1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of speed-critical encoding functions.
11 //
12 // Author: Christian Duvivier (cduvivier@google.com)
13 
14 #include "./dsp.h"
15 
16 #if defined(WEBP_USE_SSE2)
17 #include <stdlib.h>  // for abs()
18 #include <emmintrin.h>
19 
20 #include "../enc/cost.h"
21 #include "../enc/vp8enci.h"
22 
23 //------------------------------------------------------------------------------
24 // Quite useful macro for debugging. Left here for convenience.
25 
26 #if 0
27 #include <stdio.h>
28 static void PrintReg(const __m128i r, const char* const name, int size) {
29   int n;
30   union {
31     __m128i r;
32     uint8_t i8[16];
33     uint16_t i16[8];
34     uint32_t i32[4];
35     uint64_t i64[2];
36   } tmp;
37   tmp.r = r;
38   fprintf(stderr, "%s\t: ", name);
39   if (size == 8) {
40     for (n = 0; n < 16; ++n) fprintf(stderr, "%.2x ", tmp.i8[n]);
41   } else if (size == 16) {
42     for (n = 0; n < 8; ++n) fprintf(stderr, "%.4x ", tmp.i16[n]);
43   } else if (size == 32) {
44     for (n = 0; n < 4; ++n) fprintf(stderr, "%.8x ", tmp.i32[n]);
45   } else {
46     for (n = 0; n < 2; ++n) fprintf(stderr, "%.16lx ", tmp.i64[n]);
47   }
48   fprintf(stderr, "\n");
49 }
50 #endif
51 
52 //------------------------------------------------------------------------------
53 // Transforms (Paragraph 14.4)
54 
55 // Does one or two inverse transforms.
ITransform(const uint8_t * ref,const int16_t * in,uint8_t * dst,int do_two)56 static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst,
57                        int do_two) {
58   // This implementation makes use of 16-bit fixed point versions of two
59   // multiply constants:
60   //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
61   //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
62   //
63   // To be able to use signed 16-bit integers, we use the following trick to
64   // have constants within range:
65   // - Associated constants are obtained by subtracting the 16-bit fixed point
66   //   version of one:
67   //      k = K - (1 << 16)  =>  K = k + (1 << 16)
68   //      K1 = 85267  =>  k1 =  20091
69   //      K2 = 35468  =>  k2 = -30068
70   // - The multiplication of a variable by a constant become the sum of the
71   //   variable and the multiplication of that variable by the associated
72   //   constant:
73   //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
74   const __m128i k1 = _mm_set1_epi16(20091);
75   const __m128i k2 = _mm_set1_epi16(-30068);
76   __m128i T0, T1, T2, T3;
77 
78   // Load and concatenate the transform coefficients (we'll do two inverse
79   // transforms in parallel). In the case of only one inverse transform, the
80   // second half of the vectors will just contain random value we'll never
81   // use nor store.
82   __m128i in0, in1, in2, in3;
83   {
84     in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
85     in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
86     in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
87     in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
88     // a00 a10 a20 a30   x x x x
89     // a01 a11 a21 a31   x x x x
90     // a02 a12 a22 a32   x x x x
91     // a03 a13 a23 a33   x x x x
92     if (do_two) {
93       const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
94       const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
95       const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
96       const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
97       in0 = _mm_unpacklo_epi64(in0, inB0);
98       in1 = _mm_unpacklo_epi64(in1, inB1);
99       in2 = _mm_unpacklo_epi64(in2, inB2);
100       in3 = _mm_unpacklo_epi64(in3, inB3);
101       // a00 a10 a20 a30   b00 b10 b20 b30
102       // a01 a11 a21 a31   b01 b11 b21 b31
103       // a02 a12 a22 a32   b02 b12 b22 b32
104       // a03 a13 a23 a33   b03 b13 b23 b33
105     }
106   }
107 
108   // Vertical pass and subsequent transpose.
109   {
110     // First pass, c and d calculations are longer because of the "trick"
111     // multiplications.
112     const __m128i a = _mm_add_epi16(in0, in2);
113     const __m128i b = _mm_sub_epi16(in0, in2);
114     // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
115     const __m128i c1 = _mm_mulhi_epi16(in1, k2);
116     const __m128i c2 = _mm_mulhi_epi16(in3, k1);
117     const __m128i c3 = _mm_sub_epi16(in1, in3);
118     const __m128i c4 = _mm_sub_epi16(c1, c2);
119     const __m128i c = _mm_add_epi16(c3, c4);
120     // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
121     const __m128i d1 = _mm_mulhi_epi16(in1, k1);
122     const __m128i d2 = _mm_mulhi_epi16(in3, k2);
123     const __m128i d3 = _mm_add_epi16(in1, in3);
124     const __m128i d4 = _mm_add_epi16(d1, d2);
125     const __m128i d = _mm_add_epi16(d3, d4);
126 
127     // Second pass.
128     const __m128i tmp0 = _mm_add_epi16(a, d);
129     const __m128i tmp1 = _mm_add_epi16(b, c);
130     const __m128i tmp2 = _mm_sub_epi16(b, c);
131     const __m128i tmp3 = _mm_sub_epi16(a, d);
132 
133     // Transpose the two 4x4.
