201 // trashed by this recursive call. Doesn't matter currently,
2202 // but worth noting.
2203 pp_snapshot_SXPt(fp, child, depth+1, depth_str, depth_str_len,
2204 snapshot_heap_szB, snapshot_total_szB);
2205 }
2206
2207 // Unindent.
2208 depth_str[depth+0] = '\0';
2209 depth_str[depth+1] = '\0';
2210
2211 // There should be 0 or 1 Insig children SXPts.
2212 tl_assert(n_insig_children_sxpts <= 1);
2213 break;
2214
2215 case InsigSXPt: {
2216 const HChar* s = ( 1 == sxpt->Insig.n_xpts ? "," : "s, all" );
2217 FP("%sn0: %lu in %d place%s below massif's threshold (%.2f%%)\n",
2218 depth_str, sxpt->szB, sxpt->Insig.n_xpts, s, clo_threshold);
2219 break;
2220 }
2221
2222 default:
2223 tl_assert2(0, "pp_snapshot_SXPt: unrecognised SXPt tag");
2224 }
2225 }
2226
pp_snapshot(VgFile * fp,Snapshot * snapshot,Int snapshot_n)2227 static void pp_snapshot(VgFile *fp, Snapshot* snapshot, Int snapshot_n)
2228 {
2229 sanity_check_snapshot(snapshot);
2230
2231 FP("#-----------\n");
2232 FP("snapshot=%d\n", snapshot_n);
2233 FP("#-----------\n");
2234 FP("time=%lld\n", snapshot->time);
2235 FP("mem_heap_B=%lu\n", snapshot->heap_szB);
2236 FP("mem_heap_extra_B=%lu\n", snapshot->heap_extra_szB);
2237 FP("mem_stacks_B=%lu\n", snapshot->stacks_szB);
2238
2239 if (is_detailed_snapshot(snapshot)) {
2240 // Detailed snapshot -- print heap tree.
2241 Int depth_str_len = clo_depth + 3;
2242 HChar* depth_str = VG_(malloc)("ms.main.pps.1",
2243 sizeof(HChar) * depth_str_len);
2244 SizeT snapshot_total_szB =
2245 snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
2246 depth_str[0] = '\0'; // Initialise depth_str to "".
2247
2248 FP("heap_tree=%s\n", ( Peak == snapshot->kind ? "peak" : "detailed" ));
2249 pp_snapshot_SXPt(fp, snapshot->alloc_sxpt, 0, depth_str,
2250 depth_str_len, snapshot->heap_szB,
2251 snapshot_total_szB);
2252
2253 VG_(free)(depth_str);
2254
2255 } else {
2256 FP("heap_tree=empty\n");
2257 }
2258 }
2259
write_snapshots_to_file(const HChar * massif_out_file,Snapshot snapshots_array[],Int nr_elements)2260 static void write_snapshots_to_file(const HChar* massif_out_file,
2261 Snapshot snapshots_array[],
2262 Int nr_elements)
2263 {
2264 Int i;
2265 VgFile *fp;
2266
2267 fp = VG_(fopen)(massif_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY,
2268 VKI_S_IRUSR|VKI_S_IWUSR);
2269 if (fp == NULL) {
2270 // If the file can't be opened for whatever reason (conflict
2271 // between multiple cachegrinded processes?), give up now.
2272 VG_(umsg)("error: can't open output file '%s'\n", massif_out_file );
2273 VG_(umsg)(" ... so profiling results will be missing.\n");
2274 return;
2275 }
2276
2277 // Print massif-specific options that were used.
2278 // XXX: is it worth having a "desc:" line? Could just call it "options:"
2279 // -- this file format isn't as generic as Cachegrind's, so the
2280 // implied genericity of "desc:" is bogus.
2281 FP("desc:");
2282 for (i = 0; i < VG_(sizeXA)(args_for_massif); i++) {
2283 HChar* arg = *(HChar**)VG_(indexXA)(args_for_massif, i);
2284 FP(" %s", arg);
2285 }
2286 if (0 == i) FP(" (none)");
2287 FP("\n");
2288
2289 // Print "cmd:" line.
