1 // Copyright 2008 Google Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31 
32 // This sample shows how to test common properties of multiple
33 // implementations of the same interface (aka interface tests).
34 
35 // The interface and its implementations are in this header.
36 #include "prime_tables.h"
37 
38 #include "gtest/gtest.h"
39 
40 // First, we define some factory functions for creating instances of
41 // the implementations.  You may be able to skip this step if all your
42 // implementations can be constructed the same way.
43 
44 template <class T>
45 PrimeTable* CreatePrimeTable();
46 
47 template <>
CreatePrimeTable()48 PrimeTable* CreatePrimeTable<OnTheFlyPrimeTable>() {
49   return new OnTheFlyPrimeTable;
50 }
51 
52 template <>
CreatePrimeTable()53 PrimeTable* CreatePrimeTable<PreCalculatedPrimeTable>() {
54   return new PreCalculatedPrimeTable(10000);
55 }
56 
57 // Then we define a test fixture class template.
58 template <class T>
59 class PrimeTableTest : public testing::Test {
60  protected:
61   // The ctor calls the factory function to create a prime table
62   // implemented by T.
PrimeTableTest()63   PrimeTableTest() : table_(CreatePrimeTable<T>()) {}
64 
~PrimeTableTest()65   virtual ~PrimeTableTest() { delete table_; }
66 
67   // Note that we test an implementation via the base interface
68   // instead of the actual implementation class.  This is important
69   // for keeping the tests close to the real world scenario, where the
70   // implementation is invoked via the base interface.  It avoids
71   // got-yas where the implementation class has a method that shadows
72   // a method with the same name (but slightly different argument
73   // types) in the base interface, for example.
74   PrimeTable* const table_;
75 };
76 
77 #if GTEST_HAS_TYPED_TEST
78 
79 using testing::Types;
80 
81 // Google Test offers two ways for reusing tests for different types.
82 // The first is called "typed tests".  You should use it if you
83 // already know *all* the types you are gonna exercise when you write
84 // the tests.
85 
86 // To write a typed test case, first use
87 //
88 //   TYPED_TEST_CASE(TestCaseName, TypeList);
89 //
90 // to declare it and specify the type parameters.  As with TEST_F,
91 // TestCaseName must match the test fixture name.
92 
93 // The list of types we want to test.
94 typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable> Implementations;
95 
96 TYPED_TEST_CASE(PrimeTableTest, Implementations);
97 
98 // Then use TYPED_TEST(TestCaseName, TestName) to define a typed test,
99 // similar to TEST_F.
TYPED_TEST(PrimeTableTest,ReturnsFalseForNonPrimes)100 TYPED_TEST(PrimeTableTest, ReturnsFalseForNonPrimes) {
101   // Inside the test body, you can refer to the type parameter by
102   // TypeParam, and refer to the fixture class by TestFixture.  We
103   // don't need them in this example.
104 
105   // Since we are in the template world, C++ requires explicitly
106   // writing 'this->' when referring to members of the fixture class.
107   // This is something you have to learn to live with.
108   EXPECT_FALSE(this->table_->IsPrime(-5));
109   EXPECT_FALSE(this->table_->IsPrime(0));
110   EXPECT_FALSE(this->table_->IsPrime(1));
111   EXPECT_FALSE(this->table_->IsPrime(4));
112   EXPECT_FALSE(this->table_->IsPrime(6));
113   EXPECT_FALSE(this->table_->IsPrime(100));
114 }
115 
TYPED_TEST(PrimeTableTest,ReturnsTrueForPrimes)116 TYPED_TEST(PrimeTableTest, ReturnsTrueForPrimes) {
117   EXPECT_TRUE(this->table_->IsPrime(2));
118   EXPECT_TRUE(this->table_->IsPrime(3));
119   EXPECT_TRUE(this->table_->IsPrime(5));
120   EXPECT_TRUE(this->table_->IsPrime(7));
121   EXPECT_TRUE(this->table_->IsPrime(11));
122   EXPECT_TRUE(this->table_->IsPrime(131));
123 }
124 
TYPED_TEST(PrimeTableTest,CanGetNextPrime)125 TYPED_TEST(PrimeTableTest, CanGetNextPrime) {
126   EXPECT_EQ(2, this->table_->GetNextPrime(0));
127   EXPECT_EQ(3, this->table_->GetNextPrime(2));
128   EXPECT_EQ(5, this->table_->GetNextPrime(3));
129   EXPECT_EQ(7, this->table_->GetNextPrime(5));
130   EXPECT_EQ(11, this->table_->GetNextPrime(7));
131   EXPECT_EQ(131, this->table_->GetNextPrime(128));
132 }
133 
134 // That's it!  Google Test will repeat each TYPED_TEST for each type
135 // in the type list specified in TYPED_TEST_CASE.  Sit back and be
136 // happy that you don't have to define them multiple times.