134     // a00 a01 a02 a03   b00 b01 b02 b03
135     // a10 a11 a12 a13   b10 b11 b12 b13
136     // a20 a21 a22 a23   b20 b21 b22 b23
137     // a30 a31 a32 a33   b30 b31 b32 b33
138     const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
139     const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
140     const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
141     const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
142     // a00 a10 a01 a11   a02 a12 a03 a13
143     // a20 a30 a21 a31   a22 a32 a23 a33
144     // b00 b10 b01 b11   b02 b12 b03 b13
145     // b20 b30 b21 b31   b22 b32 b23 b33
146     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
147     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
148     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
149     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
150     // a00 a10 a20 a30 a01 a11 a21 a31
151     // b00 b10 b20 b30 b01 b11 b21 b31
152     // a02 a12 a22 a32 a03 a13 a23 a33
153     // b02 b12 a22 b32 b03 b13 b23 b33
154     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
155     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
156     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
157     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
158     // a00 a10 a20 a30   b00 b10 b20 b30
159     // a01 a11 a21 a31   b01 b11 b21 b31
160     // a02 a12 a22 a32   b02 b12 b22 b32
161     // a03 a13 a23 a33   b03 b13 b23 b33
162   }
163 
164   // Horizontal pass and subsequent transpose.
165   {
166     // First pass, c and d calculations are longer because of the "trick"
167     // multiplications.
168     const __m128i four = _mm_set1_epi16(4);
169     const __m128i dc = _mm_add_epi16(T0, four);
170     const __m128i a =  _mm_add_epi16(dc, T2);
171     const __m128i b =  _mm_sub_epi16(dc, T2);
172     // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
173     const __m128i c1 = _mm_mulhi_epi16(T1, k2);
174     const __m128i c2 = _mm_mulhi_epi16(T3, k1);
175     const __m128i c3 = _mm_sub_epi16(T1, T3);
176     const __m128i c4 = _mm_sub_epi16(c1, c2);
177     const __m128i c = _mm_add_epi16(c3, c4);
178     // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
179     const __m128i d1 = _mm_mulhi_epi16(T1, k1);
180     const __m128i d2 = _mm_mulhi_epi16(T3, k2);
181     const __m128i d3 = _mm_add_epi16(T1, T3);
182     const __m128i d4 = _mm_add_epi16(d1, d2);
183     const __m128i d = _mm_add_epi16(d3, d4);
184 
185     // Second pass.
186     const __m128i tmp0 = _mm_add_epi16(a, d);
187     const __m128i tmp1 = _mm_add_epi16(b, c);
188     const __m128i tmp2 = _mm_sub_epi16(b, c);
189     const __m128i tmp3 = _mm_sub_epi16(a, d);
190     const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
191     const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
192     const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
193     const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
194 
195     // Transpose the two 4x4.
196     // a00 a01 a02 a03   b00 b01 b02 b03
197     // a10 a11 a12 a13   b10 b11 b12 b13
198     // a20 a21 a22 a23   b20 b21 b22 b23
199     // a30 a31 a32 a33   b30 b31 b32 b33
200     const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
201     const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
202     const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
203     const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
204     // a00 a10 a01 a11   a02 a12 a03 a13
205     // a20 a30 a21 a31   a22 a32 a23 a33
206     // b00 b10 b01 b11   b02 b12 b03 b13
207     // b20 b30 b21 b31   b22 b32 b23 b33
208     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
209     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
210     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
211     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
212     // a00 a10 a20 a30 a01 a11 a21 a31
213     // b00 b10 b20 b30 b01 b11 b21 b31
214     // a02 a12 a22 a32 a03 a13 a23 a33
215     // b02 b12 a22 b32 b03 b13 b23 b33
216     T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
217     T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
218     T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
219     T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
220     // a00 a10 a20 a30   b00 b10 b20 b30
221     // a01 a11 a21 a31   b01 b11 b21 b31
222     // a02 a12 a22 a32   b02 b12 b22 b32
223     // a03 a13 a23 a33   b03 b13 b23 b33
224   }
225 
226   // Add inverse transform to 'ref' and store.
227   {
228     const __m128i zero = _mm_setzero_si128();
229     // Load the reference(s).
230     __m128i ref0, ref1, ref2, ref3;
231     if (do_two) {
232       // Load eight bytes/pixels per line.
233       ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
234       ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
235       ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
236       ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
237     } else {
238       // Load four bytes/pixels per line.
239       ref0 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[0 * BPS]));
240       ref1 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[1 * BPS]));
241       ref2 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[2 * BPS]));
242       ref3 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[3 * BPS]));
243     }
244     // Convert to 16b.
245     ref0 = _mm_unpacklo_epi8(ref0, zero);
246     ref1 = _mm_unpacklo_epi8(ref1, zero);
247     ref2 = _mm_unpacklo_epi8(ref2, zero);
248     ref3 = _mm_unpacklo_epi8(ref3, zero);
249     // Add the inverse transform(s).
250     ref0 = _mm_add_epi16(ref0, T0);
251     ref1 = _mm_add_epi16(ref1, T1);
252     ref2 = _mm_add_epi16(ref2, T2);
253     ref3 = _mm_add_epi16(ref3, T3);
254     // Unsigned saturate to 8b.
255     ref0 = _mm_packus_epi16(ref0, ref0);
256     ref1 = _mm_packus_epi16(ref1, ref1);
257     ref2 = _mm_packus_epi16(ref2, ref2);
258     ref3 = _mm_packus_epi16(ref3, ref3);
259     // Store the results.
260     if (do_two) {
261       // Store eight bytes/pixels per line.
262       _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
263       _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
264       _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
265       _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
266     } else {
267       // Store four bytes/pixels per line.