2290 FP("cmd: ");
2291 FP("%s", VG_(args_the_exename));
2292 for (i = 0; i < VG_(sizeXA)( VG_(args_for_client) ); i++) {
2293 HChar* arg = * (HChar**) VG_(indexXA)( VG_(args_for_client), i );
2294 FP(" %s", arg);
2295 }
2296 FP("\n");
2297
2298 FP("time_unit: %s\n", TimeUnit_to_string(clo_time_unit));
2299
2300 for (i = 0; i < nr_elements; i++) {
2301 Snapshot* snapshot = & snapshots_array[i];
2302 pp_snapshot(fp, snapshot, i); // Detailed snapshot!
2303 }
2304 VG_(fclose) (fp);
2305 }
2306
write_snapshots_array_to_file(void)2307 static void write_snapshots_array_to_file(void)
2308 {
2309 // Setup output filename. Nb: it's important to do this now, ie. as late
2310 // as possible. If we do it at start-up and the program forks and the
2311 // output file format string contains a %p (pid) specifier, both the
2312 // parent and child will incorrectly write to the same file; this
2313 // happened in 3.3.0.
2314 HChar* massif_out_file =
2315 VG_(expand_file_name)("--massif-out-file", clo_massif_out_file);
2316 write_snapshots_to_file (massif_out_file, snapshots, next_snapshot_i);
2317 VG_(free)(massif_out_file);
2318 }
2319
handle_snapshot_monitor_command(const HChar * filename,Bool detailed)2320 static void handle_snapshot_monitor_command (const HChar *filename,
2321 Bool detailed)
2322 {
2323 Snapshot snapshot;
2324
2325 if (!clo_pages_as_heap && !have_started_executing_code) {
2326 // See comments of variable have_started_executing_code.
2327 VG_(gdb_printf)
2328 ("error: cannot take snapshot before execution has started\n");
2329 return;
2330 }
2331
2332 clear_snapshot(&snapshot, /* do_sanity_check */ False);
2333 take_snapshot(&snapshot, Normal, get_time(), detailed);
2334 write_snapshots_to_file ((filename == NULL) ?
2335 "massif.vgdb.out" : filename,
2336 &snapshot,
2337 1);
2338 delete_snapshot(&snapshot);
2339 }
2340
handle_all_snapshots_monitor_command(const HChar * filename)2341 static void handle_all_snapshots_monitor_command (const HChar *filename)
2342 {
2343 if (!clo_pages_as_heap && !have_started_executing_code) {
2344 // See comments of variable have_started_executing_code.
2345 VG_(gdb_printf)
2346 ("error: cannot take snapshot before execution has started\n");
2347 return;
2348 }
2349
2350 write_snapshots_to_file ((filename == NULL) ?
2351 "massif.vgdb.out" : filename,
2352 snapshots, next_snapshot_i);
2353 }
2354
handle_gdb_monitor_command(ThreadId tid,HChar * req)2355 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req)
2356 {
2357 HChar* wcmd;
2358 HChar s[VG_(strlen(req)) + 1]; /* copy for strtok_r */
2359 HChar *ssaveptr;
2360
2361 VG_(strcpy) (s, req);
2362
2363 wcmd = VG_(strtok_r) (s, " ", &ssaveptr);
2364 switch (VG_(keyword_id) ("help snapshot detailed_snapshot all_snapshots",
2365 wcmd, kwd_report_duplicated_matches)) {
2366 case -2: /* multiple matches */
2367 return True;
2368 case -1: /* not found */
2369 return False;
2370 case 0: /* help */
2371 print_monitor_help();
2372 return True;
2373 case 1: { /* snapshot */
2374 HChar* filename;
2375 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
2376 handle_snapshot_monitor_command (filename, False /* detailed */);
2377 return True;
2378 }
2379 case 2: { /* detailed_snapshot */
2380 HChar* filename;
2381 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
2382 handle_snapshot_monitor_command (filename, True /* detailed */);
2383 return True;
2384 }
2385 case 3: { /* all_snapshots */
2386 HChar* filename;
2387 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
2388 handle_all_snapshots_monitor_command (filename);
2389 return True;
2390 }
2391 default:
2392 tl_assert(0);
2393 return False;
2394 }
2395 }
2396
ms_print_stats(void)2397 static void ms_print_stats (void)
