1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Speed-critical encoding functions.
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13
14 #include <assert.h>
15 #include <stdlib.h> // for abs()
16
17 #include "./dsp.h"
18 #include "../enc/vp8enci.h"
19
clip_8b(int v)20 static WEBP_INLINE uint8_t clip_8b(int v) {
21 return (!(v & ~0xff)) ? v : (v < 0) ? 0 : 255;
22 }
23
clip_max(int v,int max)24 static WEBP_INLINE int clip_max(int v, int max) {
25 return (v > max) ? max : v;
26 }
27
28 //------------------------------------------------------------------------------
29 // Compute susceptibility based on DCT-coeff histograms:
30 // the higher, the "easier" the macroblock is to compress.
31
32 const int VP8DspScan[16 + 4 + 4] = {
33 // Luma
34 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
35 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
36 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
37 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS,
38
39 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U
40 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V
41 };
42
43 // general-purpose util function
VP8SetHistogramData(const int distribution[MAX_COEFF_THRESH+1],VP8Histogram * const histo)44 void VP8SetHistogramData(const int distribution[MAX_COEFF_THRESH + 1],
45 VP8Histogram* const histo) {
46 int max_value = 0, last_non_zero = 1;
47 int k;
48 for (k = 0; k <= MAX_COEFF_THRESH; ++k) {
49 const int value = distribution[k];
50 if (value > 0) {
51 if (value > max_value) max_value = value;
52 last_non_zero = k;
53 }
54 }
55 histo->max_value = max_value;
56 histo->last_non_zero = last_non_zero;
57 }
58
CollectHistogram(const uint8_t * ref,const uint8_t * pred,int start_block,int end_block,VP8Histogram * const histo)59 static void CollectHistogram(const uint8_t* ref, const uint8_t* pred,
60 int start_block, int end_block,
61 VP8Histogram* const histo) {
62 int j;
63 int distribution[MAX_COEFF_THRESH + 1] = { 0 };
64 for (j = start_block; j < end_block; ++j) {
65 int k;
66 int16_t out[16];
67
68 VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
69
70 // Convert coefficients to bin.
71 for (k = 0; k < 16; ++k) {
72 const int v = abs(out[k]) >> 3; // TODO(skal): add rounding?
73 const int clipped_value = clip_max(v, MAX_COEFF_THRESH);
74 ++distribution[clipped_value];
75 }
76 }
77 VP8SetHistogramData(distribution, histo);
78 }
79
80 //------------------------------------------------------------------------------
81 // run-time tables (~4k)
82
83 static uint8_t clip1[255 + 510 + 1]; // clips [-255,510] to [0,255]
84
85 // We declare this variable 'volatile' to prevent instruction reordering
86 // and make sure it's set to true _last_ (so as to be thread-safe)
87 static volatile int tables_ok = 0;
88
InitTables(void)89 static WEBP_TSAN_IGNORE_FUNCTION void InitTables(void) {
90 if (!tables_ok) {
91 int i;
92 for (i = -255; i <= 255 + 255; ++i) {
93 clip1[255 + i] = clip_8b(i);
94 }
95 tables_ok = 1;
96 }
97 }
98
99
100 //------------------------------------------------------------------------------
101 // Transforms (Paragraph 14.4)
102
103 #define STORE(x, y, v) \
104 dst[(x) + (y) * BPS] = clip_8b(ref[(x) + (y) * BPS] + ((v) >> 3))