268       WebPUint32ToMem(&dst[0 * BPS], _mm_cvtsi128_si32(ref0));
269       WebPUint32ToMem(&dst[1 * BPS], _mm_cvtsi128_si32(ref1));
270       WebPUint32ToMem(&dst[2 * BPS], _mm_cvtsi128_si32(ref2));
271       WebPUint32ToMem(&dst[3 * BPS], _mm_cvtsi128_si32(ref3));
272     }
273   }
274 }
275 
FTransformPass1(const __m128i * const in01,const __m128i * const in23,__m128i * const out01,__m128i * const out32)276 static void FTransformPass1(const __m128i* const in01,
277                             const __m128i* const in23,
278                             __m128i* const out01,
279                             __m128i* const out32) {
280   const __m128i k937 = _mm_set1_epi32(937);
281   const __m128i k1812 = _mm_set1_epi32(1812);
282 
283   const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
284   const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
285   const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
286                                             2217, 5352, 2217, 5352);
287   const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
288                                             -5352, 2217, -5352, 2217);
289 
290   // *in01 = 00 01 10 11 02 03 12 13
291   // *in23 = 20 21 30 31 22 23 32 33
292   const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1));
293   const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1));
294   // 00 01 10 11 03 02 13 12
295   // 20 21 30 31 23 22 33 32
296   const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
297   const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
298   // 00 01 10 11 20 21 30 31
299   // 03 02 13 12 23 22 33 32
300   const __m128i a01 = _mm_add_epi16(s01, s32);
301   const __m128i a32 = _mm_sub_epi16(s01, s32);
302   // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
303   // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
304 
305   const __m128i tmp0   = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
306   const __m128i tmp2   = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
307   const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
308   const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
309   const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
310   const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
311   const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
312   const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
313   const __m128i s03    = _mm_packs_epi32(tmp0, tmp2);
314   const __m128i s12    = _mm_packs_epi32(tmp1, tmp3);
315   const __m128i s_lo   = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
316   const __m128i s_hi   = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
317   const __m128i v23    = _mm_unpackhi_epi32(s_lo, s_hi);
318   *out01 = _mm_unpacklo_epi32(s_lo, s_hi);
319   *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
320 }
321 
FTransformPass2(const __m128i * const v01,const __m128i * const v32,int16_t * out)322 static void FTransformPass2(const __m128i* const v01, const __m128i* const v32,
323                             int16_t* out) {
324   const __m128i zero = _mm_setzero_si128();
325   const __m128i seven = _mm_set1_epi16(7);
326   const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
327                                            5352,  2217, 5352,  2217);
328   const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
329                                            2217, -5352, 2217, -5352);
330   const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
331   const __m128i k51000 = _mm_set1_epi32(51000);
332 
333   // Same operations are done on the (0,3) and (1,2) pairs.
334   // a0 = v0 + v3
335   // a1 = v1 + v2
336   // a3 = v0 - v3
337   // a2 = v1 - v2
338   const __m128i a01 = _mm_add_epi16(*v01, *v32);
339   const __m128i a32 = _mm_sub_epi16(*v01, *v32);
340   const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
341   const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
342   const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
343 
344   // d0 = (a0 + a1 + 7) >> 4;
345   // d2 = (a0 - a1 + 7) >> 4;
346   const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
347   const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
348   const __m128i d0 = _mm_srai_epi16(c0, 4);
349   const __m128i d2 = _mm_srai_epi16(c2, 4);
350 
351   // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
352   // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
353   const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
354   const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
355   const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
356   const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
357   const __m128i d3 = _mm_add_epi32(c3, k51000);
358   const __m128i e1 = _mm_srai_epi32(d1, 16);
359   const __m128i e3 = _mm_srai_epi32(d3, 16);
360   const __m128i f1 = _mm_packs_epi32(e1, e1);
361   const __m128i f3 = _mm_packs_epi32(e3, e3);
362   // f1 = f1 + (a3 != 0);
363   // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
364   // desired (0, 1), we add one earlier through k12000_plus_one.
365   // -> f1 = f1 + 1 - (a3 == 0)
366   const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
367 
368   const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
369   const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
370   _mm_storeu_si128((__m128i*)&out[0], d0_g1);
371   _mm_storeu_si128((__m128i*)&out[8], d2_f3);
372 }
373 
FTransform(const uint8_t * src,const uint8_t * ref,int16_t * out)374 static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) {
375   const __m128i zero = _mm_setzero_si128();
376 
377   // Load src and convert to 16b.
378   const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
379   const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
380   const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
381   const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
382   const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
383   const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
384   const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
385   const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
386   // Load ref and convert to 16b.
387   const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
388   const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
389   const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
390   const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
391   const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
392   const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
393   const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
394   const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
395   // Compute difference. -> 00 01 02 03 00 00 00 00
396   const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
397   const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
398   const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
399   const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
400 
401   // Unpack and shuffle
402   // 00 01 02 03   0 0 0 0
403   // 10 11 12 13   0 0 0 0
404   // 20 21 22 23   0 0 0 0
405   // 30 31 32 33   0 0 0 0
406   const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1);
407   const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3);
408   __m128i v01, v32;
409 
410   // First pass
411   FTransformPass1(&shuf01, &shuf23, &v01, &v32);
412 
413   // Second pass
414   FTransformPass2(&v01, &v32, out);
415 }
416 
FTransform2(const uint8_t * src,const uint8_t * ref,int16_t * out)417 static void FTransform2(const uint8_t* src, const uint8_t* ref, int16_t* out) {
418   const __m128i zero = _mm_setzero_si128();
419 
420   // Load src and convert to 16b.
421   const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
422   const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
423   const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
424   const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
425   const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
426   const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
427   const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
428   const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
429   // Load ref and convert to 16b.
430   const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
431   const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
432   const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
433   const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
434   const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
435   const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
436   const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
437   const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
438   // Compute difference. -> 00 01 02 03  00' 01' 02' 03'
439   const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
440   const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
441   const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
442   const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
443 
444   // Unpack and shuffle
445   // 00 01 02 03   0 0 0 0
446   // 10 11 12 13   0 0 0 0
447   // 20 21 22 23   0 0 0 0
448   // 30 31 32 33   0 0 0 0
449   const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1);
450   const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3);
451   const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1);
452   const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3);
453   __m128i v01l, v32l;
454   __m128i v01h, v32h;
455 
456   // First pass
457   FTransformPass1(&shuf01l, &shuf23l, &v01l, &v32l);
458   FTransformPass1(&shuf01h, &shuf23h, &v01h, &v32h);
459 
460   // Second pass
461   FTransformPass2(&v01l, &v32l, out + 0);
462   FTransformPass2(&v01h, &v32h, out + 16);
463 }
464 
FTransformWHTRow(const int16_t * const in,__m128i * const out)465 static void FTransformWHTRow(const int16_t* const in, __m128i* const out) {
466   const __m128i kMult1 = _mm_set_epi16(0, 0, 0, 0, 1, 1, 1, 1);
467   const __m128i kMult2 = _mm_set_epi16(0, 0, 0, 0, -1, 1, -1, 1);
468   const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]);
469   const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]);
470   const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]);
471   const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]);
472   const __m128i A01 = _mm_unpacklo_epi16(src0, src1);  // A0 A1 | ...