2398 {
2399 #define STATS(format, args...) \
2400 VG_(dmsg)("Massif: " format, ##args)
2401
2402 STATS("heap allocs: %u\n", n_heap_allocs);
2403 STATS("heap reallocs: %u\n", n_heap_reallocs);
2404 STATS("heap frees: %u\n", n_heap_frees);
2405 STATS("ignored heap allocs: %u\n", n_ignored_heap_allocs);
2406 STATS("ignored heap frees: %u\n", n_ignored_heap_frees);
2407 STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs);
2408 STATS("stack allocs: %u\n", n_stack_allocs);
2409 STATS("stack frees: %u\n", n_stack_frees);
2410 STATS("XPts: %u\n", n_xpts);
2411 STATS("top-XPts: %u (%u%%)\n",
2412 alloc_xpt->n_children,
2413 ( n_xpts ? alloc_xpt->n_children * 100 / n_xpts : 0));
2414 STATS("XPt init expansions: %u\n", n_xpt_init_expansions);
2415 STATS("XPt later expansions: %u\n", n_xpt_later_expansions);
2416 STATS("SXPt allocs: %u\n", n_sxpt_allocs);
2417 STATS("SXPt frees: %u\n", n_sxpt_frees);
2418 STATS("skipped snapshots: %u\n", n_skipped_snapshots);
2419 STATS("real snapshots: %u\n", n_real_snapshots);
2420 STATS("detailed snapshots: %u\n", n_detailed_snapshots);
2421 STATS("peak snapshots: %u\n", n_peak_snapshots);
2422 STATS("cullings: %u\n", n_cullings);
2423 STATS("XCon redos: %u\n", n_XCon_redos);
2424 #undef STATS
2425 }
2426
2427 //------------------------------------------------------------//
2428 //--- Finalisation ---//
2429 //------------------------------------------------------------//
2430
ms_fini(Int exit_status)2431 static void ms_fini(Int exit_status)
2432 {
2433 // Output.
2434 write_snapshots_array_to_file();
2435
2436 // Stats
2437 tl_assert(n_xpts > 0); // always have alloc_xpt
2438
2439 if (VG_(clo_stats))
2440 ms_print_stats();
2441 }
2442
2443
2444 //------------------------------------------------------------//
2445 //--- Initialisation ---//
2446 //------------------------------------------------------------//
2447
ms_post_clo_init(void)2448 static void ms_post_clo_init(void)
2449 {
2450 Int i;
2451 HChar* LD_PRELOAD_val;
2452 HChar* s;
2453 HChar* s2;
2454
2455 // Check options.
2456 if (clo_pages_as_heap) {
2457 if (clo_stacks) {
2458 VG_(fmsg_bad_option)("--pages-as-heap=yes",
2459 "Cannot be used together with --stacks=yes");
2460 }
2461 }
2462 if (!clo_heap) {
2463 clo_pages_as_heap = False;
2464 }
2465
2466 // If --pages-as-heap=yes we don't want malloc replacement to occur. So we
2467 // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or
2468 // platform-equivalent). We replace it entirely with spaces because then
2469 // the linker doesn't complain (it does complain if we just change the name
2470 // to a bogus file). This is a bit of a hack, but LD_PRELOAD is setup well
2471 // before tool initialisation, so this seems the best way to do it.
2472 if (clo_pages_as_heap) {
2473 clo_heap_admin = 0; // No heap admin on pages.
2474
2475 LD_PRELOAD_val = VG_(getenv)( VG_(LD_PRELOAD_var_name) );
2476 tl_assert(LD_PRELOAD_val);
2477
2478 // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity.
2479 s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core");
2480 tl_assert(s2);
2481
2482 // Now find the vgpreload_massif-$PLATFORM entry.
2483 s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif");
2484 tl_assert(s2);
2485
2486 // Blank out everything to the previous ':', which must be there because
2487 // of the preceding vgpreload_core-$PLATFORM entry.
2488 for (s = s2; *s != ':'; s--) {
2489 *s = ' ';
2490 }
2491
2492 // Blank out everything to the end of the entry, which will be '\0' if
2493 // LD_PRELOAD was empty before Valgrind started, or ':' otherwise.
2494 for (s = s2; *s != ':' && *s != '\0'; s++) {
2495 *s = ' ';
2496 }
2497 }
2498
2499 // Print alloc-fns and ignore-fns, if necessary.