105
106 static const int kC1 = 20091 + (1 << 16);
107 static const int kC2 = 35468;
108 #define MUL(a, b) (((a) * (b)) >> 16)
109
ITransformOne(const uint8_t * ref,const int16_t * in,uint8_t * dst)110 static WEBP_INLINE void ITransformOne(const uint8_t* ref, const int16_t* in,
111 uint8_t* dst) {
112 int C[4 * 4], *tmp;
113 int i;
114 tmp = C;
115 for (i = 0; i < 4; ++i) { // vertical pass
116 const int a = in[0] + in[8];
117 const int b = in[0] - in[8];
118 const int c = MUL(in[4], kC2) - MUL(in[12], kC1);
119 const int d = MUL(in[4], kC1) + MUL(in[12], kC2);
120 tmp[0] = a + d;
121 tmp[1] = b + c;
122 tmp[2] = b - c;
123 tmp[3] = a - d;
124 tmp += 4;
125 in++;
126 }
127
128 tmp = C;
129 for (i = 0; i < 4; ++i) { // horizontal pass
130 const int dc = tmp[0] + 4;
131 const int a = dc + tmp[8];
132 const int b = dc - tmp[8];
133 const int c = MUL(tmp[4], kC2) - MUL(tmp[12], kC1);
134 const int d = MUL(tmp[4], kC1) + MUL(tmp[12], kC2);
135 STORE(0, i, a + d);
136 STORE(1, i, b + c);
137 STORE(2, i, b - c);
138 STORE(3, i, a - d);
139 tmp++;
140 }
141 }
142
ITransform(const uint8_t * ref,const int16_t * in,uint8_t * dst,int do_two)143 static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst,
144 int do_two) {
145 ITransformOne(ref, in, dst);
146 if (do_two) {
147 ITransformOne(ref + 4, in + 16, dst + 4);
148 }
149 }
150
FTransform(const uint8_t * src,const uint8_t * ref,int16_t * out)151 static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) {
152 int i;
153 int tmp[16];
154 for (i = 0; i < 4; ++i, src += BPS, ref += BPS) {
155 const int d0 = src[0] - ref[0]; // 9bit dynamic range ([-255,255])
156 const int d1 = src[1] - ref[1];
157 const int d2 = src[2] - ref[2];
158 const int d3 = src[3] - ref[3];
159 const int a0 = (d0 + d3); // 10b [-510,510]
160 const int a1 = (d1 + d2);
161 const int a2 = (d1 - d2);
162 const int a3 = (d0 - d3);
163 tmp[0 + i * 4] = (a0 + a1) * 8; // 14b [-8160,8160]
164 tmp[1 + i * 4] = (a2 * 2217 + a3 * 5352 + 1812) >> 9; // [-7536,7542]
165 tmp[2 + i * 4] = (a0 - a1) * 8;
166 tmp[3 + i * 4] = (a3 * 2217 - a2 * 5352 + 937) >> 9;
167 }
168 for (i = 0; i < 4; ++i) {
169 const int a0 = (tmp[0 + i] + tmp[12 + i]); // 15b
170 const int a1 = (tmp[4 + i] + tmp[ 8 + i]);
171 const int a2 = (tmp[4 + i] - tmp[ 8 + i]);
172 const int a3 = (tmp[0 + i] - tmp[12 + i]);
173 out[0 + i] = (a0 + a1 + 7) >> 4; // 12b
174 out[4 + i] = ((a2 * 2217 + a3 * 5352 + 12000) >> 16) + (a3 != 0);
175 out[8 + i] = (a0 - a1 + 7) >> 4;
176 out[12+ i] = ((a3 * 2217 - a2 * 5352 + 51000) >> 16);
177 }
178 }
179
FTransform2(const uint8_t * src,const uint8_t * ref,int16_t * out)180 static void FTransform2(const uint8_t* src, const uint8_t* ref, int16_t* out) {
181 VP8FTransform(src, ref, out);
182 VP8FTransform(src + 4, ref + 4, out + 16);
183 }
184
FTransformWHT(const int16_t * in,int16_t * out)185 static void FTransformWHT(const int16_t* in, int16_t* out) {
186 // input is 12b signed
187 int32_t tmp[16];
188 int i;
189 for (i = 0; i < 4; ++i, in += 64) {
190 const int a0 = (in[0 * 16] + in[2 * 16]); // 13b
191 const int a1 = (in[1 * 16] + in[3 * 16]);
192 const int a2 = (in[1 * 16] - in[3 * 16]);
193 const int a3 = (in[0 * 16] - in[2 * 16]);