473   const __m128i A23 = _mm_unpacklo_epi16(src2, src3);  // A2 A3 | ...
474   const __m128i B0 = _mm_adds_epi16(A01, A23);    // a0 | a1 | ...
475   const __m128i B1 = _mm_subs_epi16(A01, A23);    // a3 | a2 | ...
476   const __m128i C0 = _mm_unpacklo_epi32(B0, B1);  // a0 | a1 | a3 | a2
477   const __m128i C1 = _mm_unpacklo_epi32(B1, B0);  // a3 | a2 | a0 | a1
478   const __m128i D0 = _mm_madd_epi16(C0, kMult1);  // out0, out1
479   const __m128i D1 = _mm_madd_epi16(C1, kMult2);  // out2, out3
480   *out = _mm_unpacklo_epi64(D0, D1);
481 }
482 
FTransformWHT(const int16_t * in,int16_t * out)483 static void FTransformWHT(const int16_t* in, int16_t* out) {
484   __m128i row0, row1, row2, row3;
485   FTransformWHTRow(in + 0 * 64, &row0);
486   FTransformWHTRow(in + 1 * 64, &row1);
487   FTransformWHTRow(in + 2 * 64, &row2);
488   FTransformWHTRow(in + 3 * 64, &row3);
489 
490   {
491     const __m128i a0 = _mm_add_epi32(row0, row2);
492     const __m128i a1 = _mm_add_epi32(row1, row3);
493     const __m128i a2 = _mm_sub_epi32(row1, row3);
494     const __m128i a3 = _mm_sub_epi32(row0, row2);
495     const __m128i b0 = _mm_srai_epi32(_mm_add_epi32(a0, a1), 1);
496     const __m128i b1 = _mm_srai_epi32(_mm_add_epi32(a3, a2), 1);
497     const __m128i b2 = _mm_srai_epi32(_mm_sub_epi32(a3, a2), 1);
498     const __m128i b3 = _mm_srai_epi32(_mm_sub_epi32(a0, a1), 1);
499     const __m128i out0 = _mm_packs_epi32(b0, b1);
500     const __m128i out1 = _mm_packs_epi32(b2, b3);
501     _mm_storeu_si128((__m128i*)&out[0], out0);
502     _mm_storeu_si128((__m128i*)&out[8], out1);
503   }
504 }
505 
506 //------------------------------------------------------------------------------
507 // Compute susceptibility based on DCT-coeff histograms:
508 // the higher, the "easier" the macroblock is to compress.
509 
CollectHistogram(const uint8_t * ref,const uint8_t * pred,int start_block,int end_block,VP8Histogram * const histo)510 static void CollectHistogram(const uint8_t* ref, const uint8_t* pred,
511                              int start_block, int end_block,
512                              VP8Histogram* const histo) {
513   const __m128i zero = _mm_setzero_si128();
514   const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
515   int j;
516   int distribution[MAX_COEFF_THRESH + 1] = { 0 };
517   for (j = start_block; j < end_block; ++j) {
518     int16_t out[16];
519     int k;
520 
521     FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
522 
523     // Convert coefficients to bin (within out[]).
524     {
525       // Load.
526       const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
527       const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
528       const __m128i d0 = _mm_sub_epi16(zero, out0);
529       const __m128i d1 = _mm_sub_epi16(zero, out1);
530       const __m128i abs0 = _mm_max_epi16(out0, d0);   // abs(v), 16b
531       const __m128i abs1 = _mm_max_epi16(out1, d1);
532       // v = abs(out) >> 3
533       const __m128i v0 = _mm_srai_epi16(abs0, 3);
534       const __m128i v1 = _mm_srai_epi16(abs1, 3);
535       // bin = min(v, MAX_COEFF_THRESH)
536       const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
537       const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
538       // Store.
539       _mm_storeu_si128((__m128i*)&out[0], bin0);
540       _mm_storeu_si128((__m128i*)&out[8], bin1);
541     }
542 
543     // Convert coefficients to bin.