2500 if (VG_(clo_verbosity) > 1) {
2501 VERB(1, "alloc-fns:\n");
2502 for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) {
2503 HChar** fn_ptr = VG_(indexXA)(alloc_fns, i);
2504 VERB(1, " %s\n", *fn_ptr);
2505 }
2506
2507 VERB(1, "ignore-fns:\n");
2508 if (0 == VG_(sizeXA)(ignore_fns)) {
2509 VERB(1, " <empty>\n");
2510 }
2511 for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) {
2512 HChar** fn_ptr = VG_(indexXA)(ignore_fns, i);
2513 VERB(1, " %d: %s\n", i, *fn_ptr);
2514 }
2515 }
2516
2517 // Events to track.
2518 if (clo_stacks) {
2519 VG_(track_new_mem_stack) ( new_mem_stack );
2520 VG_(track_die_mem_stack) ( die_mem_stack );
2521 VG_(track_new_mem_stack_signal) ( new_mem_stack_signal );
2522 VG_(track_die_mem_stack_signal) ( die_mem_stack_signal );
2523 }
2524
2525 if (clo_pages_as_heap) {
2526 VG_(track_new_mem_startup) ( ms_new_mem_startup );
2527 VG_(track_new_mem_brk) ( ms_new_mem_brk );
2528 VG_(track_new_mem_mmap) ( ms_new_mem_mmap );
2529
2530 VG_(track_copy_mem_remap) ( ms_copy_mem_remap );
2531
2532 VG_(track_die_mem_brk) ( ms_die_mem_brk );
2533 VG_(track_die_mem_munmap) ( ms_die_mem_munmap );
2534 }
2535
2536 // Initialise snapshot array, and sanity-check it.
2537 snapshots = VG_(malloc)("ms.main.mpoci.1",
2538 sizeof(Snapshot) * clo_max_snapshots);
2539 // We don't want to do snapshot sanity checks here, because they're
2540 // currently uninitialised.
2541 for (i = 0; i < clo_max_snapshots; i++) {
2542 clear_snapshot( & snapshots[i], /*do_sanity_check*/False );
2543 }
2544 sanity_check_snapshots_array();
2545 }
2546
ms_pre_clo_init(void)2547 static void ms_pre_clo_init(void)
2548 {
2549 VG_(details_name) ("Massif");
2550 VG_(details_version) (NULL);
2551 VG_(details_description) ("a heap profiler");
2552 VG_(details_copyright_author)(
2553 "Copyright (C) 2003-2015, and GNU GPL'd, by Nicholas Nethercote");
2554 VG_(details_bug_reports_to) (VG_BUGS_TO);
2555
2556 VG_(details_avg_translation_sizeB) ( 330 );
2557
2558 VG_(clo_vex_control).iropt_register_updates_default
2559 = VG_(clo_px_file_backed)
2560 = VexRegUpdSpAtMemAccess; // overridable by the user.
2561
2562 // Basic functions.
2563 VG_(basic_tool_funcs) (ms_post_clo_init,
2564 ms_instrument,
2565 ms_fini);
2566
2567 // Needs.
2568 VG_(needs_libc_freeres)();
2569 VG_(needs_command_line_options)(ms_process_cmd_line_option,
2570 ms_print_usage,
2571 ms_print_debug_usage);
2572 VG_(needs_client_requests) (ms_handle_client_request);
2573 VG_(needs_sanity_checks) (ms_cheap_sanity_check,
2574 ms_expensive_sanity_check);
2575 VG_(needs_print_stats) (ms_print_stats);
2576 VG_(needs_malloc_replacement) (ms_malloc,
2577 ms___builtin_new,
2578 ms___builtin_vec_new,
2579 ms_memalign,
2580 ms_calloc,
2581 ms_free,
2582 ms___builtin_delete,
2583 ms___builtin_vec_delete,
2584 ms_realloc,
2585 ms_malloc_usable_size,
2586 0 );
2587
2588 // HP_Chunks.
2589 malloc_list = VG_(HT_construct)( "Massif's malloc list" );
2590
2591 // Dummy node at top of the context structure.
2592 alloc_xpt = new_XPt(/*ip*/0, /*parent*/NULL);
2593
2594 // Initialise alloc_fns and ignore_fns.
2595 init_alloc_fns();
2596 init_ignore_fns();
2597
2598 // Initialise args_for_massif.
2599 args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1",
2600 VG_(free), sizeof(HChar*));
2601 }
2602
2603 VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init)
2604
2605 //--------------------------------------------------------------------//
2606 //--- end ---//
2607 //--------------------------------------------------------------------//
2608