194 tmp[0 + i * 4] = a0 + a1; // 14b
195 tmp[1 + i * 4] = a3 + a2;
196 tmp[2 + i * 4] = a3 - a2;
197 tmp[3 + i * 4] = a0 - a1;
198 }
199 for (i = 0; i < 4; ++i) {
200 const int a0 = (tmp[0 + i] + tmp[8 + i]); // 15b
201 const int a1 = (tmp[4 + i] + tmp[12+ i]);
202 const int a2 = (tmp[4 + i] - tmp[12+ i]);
203 const int a3 = (tmp[0 + i] - tmp[8 + i]);
204 const int b0 = a0 + a1; // 16b
205 const int b1 = a3 + a2;
206 const int b2 = a3 - a2;
207 const int b3 = a0 - a1;
208 out[ 0 + i] = b0 >> 1; // 15b
209 out[ 4 + i] = b1 >> 1;
210 out[ 8 + i] = b2 >> 1;
211 out[12 + i] = b3 >> 1;
212 }
213 }
214
215 #undef MUL
216 #undef STORE
217
218 //------------------------------------------------------------------------------
219 // Intra predictions
220
Fill(uint8_t * dst,int value,int size)221 static WEBP_INLINE void Fill(uint8_t* dst, int value, int size) {
222 int j;
223 for (j = 0; j < size; ++j) {
224 memset(dst + j * BPS, value, size);
225 }
226 }
227
VerticalPred(uint8_t * dst,const uint8_t * top,int size)228 static WEBP_INLINE void VerticalPred(uint8_t* dst,
229 const uint8_t* top, int size) {
230 int j;
231 if (top != NULL) {
232 for (j = 0; j < size; ++j) memcpy(dst + j * BPS, top, size);
233 } else {
234 Fill(dst, 127, size);
235 }
236 }
237
HorizontalPred(uint8_t * dst,const uint8_t * left,int size)238 static WEBP_INLINE void HorizontalPred(uint8_t* dst,
239 const uint8_t* left, int size) {
240 if (left != NULL) {
241 int j;
242 for (j = 0; j < size; ++j) {
243 memset(dst + j * BPS, left[j], size);
244 }
245 } else {
246 Fill(dst, 129, size);
247 }
248 }
249
TrueMotion(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)250 static WEBP_INLINE void TrueMotion(uint8_t* dst, const uint8_t* left,
251 const uint8_t* top, int size) {
252 int y;
253 if (left != NULL) {
254 if (top != NULL) {
255 const uint8_t* const clip = clip1 + 255 - left[-1];
256 for (y = 0; y < size; ++y) {
257 const uint8_t* const clip_table = clip + left[y];
258 int x;
259 for (x = 0; x < size; ++x) {
260 dst[x] = clip_table[top[x]];
261 }
262 dst += BPS;
263 }
264 } else {
265 HorizontalPred(dst, left, size);
266 }
267 } else {
268 // true motion without left samples (hence: with default 129 value)
269 // is equivalent to VE prediction where you just copy the top samples.
270 // Note that if top samples are not available, the default value is
271 // then 129, and not 127 as in the VerticalPred case.
272 if (top != NULL) {
273 VerticalPred(dst, top, size);
274 } else {
275 Fill(dst, 129, size);
276 }
277 }
278 }
279
DCMode(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size,int round,int shift)280 static WEBP_INLINE void DCMode(uint8_t* dst, const uint8_t* left,
281 const uint8_t* top,
282 int size, int round, int shift) {
283 int DC = 0;
284 int j;
285 if (top != NULL) {
286 for (j = 0; j < size; ++j) DC += top[j];
287 if (left != NULL) { // top and left present
288 for (j = 0; j < size; ++j) DC += left[j];
289 } else { // top, but no left
290 DC += DC;
291 }
292 DC = (DC + round) >> shift;
293 } else if (left != NULL) { // left but no top
294 for (j = 0; j < size; ++j) DC += left[j];
295 DC += DC;
296 DC = (DC + round) >> shift;
297 } else { // no top, no left, nothing.