544     for (k = 0; k < 16; ++k) {
545       ++distribution[out[k]];
546     }
547   }
548   VP8SetHistogramData(distribution, histo);
549 }
550 
551 //------------------------------------------------------------------------------
552 // Intra predictions
553 
554 // helper for chroma-DC predictions
Put8x8uv(uint8_t v,uint8_t * dst)555 static WEBP_INLINE void Put8x8uv(uint8_t v, uint8_t* dst) {
556   int j;
557   const __m128i values = _mm_set1_epi8(v);
558   for (j = 0; j < 8; ++j) {
559     _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
560   }
561 }
562 
Put16(uint8_t v,uint8_t * dst)563 static WEBP_INLINE void Put16(uint8_t v, uint8_t* dst) {
564   int j;
565   const __m128i values = _mm_set1_epi8(v);
566   for (j = 0; j < 16; ++j) {
567     _mm_store_si128((__m128i*)(dst + j * BPS), values);
568   }
569 }
570 
Fill(uint8_t * dst,int value,int size)571 static WEBP_INLINE void Fill(uint8_t* dst, int value, int size) {
572   if (size == 4) {
573     int j;
574     for (j = 0; j < 4; ++j) {
575       memset(dst + j * BPS, value, 4);
576     }
577   } else if (size == 8) {
578     Put8x8uv(value, dst);
579   } else {
580     Put16(value, dst);
581   }
582 }
583 
VE8uv(uint8_t * dst,const uint8_t * top)584 static WEBP_INLINE void VE8uv(uint8_t* dst, const uint8_t* top) {
585   int j;
586   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
587   for (j = 0; j < 8; ++j) {
588     _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values);
589   }
590 }
591 
VE16(uint8_t * dst,const uint8_t * top)592 static WEBP_INLINE void VE16(uint8_t* dst, const uint8_t* top) {
593   const __m128i top_values = _mm_load_si128((const __m128i*)top);
594   int j;
595   for (j = 0; j < 16; ++j) {
596     _mm_store_si128((__m128i*)(dst + j * BPS), top_values);
597   }
598 }
599 
VerticalPred(uint8_t * dst,const uint8_t * top,int size)600 static WEBP_INLINE void VerticalPred(uint8_t* dst,
601                                      const uint8_t* top, int size) {
602   if (top != NULL) {
603     if (size == 8) {
604       VE8uv(dst, top);
605     } else {
606       VE16(dst, top);
607     }
608   } else {
609     Fill(dst, 127, size);
610   }
611 }
612 
HE8uv(uint8_t * dst,const uint8_t * left)613 static WEBP_INLINE void HE8uv(uint8_t* dst, const uint8_t* left) {
614   int j;
615   for (j = 0; j < 8; ++j) {
616     const __m128i values = _mm_set1_epi8(left[j]);
617     _mm_storel_epi64((__m128i*)dst, values);
618     dst += BPS;
619   }
620 }
621 
HE16(uint8_t * dst,const uint8_t * left)622 static WEBP_INLINE void HE16(uint8_t* dst, const uint8_t* left) {
623   int j;
624   for (j = 0; j < 16; ++j) {
625     const __m128i values = _mm_set1_epi8(left[j]);
626     _mm_store_si128((__m128i*)dst, values);
627     dst += BPS;
628   }
629 }
630 
HorizontalPred(uint8_t * dst,const uint8_t * left,int size)631 static WEBP_INLINE void HorizontalPred(uint8_t* dst,
632                                        const uint8_t* left, int size) {
633   if (left != NULL) {
634     if (size == 8) {
635       HE8uv(dst, left);
636     } else {
637       HE16(dst, left);
638     }
639   } else {
640     Fill(dst, 129, size);
641   }
642 }
643 
TM(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)644 static WEBP_INLINE void TM(uint8_t* dst, const uint8_t* left,
645                            const uint8_t* top, int size) {
646   const __m128i zero = _mm_setzero_si128();
647   int y;
648   if (size == 8) {
649     const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
650     const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
651     for (y = 0; y < 8; ++y, dst += BPS) {
652       const int val = left[y] - left[-1];
653       const __m128i base = _mm_set1_epi16(val);
654       const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
655       _mm_storel_epi64((__m128i*)dst, out);
656     }
657   } else {
658     const __m128i top_values = _mm_load_si128((const __m128i*)top);
659     const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
660     const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
661     for (y = 0; y < 16; ++y, dst += BPS) {
662       const int val = left[y] - left[-1];
663       const __m128i base = _mm_set1_epi16(val);
664       const __m128i out_0 = _mm_add_epi16(base, top_base_0);
665       const __m128i out_1 = _mm_add_epi16(base, top_base_1);
666       const __m128i out = _mm_packus_epi16(out_0, out_1);
667       _mm_store_si128((__m128i*)dst, out);
668     }
669   }
670 }
671 
TrueMotion(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)672 static WEBP_INLINE void TrueMotion(uint8_t* dst, const uint8_t* left,
673                                    const uint8_t* top, int size) {
674   if (left != NULL) {
675     if (top != NULL) {
676       TM(dst, left, top, size);
677     } else {
678       HorizontalPred(dst, left, size);
679     }
680   } else {
681     // true motion without left samples (hence: with default 129 value)
682     // is equivalent to VE prediction where you just copy the top samples.
683     // Note that if top samples are not available, the default value is
684     // then 129, and not 127 as in the VerticalPred case.
685     if (top != NULL) {
686       VerticalPred(dst, top, size);
687     } else {
688       Fill(dst, 129, size);
689     }
690   }
691 }
692 
DC8uv(uint8_t * dst,const uint8_t * left,const uint8_t * top)693 static WEBP_INLINE void DC8uv(uint8_t* dst, const uint8_t* left,
694                               const uint8_t* top) {
695   const __m128i zero = _mm_setzero_si128();
696   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
697   const __m128i left_values = _mm_loadl_epi64((const __m128i*)left);
698   const __m128i sum_top = _mm_sad_epu8(top_values, zero);
699   const __m128i sum_left = _mm_sad_epu8(left_values, zero);
700   const int DC = _mm_cvtsi128_si32(sum_top) + _mm_cvtsi128_si32(sum_left) + 8;
701   Put8x8uv(DC >> 4, dst);
702 }
703 
DC8uvNoLeft(uint8_t * dst,const uint8_t * top)704 static WEBP_INLINE void DC8uvNoLeft(uint8_t* dst, const uint8_t* top) {
705   const __m128i zero = _mm_setzero_si128();
706   const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
707   const __m128i sum = _mm_sad_epu8(top_values, zero);
708   const int DC = _mm_cvtsi128_si32(sum) + 4;
709   Put8x8uv(DC >> 3, dst);
710 }
711 
DC8uvNoTop(uint8_t * dst,const uint8_t * left)712 static WEBP_INLINE void DC8uvNoTop(uint8_t* dst, const uint8_t* left) {
713   // 'left' is contiguous so we can reuse the top summation.