137 
138 #endif  // GTEST_HAS_TYPED_TEST
139 
140 #if GTEST_HAS_TYPED_TEST_P
141 
142 using testing::Types;
143 
144 // Sometimes, however, you don't yet know all the types that you want
145 // to test when you write the tests.  For example, if you are the
146 // author of an interface and expect other people to implement it, you
147 // might want to write a set of tests to make sure each implementation
148 // conforms to some basic requirements, but you don't know what
149 // implementations will be written in the future.
150 //
151 // How can you write the tests without committing to the type
152 // parameters?  That's what "type-parameterized tests" can do for you.
153 // It is a bit more involved than typed tests, but in return you get a
154 // test pattern that can be reused in many contexts, which is a big
155 // win.  Here's how you do it:
156 
157 // First, define a test fixture class template.  Here we just reuse
158 // the PrimeTableTest fixture defined earlier:
159 
160 template <class T>
161 class PrimeTableTest2 : public PrimeTableTest<T> {
162 };
163 
164 // Then, declare the test case.  The argument is the name of the test
165 // fixture, and also the name of the test case (as usual).  The _P
166 // suffix is for "parameterized" or "pattern".
167 TYPED_TEST_CASE_P(PrimeTableTest2);
168 
169 // Next, use TYPED_TEST_P(TestCaseName, TestName) to define a test,
170 // similar to what you do with TEST_F.
TYPED_TEST_P(PrimeTableTest2,ReturnsFalseForNonPrimes)171 TYPED_TEST_P(PrimeTableTest2, ReturnsFalseForNonPrimes) {
172   EXPECT_FALSE(this->table_->IsPrime(-5));
173   EXPECT_FALSE(this->table_->IsPrime(0));
174   EXPECT_FALSE(this->table_->IsPrime(1));
175   EXPECT_FALSE(this->table_->IsPrime(4));
176   EXPECT_FALSE(this->table_->IsPrime(6));
177   EXPECT_FALSE(this->table_->IsPrime(100));
178 }
179 
TYPED_TEST_P(PrimeTableTest2,ReturnsTrueForPrimes)180 TYPED_TEST_P(PrimeTableTest2, ReturnsTrueForPrimes) {
181   EXPECT_TRUE(this->table_->IsPrime(2));
182   EXPECT_TRUE(this->table_->IsPrime(3));
183   EXPECT_TRUE(this->table_->IsPrime(5));
184   EXPECT_TRUE(this->table_->IsPrime(7));
185   EXPECT_TRUE(this->table_->IsPrime(11));
186   EXPECT_TRUE(this->table_->IsPrime(131));
187 }
188 
TYPED_TEST_P(PrimeTableTest2,CanGetNextPrime)189 TYPED_TEST_P(PrimeTableTest2, CanGetNextPrime) {
190   EXPECT_EQ(2, this->table_->GetNextPrime(0));
191   EXPECT_EQ(3, this->table_->GetNextPrime(2));
192   EXPECT_EQ(5, this->table_->GetNextPrime(3));
193   EXPECT_EQ(7, this->table_->GetNextPrime(5));
194   EXPECT_EQ(11, this->table_->GetNextPrime(7));
195   EXPECT_EQ(131, this->table_->GetNextPrime(128));
196 }
197 
198 // Type-parameterized tests involve one extra step: you have to
199 // enumerate the tests you defined:
200 REGISTER_TYPED_TEST_CASE_P(
201     PrimeTableTest2,  // The first argument is the test case name.
202     // The rest of the arguments are the test names.
203     ReturnsFalseForNonPrimes, ReturnsTrueForPrimes, CanGetNextPrime);
204 
205 // At this point the test pattern is done.  However, you don't have
206 // any real test yet as you haven't said which types you want to run
207 // the tests with.
208 
209 // To turn the abstract test pattern into real tests, you instantiate
210 // it with a list of types.  Usually the test pattern will be defined
211 // in a .h file, and anyone can #include and instantiate it.  You can
212 // even instantiate it more than once in the same program.  To tell
213 // different instances apart, you give each of them a name, which will
214 // become part of the test case name and can be used in test filters.
215 
216 // The list of types we want to test.  Note that it doesn't have to be
217 // defined at the time we write the TYPED_TEST_P()s.
218 typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable>
219     PrimeTableImplementations;
220 INSTANTIATE_TYPED_TEST_CASE_P(OnTheFlyAndPreCalculated,    // Instance name
221                               PrimeTableTest2,             // Test case name
222                               PrimeTableImplementations);  // Type list
223 
224 #endif  // GTEST_HAS_TYPED_TEST_P
225