298 DC = 0x80;
299 }
300 Fill(dst, DC, size);
301 }
302
303 //------------------------------------------------------------------------------
304 // Chroma 8x8 prediction (paragraph 12.2)
305
IntraChromaPreds(uint8_t * dst,const uint8_t * left,const uint8_t * top)306 static void IntraChromaPreds(uint8_t* dst, const uint8_t* left,
307 const uint8_t* top) {
308 // U block
309 DCMode(C8DC8 + dst, left, top, 8, 8, 4);
310 VerticalPred(C8VE8 + dst, top, 8);
311 HorizontalPred(C8HE8 + dst, left, 8);
312 TrueMotion(C8TM8 + dst, left, top, 8);
313 // V block
314 dst += 8;
315 if (top != NULL) top += 8;
316 if (left != NULL) left += 16;
317 DCMode(C8DC8 + dst, left, top, 8, 8, 4);
318 VerticalPred(C8VE8 + dst, top, 8);
319 HorizontalPred(C8HE8 + dst, left, 8);
320 TrueMotion(C8TM8 + dst, left, top, 8);
321 }
322
323 //------------------------------------------------------------------------------
324 // luma 16x16 prediction (paragraph 12.3)
325
Intra16Preds(uint8_t * dst,const uint8_t * left,const uint8_t * top)326 static void Intra16Preds(uint8_t* dst,
327 const uint8_t* left, const uint8_t* top) {
328 DCMode(I16DC16 + dst, left, top, 16, 16, 5);
329 VerticalPred(I16VE16 + dst, top, 16);
330 HorizontalPred(I16HE16 + dst, left, 16);
331 TrueMotion(I16TM16 + dst, left, top, 16);
332 }
333
334 //------------------------------------------------------------------------------
335 // luma 4x4 prediction
336
337 #define DST(x, y) dst[(x) + (y) * BPS]
338 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
339 #define AVG2(a, b) (((a) + (b) + 1) >> 1)
340
VE4(uint8_t * dst,const uint8_t * top)341 static void VE4(uint8_t* dst, const uint8_t* top) { // vertical
342 const uint8_t vals[4] = {
343 AVG3(top[-1], top[0], top[1]),
344 AVG3(top[ 0], top[1], top[2]),
345 AVG3(top[ 1], top[2], top[3]),
346 AVG3(top[ 2], top[3], top[4])
347 };
348 int i;
349 for (i = 0; i < 4; ++i) {
350 memcpy(dst + i * BPS, vals, 4);
351 }
352 }
353
HE4(uint8_t * dst,const uint8_t * top)354 static void HE4(uint8_t* dst, const uint8_t* top) { // horizontal
355 const int X = top[-1];
356 const int I = top[-2];
357 const int J = top[-3];
358 const int K = top[-4];
359 const int L = top[-5];
360 WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
361 WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
362 WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
363 WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
364 }
365
DC4(uint8_t * dst,const uint8_t * top)366 static void DC4(uint8_t* dst, const uint8_t* top) {
367 uint32_t dc = 4;
368 int i;
369 for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
370 Fill(dst, dc >> 3, 4);
371 }
372
RD4(uint8_t * dst,const uint8_t * top)373 static void RD4(uint8_t* dst, const uint8_t* top) {
374 const int X = top[-1];
375 const int I = top[-2];
376 const int J = top[-3];
377 const int K = top[-4];
378 const int L = top[-5];
379 const int A = top[0];
380 const int B = top[1];
381 const int C = top[2];
382 const int D = top[3];
383 DST(0, 3) = AVG3(J, K, L);
384 DST(0, 2) = DST(1, 3) = AVG3(I, J, K);
385 DST(0, 1) = DST(1, 2) = DST(2, 3) = AVG3(X, I, J);
386 DST(0, 0) = DST(1, 1) = DST(2, 2) = DST(3, 3) = AVG3(A, X, I);
387 DST(1, 0) = DST(2, 1) = DST(3, 2) = AVG3(B, A, X);
388 DST(2, 0) = DST(3, 1) = AVG3(C, B, A);
389 DST(3, 0) = AVG3(D, C, B);
390 }
391
LD4(uint8_t * dst,const uint8_t * top)392 static void LD4(uint8_t* dst, const uint8_t* top) {