714   DC8uvNoLeft(dst, left);
715 }
716 
DC8uvNoTopLeft(uint8_t * dst)717 static WEBP_INLINE void DC8uvNoTopLeft(uint8_t* dst) {
718   Put8x8uv(0x80, dst);
719 }
720 
DC8uvMode(uint8_t * dst,const uint8_t * left,const uint8_t * top)721 static WEBP_INLINE void DC8uvMode(uint8_t* dst, const uint8_t* left,
722                                   const uint8_t* top) {
723   if (top != NULL) {
724     if (left != NULL) {  // top and left present
725       DC8uv(dst, left, top);
726     } else {  // top, but no left
727       DC8uvNoLeft(dst, top);
728     }
729   } else if (left != NULL) {  // left but no top
730     DC8uvNoTop(dst, left);
731   } else {  // no top, no left, nothing.
732     DC8uvNoTopLeft(dst);
733   }
734 }
735 
DC16(uint8_t * dst,const uint8_t * left,const uint8_t * top)736 static WEBP_INLINE void DC16(uint8_t* dst, const uint8_t* left,
737                              const uint8_t* top) {
738   const __m128i zero = _mm_setzero_si128();
739   const __m128i top_row = _mm_load_si128((const __m128i*)top);
740   const __m128i left_row = _mm_load_si128((const __m128i*)left);
741   const __m128i sad8x2 = _mm_sad_epu8(top_row, zero);
742   // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
743   const __m128i sum_top = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
744   const __m128i sad8x2_left = _mm_sad_epu8(left_row, zero);
745   // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
746   const __m128i sum_left =
747       _mm_add_epi16(sad8x2_left, _mm_shuffle_epi32(sad8x2_left, 2));
748   const int DC = _mm_cvtsi128_si32(sum_top) + _mm_cvtsi128_si32(sum_left) + 16;
749   Put16(DC >> 5, dst);
750 }
751 
DC16NoLeft(uint8_t * dst,const uint8_t * top)752 static WEBP_INLINE void DC16NoLeft(uint8_t* dst, const uint8_t* top) {
753   const __m128i zero = _mm_setzero_si128();
754   const __m128i top_row = _mm_load_si128((const __m128i*)top);
755   const __m128i sad8x2 = _mm_sad_epu8(top_row, zero);
756   // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
757   const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
758   const int DC = _mm_cvtsi128_si32(sum) + 8;
759   Put16(DC >> 4, dst);
760 }
761 
DC16NoTop(uint8_t * dst,const uint8_t * left)762 static WEBP_INLINE void DC16NoTop(uint8_t* dst, const uint8_t* left) {
763   // 'left' is contiguous so we can reuse the top summation.
764   DC16NoLeft(dst, left);
765 }
766 
DC16NoTopLeft(uint8_t * dst)767 static WEBP_INLINE void DC16NoTopLeft(uint8_t* dst) {
768   Put16(0x80, dst);
769 }
770 
DC16Mode(uint8_t * dst,const uint8_t * left,const uint8_t * top)771 static WEBP_INLINE void DC16Mode(uint8_t* dst, const uint8_t* left,
772                                  const uint8_t* top) {
773   if (top != NULL) {
774     if (left != NULL) {  // top and left present
775       DC16(dst, left, top);
776     } else {  // top, but no left
777       DC16NoLeft(dst, top);
778     }
779   } else if (left != NULL) {  // left but no top
780     DC16NoTop(dst, left);
781   } else {  // no top, no left, nothing.
782     DC16NoTopLeft(dst);
783   }
784 }
785 
786 //------------------------------------------------------------------------------
787 // 4x4 predictions
788 
789 #define DST(x, y) dst[(x) + (y) * BPS]
790 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
791 #define AVG2(a, b) (((a) + (b) + 1) >> 1)
792 
793 // We use the following 8b-arithmetic tricks:
794 //     (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
795 //   where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
796 // and:
797 //     (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
798 //   where: AC = (a + b + 1) >> 1,   BC = (b + c + 1) >> 1
799 //   and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
800 
VE4(uint8_t * dst,const uint8_t * top)801 static WEBP_INLINE void VE4(uint8_t* dst, const uint8_t* top) {  // vertical
802   const __m128i one = _mm_set1_epi8(1);
803   const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1));
804   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
805   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
806   const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
807   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
808   const __m128i b = _mm_subs_epu8(a, lsb);
809   const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
810   const uint32_t vals = _mm_cvtsi128_si32(avg);
811   int i;
812   for (i = 0; i < 4; ++i) {
813     WebPUint32ToMem(dst + i * BPS, vals);
814   }
815 }
816 
HE4(uint8_t * dst,const uint8_t * top)817 static WEBP_INLINE void HE4(uint8_t* dst, const uint8_t* top) {  // horizontal
818   const int X = top[-1];
819   const int I = top[-2];
820   const int J = top[-3];
821   const int K = top[-4];
822   const int L = top[-5];
823   WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
824   WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
825   WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
826   WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
827 }
828 
DC4(uint8_t * dst,const uint8_t * top)829 static WEBP_INLINE void DC4(uint8_t* dst, const uint8_t* top) {
830   uint32_t dc = 4;
831   int i;
832   for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
833   Fill(dst, dc >> 3, 4);
834 }
835 
LD4(uint8_t * dst,const uint8_t * top)836 static WEBP_INLINE void LD4(uint8_t* dst, const uint8_t* top) {  // Down-Left
837   const __m128i one = _mm_set1_epi8(1);
838   const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
839   const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
840   const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
841   const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3);
842   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
843   const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
844   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
845   const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
846   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
847   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
848   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
849   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
850 }
851 
VR4(uint8_t * dst,const uint8_t * top)852 static WEBP_INLINE void VR4(uint8_t* dst,
853                             const uint8_t* top) {  // Vertical-Right
854   const __m128i one = _mm_set1_epi8(1);
855   const int I = top[-2];
856   const int J = top[-3];
857   const int K = top[-4];
858   const int X = top[-1];
859   const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1));
860   const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
861   const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
862   const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
863   const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0);
864   const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
865   const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
866   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
867   const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
868   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               abcd    ));
869   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               efgh    ));
870   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
871   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
872 
873   // these two are hard to implement in SSE2, so we keep the C-version:
874   DST(0, 2) = AVG3(J, I, X);
875   DST(0, 3) = AVG3(K, J, I);
876 }
877 
VL4(uint8_t * dst,const uint8_t * top)878 static WEBP_INLINE void VL4(uint8_t* dst,
879                             const uint8_t* top) {  // Vertical-Left
880   const __m128i one = _mm_set1_epi8(1);
881   const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
882   const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
883   const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
884   const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
885   const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
886   const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
887   const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
888   const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
889   const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
890   const __m128i abbc = _mm_or_si128(ab, bc);
891   const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
892   const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
893   const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
894   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(               avg1    ));
895   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(               avg4    ));
896   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
897   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
898 
899   // these two are hard to get and irregular
900   DST(3, 2) = (extra_out >> 0) & 0xff;
901   DST(3, 3) = (extra_out >> 8) & 0xff;
902 }
903 
RD4(uint8_t * dst,const uint8_t * top)904 static WEBP_INLINE void RD4(uint8_t* dst, const uint8_t* top) {  // Down-right
905   const __m128i one = _mm_set1_epi8(1);
906   const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5));
907   const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4);
908   const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
909   const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
910   const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
911   const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
912   const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
913   const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
914   WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(               abcdefg    ));
915   WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
916   WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
917   WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
918 }
919 
HU4(uint8_t * dst,const uint8_t * top)920 static WEBP_INLINE void HU4(uint8_t* dst, const uint8_t* top) {
921   const int I = top[-2];
922   const int J = top[-3];
923   const int K = top[-4];
924   const int L = top[-5];
925   DST(0, 0) =             AVG2(I, J);
926   DST(2, 0) = DST(0, 1) = AVG2(J, K);
927   DST(2, 1) = DST(0, 2) = AVG2(K, L);
928   DST(1, 0) =             AVG3(I, J, K);
929   DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
930   DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
931   DST(3, 2) = DST(2, 2) =
932   DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
933 }
934 
HD4(uint8_t * dst,const uint8_t * top)935 static WEBP_INLINE void HD4(uint8_t* dst, const uint8_t* top) {
936   const int X = top[-1];
937   const int I = top[-2];
938   const int J = top[-3];
939   const int K = top[-4];
940   const int L = top[-5];
941   const int A = top[0];
942   const int B = top[1];
943   const int C = top[2];
944 
945   DST(0, 0) = DST(2, 1) = AVG2(I, X);
946   DST(0, 1) = DST(2, 2) = AVG2(J, I);
947   DST(0, 2) = DST(2, 3) = AVG2(K, J);
948   DST(0, 3)             = AVG2(L, K);
949 
950   DST(3, 0)             = AVG3(A, B, C);
951   DST(2, 0)             = AVG3(X, A, B);
952   DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
953   DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
954   DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
955   DST(1, 3)             = AVG3(L, K, J);
956 }
957 
TM4(uint8_t * dst,const uint8_t * top)958 static WEBP_INLINE void TM4(uint8_t* dst, const uint8_t* top) {
959   const __m128i zero = _mm_setzero_si128();
960   const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
961   const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
962   int y;
963   for (y = 0; y < 4; ++y, dst += BPS) {
964     const int val = top[-2 - y] - top[-1];
965     const __m128i base = _mm_set1_epi16(val);
966     const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
967     WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
968   }
969 }
970 
971 #undef DST
972 #undef AVG3
973 #undef AVG2
974 
975 //------------------------------------------------------------------------------
976 // luma 4x4 prediction
977 
978 // Left samples are top[-5 .. -2], top_left is top[-1], top are
979 // located at top[0..3], and top right is top[4..7]
Intra4Preds(uint8_t * dst,const uint8_t * top)980 static void Intra4Preds(uint8_t* dst, const uint8_t* top) {
981   DC4(I4DC4 + dst, top);
982   TM4(I4TM4 + dst, top);
983   VE4(I4VE4 + dst, top);
984   HE4(I4HE4 + dst, top);
985   RD4(I4RD4 + dst, top);
986   VR4(I4VR4 + dst, top);
987   LD4(I4LD4 + dst, top);
988   VL4(I4VL4 + dst, top);
989   HD4(I4HD4 + dst, top);
990   HU4(I4HU4 + dst, top);
991 }
992 
993 //------------------------------------------------------------------------------
994 // Chroma 8x8 prediction (paragraph 12.2)
995 
IntraChromaPreds(uint8_t * dst,const uint8_t * left,const uint8_t * top)996 static void IntraChromaPreds(uint8_t* dst, const uint8_t* left,
997                              const uint8_t* top) {
998   // U block
999   DC8uvMode(C8DC8 + dst, left, top);