393 const int A = top[0];
394 const int B = top[1];
395 const int C = top[2];
396 const int D = top[3];
397 const int E = top[4];
398 const int F = top[5];
399 const int G = top[6];
400 const int H = top[7];
401 DST(0, 0) = AVG3(A, B, C);
402 DST(1, 0) = DST(0, 1) = AVG3(B, C, D);
403 DST(2, 0) = DST(1, 1) = DST(0, 2) = AVG3(C, D, E);
404 DST(3, 0) = DST(2, 1) = DST(1, 2) = DST(0, 3) = AVG3(D, E, F);
405 DST(3, 1) = DST(2, 2) = DST(1, 3) = AVG3(E, F, G);
406 DST(3, 2) = DST(2, 3) = AVG3(F, G, H);
407 DST(3, 3) = AVG3(G, H, H);
408 }
409
VR4(uint8_t * dst,const uint8_t * top)410 static void VR4(uint8_t* dst, const uint8_t* top) {
411 const int X = top[-1];
412 const int I = top[-2];
413 const int J = top[-3];
414 const int K = top[-4];
415 const int A = top[0];
416 const int B = top[1];
417 const int C = top[2];
418 const int D = top[3];
419 DST(0, 0) = DST(1, 2) = AVG2(X, A);
420 DST(1, 0) = DST(2, 2) = AVG2(A, B);
421 DST(2, 0) = DST(3, 2) = AVG2(B, C);
422 DST(3, 0) = AVG2(C, D);
423
424 DST(0, 3) = AVG3(K, J, I);
425 DST(0, 2) = AVG3(J, I, X);
426 DST(0, 1) = DST(1, 3) = AVG3(I, X, A);
427 DST(1, 1) = DST(2, 3) = AVG3(X, A, B);
428 DST(2, 1) = DST(3, 3) = AVG3(A, B, C);
429 DST(3, 1) = AVG3(B, C, D);
430 }
431
VL4(uint8_t * dst,const uint8_t * top)432 static void VL4(uint8_t* dst, const uint8_t* top) {
433 const int A = top[0];
434 const int B = top[1];
435 const int C = top[2];
436 const int D = top[3];
437 const int E = top[4];
438 const int F = top[5];
439 const int G = top[6];
440 const int H = top[7];
441 DST(0, 0) = AVG2(A, B);
442 DST(1, 0) = DST(0, 2) = AVG2(B, C);
443 DST(2, 0) = DST(1, 2) = AVG2(C, D);
444 DST(3, 0) = DST(2, 2) = AVG2(D, E);
445
446 DST(0, 1) = AVG3(A, B, C);
447 DST(1, 1) = DST(0, 3) = AVG3(B, C, D);
448 DST(2, 1) = DST(1, 3) = AVG3(C, D, E);
449 DST(3, 1) = DST(2, 3) = AVG3(D, E, F);
450 DST(3, 2) = AVG3(E, F, G);
451 DST(3, 3) = AVG3(F, G, H);
452 }
453
HU4(uint8_t * dst,const uint8_t * top)454 static void HU4(uint8_t* dst, const uint8_t* top) {
455 const int I = top[-2];
456 const int J = top[-3];
457 const int K = top[-4];
458 const int L = top[-5];
459 DST(0, 0) = AVG2(I, J);
460 DST(2, 0) = DST(0, 1) = AVG2(J, K);
461 DST(2, 1) = DST(0, 2) = AVG2(K, L);
462 DST(1, 0) = AVG3(I, J, K);
463 DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
464 DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
465 DST(3, 2) = DST(2, 2) =
466 DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
467 }
468
HD4(uint8_t * dst,const uint8_t * top)469 static void HD4(uint8_t* dst, const uint8_t* top) {
470 const int X = top[-1];
471 const int I = top[-2];
472 const int J = top[-3];
473 const int K = top[-4];
474 const int L = top[-5];
475 const int A = top[0];
476 const int B = top[1];
477 const int C = top[2];
478
479 DST(0, 0) = DST(2, 1) = AVG2(I, X);
480 DST(0, 1) = DST(2, 2) = AVG2(J, I);
481 DST(0, 2) = DST(2, 3) = AVG2(K, J);
482 DST(0, 3) = AVG2(L, K);
483
484 DST(3, 0) = AVG3(A, B, C);
485 DST(2, 0) = AVG3(X, A, B);
486 DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
487 DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
488 DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
489 DST(1, 3) = AVG3(L, K, J);
490 }
491
TM4(uint8_t * dst,const uint8_t * top)492 static void TM4(uint8_t* dst, const uint8_t* top) {
493 int x, y;
494 const uint8_t* const clip = clip1 + 255 - top[-1];
495 for (y = 0; y < 4; ++y) {
496 const uint8_t* const clip_table = clip + top[-2 - y];
497 for (x = 0; x < 4; ++x) {
498 dst[x] = clip_table[top[x]];
499 }
500 dst += BPS;
501 }
502 }
503
504 #undef DST
505 #undef AVG3
506 #undef AVG2
507
508 // Left samples are top[-5 .. -2], top_left is top[-1], top are
509 // located at top[0..3], and top right is top[4..7]
Intra4Preds(uint8_t * dst,const uint8_t * top)510 static void Intra4Preds(uint8_t* dst, const uint8_t* top) {
511 DC4(I4DC4 + dst, top);
512 TM4(I4TM4 + dst, top);
513 VE4(I4VE4 + dst, top);
514 HE4(I4HE4 + dst, top);
515 RD4(I4RD4 + dst, top);
516 VR4(I4VR4 + dst, top);
517 LD4(I4LD4 + dst, top);
518 VL4(I4VL4 + dst, top);
519 HD4(I4HD4 + dst, top);
520 HU4(I4HU4 + dst, top);
521 }
522
523 //------------------------------------------------------------------------------
524 // Metric
525
GetSSE(const uint8_t * a,const uint8_t * b,int w,int h)526 static WEBP_INLINE int GetSSE(const uint8_t* a, const uint8_t* b,
527 int w, int h) {
528 int count = 0;
529 int y, x;
530 for (y = 0; y < h; ++y) {
531 for (x = 0; x < w; ++x) {
532 const int diff = (int)a[x] - b[x];
533 count += diff * diff;
534 }
535 a += BPS;
536 b += BPS;
537 }
538 return count;
539 }
540
SSE16x16(const uint8_t * a,const uint8_t * b)541 static int SSE16x16(const uint8_t* a, const uint8_t* b) {
542 return GetSSE(a, b, 16, 16);
543 }
SSE16x8(const uint8_t * a,const uint8_t * b)544 static int SSE16x8(const uint8_t* a, const uint8_t* b) {
545 return GetSSE(a, b, 16, 8);
546 }
SSE8x8(const uint8_t * a,const uint8_t * b)547 static int SSE8x8(const uint8_t* a, const uint8_t* b) {
548 return GetSSE(a, b, 8, 8);
549 }
SSE4x4(const uint8_t * a,const uint8_t * b)550 static int SSE4x4(const uint8_t* a, const uint8_t* b) {
551 return GetSSE(a, b, 4, 4);
552 }
553
554 //------------------------------------------------------------------------------
555 // Texture distortion
556 //
557 // We try to match the spectral content (weighted) between source and
558 // reconstructed samples.
559
560 // Hadamard transform
561 // Returns the weighted sum of the absolute value of transformed coefficients.
TTransform(const uint8_t * in,const uint16_t * w)562 static int TTransform(const uint8_t* in, const uint16_t* w) {
563 int sum = 0;
564 int tmp[16];
565 int i;
566 // horizontal pass
567 for (i = 0; i < 4; ++i, in += BPS) {
568 const int a0 = in[0] + in[2];
569 const int a1 = in[1] + in[3];
570 const int a2 = in[1] - in[3];
571 const int a3 = in[0] - in[2];
572 tmp[0 + i * 4] = a0 + a1;
573 tmp[1 + i * 4] = a3 + a2;
574 tmp[2 + i * 4] = a3 - a2;
575 tmp[3 + i * 4] = a0 - a1;
576 }
577 // vertical pass
578 for (i = 0; i < 4; ++i, ++w) {
579 const int a0 = tmp[0 + i] + tmp[8 + i];
580 const int a1 = tmp[4 + i] + tmp[12+ i];
581 const int a2 = tmp[4 + i] - tmp[12+ i];
582 const int a3 = tmp[0 + i] - tmp[8 + i];
583 const int b0 = a0 + a1;
584 const int b1 = a3 + a2;
585 const int b2 = a3 - a2;
586 const int b3 = a0 - a1;
587
588 sum += w[ 0] * abs(b0);
589 sum += w[ 4] * abs(b1);
590 sum += w[ 8] * abs(b2);
591 sum += w[12] * abs(b3);
592 }
593 return sum;
594 }
595
Disto4x4(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)596 static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
597 const uint16_t* const w) {
598 const int sum1 = TTransform(a, w);
599 const int sum2 = TTransform(b, w);
600 return abs(sum2 - sum1) >> 5;
601 }
602
Disto16x16(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)603 static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
604 const uint16_t* const w) {
605 int D = 0;
606 int x, y;
607 for (y = 0; y < 16 * BPS; y += 4 * BPS) {
608 for (x = 0; x < 16; x += 4) {
609 D += Disto4x4(a + x + y, b + x + y, w);
610 }
611 }
612 return D;
613 }
614
615 //------------------------------------------------------------------------------
616 // Quantization
617 //
618
619 static const uint8_t kZigzag[16] = {
620 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
621 };
622
623 // Simple quantization
QuantizeBlock(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)624 static int QuantizeBlock(int16_t in[16], int16_t out[16],
625 const VP8Matrix* const mtx) {
626 int last = -1;
627 int n;
628 for (n = 0; n < 16; ++n) {
629 const int j = kZigzag[n];
630 const int sign = (in[j] < 0);
631 const uint32_t coeff = (sign ? -in[j] : in[j]) + mtx->sharpen_[j];
632 if (coeff > mtx->zthresh_[j]) {
633 const uint32_t Q = mtx->q_[j];
634 const uint32_t iQ = mtx->iq_[j];
635 const uint32_t B = mtx->bias_[j];
636 int level = QUANTDIV(coeff, iQ, B);
637 if (level > MAX_LEVEL) level = MAX_LEVEL;
638 if (sign) level = -level;
639 in[j] = level * Q;
640 out[n] = level;
641 if (level) last = n;
642 } else {
643 out[n] = 0;
644 in[j] = 0;
645 }
646 }
647 return (last >= 0);
648 }
649
Quantize2Blocks(int16_t in[32],int16_t out[32],const VP8Matrix * const mtx)650 static int Quantize2Blocks(int16_t in[32], int16_t out[32],
651 const VP8Matrix* const mtx) {
652 int nz;
653 nz = VP8EncQuantizeBlock(in + 0 * 16, out + 0 * 16, mtx) << 0;
654 nz |= VP8EncQuantizeBlock(in + 1 * 16, out + 1 * 16, mtx) << 1;
655 return nz;
656 }
657
QuantizeBlockWHT(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)658 static int QuantizeBlockWHT(int16_t in[16], int16_t out[16],
659 const VP8Matrix* const mtx) {
660 int n, last = -1;
661 for (n = 0; n < 16; ++n) {
662 const int j = kZigzag[n];
663 const int sign = (in[j] < 0);
664 const uint32_t coeff = sign ? -in[j] : in[j];
665 assert(mtx->sharpen_[j] == 0);
666 if (coeff > mtx->zthresh_[j]) {
667 const uint32_t Q = mtx->q_[j];
668 const uint32_t iQ = mtx->iq_[j];
669 const uint32_t B = mtx->bias_[j];
670 int level = QUANTDIV(coeff, iQ, B);
671 if (level > MAX_LEVEL) level = MAX_LEVEL;
672 if (sign) level = -level;
673 in[j] = level * Q;
674 out[n] = level;
675 if (level) last = n;
676 } else {
677 out[n] = 0;
678 in[j] = 0;
679 }
680 }
681 return (last >= 0);
682 }
683
684 //------------------------------------------------------------------------------
685 // Block copy
686
Copy(const uint8_t * src,uint8_t * dst,int w,int h)687 static WEBP_INLINE void Copy(const uint8_t* src, uint8_t* dst, int w, int h) {
688 int y;
689 for (y = 0; y < h; ++y) {
690 memcpy(dst, src, w);
691 src += BPS;
692 dst += BPS;
693 }
694 }
695
Copy4x4(const uint8_t * src,uint8_t * dst)696 static void Copy4x4(const uint8_t* src, uint8_t* dst) {
697 Copy(src, dst, 4, 4);
698 }
699
Copy16x8(const uint8_t * src,uint8_t * dst)700 static void Copy16x8(const uint8_t* src, uint8_t* dst) {
701 Copy(src, dst, 16, 8);
702 }
703
704 //------------------------------------------------------------------------------
705 // Initialization
706
707 // Speed-critical function pointers. We have to initialize them to the default
708 // implementations within VP8EncDspInit().
709 VP8CHisto VP8CollectHistogram;
710 VP8Idct VP8ITransform;
711 VP8Fdct VP8FTransform;
712 VP8Fdct VP8FTransform2;
713 VP8WHT VP8FTransformWHT;
714 VP8Intra4Preds VP8EncPredLuma4;
715 VP8IntraPreds VP8EncPredLuma16;
716 VP8IntraPreds VP8EncPredChroma8;
717 VP8Metric VP8SSE16x16;
718 VP8Metric VP8SSE8x8;
719 VP8Metric VP8SSE16x8;
720 VP8Metric VP8SSE4x4;
721 VP8WMetric VP8TDisto4x4;
722 VP8WMetric VP8TDisto16x16;
723 VP8QuantizeBlock VP8EncQuantizeBlock;
724 VP8Quantize2Blocks VP8EncQuantize2Blocks;
725 VP8QuantizeBlockWHT VP8EncQuantizeBlockWHT;
726 VP8BlockCopy VP8Copy4x4;
727 VP8BlockCopy VP8Copy16x8;
728
729 extern void VP8EncDspInitSSE2(void);
730 extern void VP8EncDspInitSSE41(void);
731 extern void VP8EncDspInitAVX2(void);
732 extern void VP8EncDspInitNEON(void);
733 extern void VP8EncDspInitMIPS32(void);
734 extern void VP8EncDspInitMIPSdspR2(void);
735
736 static volatile VP8CPUInfo enc_last_cpuinfo_used =
737 (VP8CPUInfo)&enc_last_cpuinfo_used;
738
VP8EncDspInit(void)739 WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInit(void) {
740 if (enc_last_cpuinfo_used == VP8GetCPUInfo) return;
741
742 VP8DspInit(); // common inverse transforms
743 InitTables();
744
745 // default C implementations
746 VP8CollectHistogram = CollectHistogram;
747 VP8ITransform = ITransform;
748 VP8FTransform = FTransform;
749 VP8FTransform2 = FTransform2;
750 VP8FTransformWHT = FTransformWHT;
751 VP8EncPredLuma4 = Intra4Preds;
752 VP8EncPredLuma16 = Intra16Preds;
753 VP8EncPredChroma8 = IntraChromaPreds;
754 VP8SSE16x16 = SSE16x16;
755 VP8SSE8x8 = SSE8x8;
756 VP8SSE16x8 = SSE16x8;
757 VP8SSE4x4 = SSE4x4;
758 VP8TDisto4x4 = Disto4x4;
759 VP8TDisto16x16 = Disto16x16;
760 VP8EncQuantizeBlock = QuantizeBlock;
761 VP8EncQuantize2Blocks = Quantize2Blocks;
762 VP8EncQuantizeBlockWHT = QuantizeBlockWHT;
763 VP8Copy4x4 = Copy4x4;
764 VP8Copy16x8 = Copy16x8;
765
766 // If defined, use CPUInfo() to overwrite some pointers with faster versions.
767 if (VP8GetCPUInfo != NULL) {
768 #if defined(WEBP_USE_SSE2)
769 if (VP8GetCPUInfo(kSSE2)) {
770 VP8EncDspInitSSE2();
771 #if defined(WEBP_USE_SSE41)
772 if (VP8GetCPUInfo(kSSE4_1)) {
773 VP8EncDspInitSSE41();
774 }
775 #endif
776 }
777 #endif
778 #if defined(WEBP_USE_AVX2)
779 if (VP8GetCPUInfo(kAVX2)) {
780 VP8EncDspInitAVX2();
781 }
782 #endif
783 #if defined(WEBP_USE_NEON)
784 if (VP8GetCPUInfo(kNEON)) {
785 VP8EncDspInitNEON();
786 }
787 #endif
788 #if defined(WEBP_USE_MIPS32)
789 if (VP8GetCPUInfo(kMIPS32)) {
790 VP8EncDspInitMIPS32();
791 }
792 #endif
793 #if defined(WEBP_USE_MIPS_DSP_R2)
794 if (VP8GetCPUInfo(kMIPSdspR2)) {
795 VP8EncDspInitMIPSdspR2();
796 }
797 #endif
798 }
799 enc_last_cpuinfo_used = VP8GetCPUInfo;
800 }
801