1000   VerticalPred(C8VE8 + dst, top, 8);
1001   HorizontalPred(C8HE8 + dst, left, 8);
1002   TrueMotion(C8TM8 + dst, left, top, 8);
1003   // V block
1004   dst += 8;
1005   if (top != NULL) top += 8;
1006   if (left != NULL) left += 16;
1007   DC8uvMode(C8DC8 + dst, left, top);
1008   VerticalPred(C8VE8 + dst, top, 8);
1009   HorizontalPred(C8HE8 + dst, left, 8);
1010   TrueMotion(C8TM8 + dst, left, top, 8);
1011 }
1012 
1013 //------------------------------------------------------------------------------
1014 // luma 16x16 prediction (paragraph 12.3)
1015 
Intra16Preds(uint8_t * dst,const uint8_t * left,const uint8_t * top)1016 static void Intra16Preds(uint8_t* dst,
1017                          const uint8_t* left, const uint8_t* top) {
1018   DC16Mode(I16DC16 + dst, left, top);
1019   VerticalPred(I16VE16 + dst, top, 16);
1020   HorizontalPred(I16HE16 + dst, left, 16);
1021   TrueMotion(I16TM16 + dst, left, top, 16);
1022 }
1023 
1024 //------------------------------------------------------------------------------
1025 // Metric
1026 
SubtractAndAccumulate(const __m128i a,const __m128i b,__m128i * const sum)1027 static WEBP_INLINE void SubtractAndAccumulate(const __m128i a, const __m128i b,
1028                                               __m128i* const sum) {
1029   // take abs(a-b) in 8b
1030   const __m128i a_b = _mm_subs_epu8(a, b);
1031   const __m128i b_a = _mm_subs_epu8(b, a);
1032   const __m128i abs_a_b = _mm_or_si128(a_b, b_a);
1033   // zero-extend to 16b
1034   const __m128i zero = _mm_setzero_si128();
1035   const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero);
1036   const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero);
1037   // multiply with self
1038   const __m128i sum1 = _mm_madd_epi16(C0, C0);
1039   const __m128i sum2 = _mm_madd_epi16(C1, C1);
1040   *sum = _mm_add_epi32(sum1, sum2);
1041 }
1042 
SSE_16xN(const uint8_t * a,const uint8_t * b,int num_pairs)1043 static WEBP_INLINE int SSE_16xN(const uint8_t* a, const uint8_t* b,
1044                                 int num_pairs) {
1045   __m128i sum = _mm_setzero_si128();
1046   int32_t tmp[4];
1047   int i;
1048 
1049   for (i = 0; i < num_pairs; ++i) {
1050     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]);
1051     const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]);
1052     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]);
1053     const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]);
1054     __m128i sum1, sum2;
1055     SubtractAndAccumulate(a0, b0, &sum1);
1056     SubtractAndAccumulate(a1, b1, &sum2);
1057     sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2));
1058     a += 2 * BPS;
1059     b += 2 * BPS;
1060   }
1061   _mm_storeu_si128((__m128i*)tmp, sum);
1062   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1063 }
1064 
SSE16x16(const uint8_t * a,const uint8_t * b)1065 static int SSE16x16(const uint8_t* a, const uint8_t* b) {
1066   return SSE_16xN(a, b, 8);
1067 }
1068 
SSE16x8(const uint8_t * a,const uint8_t * b)1069 static int SSE16x8(const uint8_t* a, const uint8_t* b) {
1070   return SSE_16xN(a, b, 4);
1071 }
1072 
1073 #define LOAD_8x16b(ptr) \
1074   _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero)
1075 
SSE8x8(const uint8_t * a,const uint8_t * b)1076 static int SSE8x8(const uint8_t* a, const uint8_t* b) {
1077   const __m128i zero = _mm_setzero_si128();
1078   int num_pairs = 4;
1079   __m128i sum = zero;
1080   int32_t tmp[4];
1081   while (num_pairs-- > 0) {
1082     const __m128i a0 = LOAD_8x16b(&a[BPS * 0]);
1083     const __m128i a1 = LOAD_8x16b(&a[BPS * 1]);
1084     const __m128i b0 = LOAD_8x16b(&b[BPS * 0]);
1085     const __m128i b1 = LOAD_8x16b(&b[BPS * 1]);
1086     // subtract
1087     const __m128i c0 = _mm_subs_epi16(a0, b0);
1088     const __m128i c1 = _mm_subs_epi16(a1, b1);
1089     // multiply/accumulate with self
1090     const __m128i d0 = _mm_madd_epi16(c0, c0);
1091     const __m128i d1 = _mm_madd_epi16(c1, c1);
1092     // collect
1093     const __m128i sum01 = _mm_add_epi32(d0, d1);
1094     sum = _mm_add_epi32(sum, sum01);
1095     a += 2 * BPS;
1096     b += 2 * BPS;
1097   }
1098   _mm_storeu_si128((__m128i*)tmp, sum);
1099   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1100 }
1101 #undef LOAD_8x16b
1102 
SSE4x4(const uint8_t * a,const uint8_t * b)1103 static int SSE4x4(const uint8_t* a, const uint8_t* b) {
1104   const __m128i zero = _mm_setzero_si128();
1105 
1106   // Load values. Note that we read 8 pixels instead of 4,
1107   // but the a/b buffers are over-allocated to that effect.
1108   const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]);
1109   const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]);
1110   const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]);
1111   const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]);
1112   const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]);
1113   const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]);
1114   const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]);
1115   const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]);
1116   // Combine pair of lines.
1117   const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
1118   const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
1119   const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
1120   const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
1121   // Convert to 16b.
1122   const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
1123   const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
1124   const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
1125   const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
1126   // subtract, square and accumulate
1127   const __m128i d0 = _mm_subs_epi16(a01s, b01s);
1128   const __m128i d1 = _mm_subs_epi16(a23s, b23s);
1129   const __m128i e0 = _mm_madd_epi16(d0, d0);
1130   const __m128i e1 = _mm_madd_epi16(d1, d1);
1131   const __m128i sum = _mm_add_epi32(e0, e1);
1132 
1133   int32_t tmp[4];
1134   _mm_storeu_si128((__m128i*)tmp, sum);
1135   return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1136 }
1137 
1138 //------------------------------------------------------------------------------
1139 // Texture distortion
1140 //
1141 // We try to match the spectral content (weighted) between source and
1142 // reconstructed samples.
1143 
1144 // Hadamard transform
1145 // Returns the difference between the weighted sum of the absolute value of
1146 // transformed coefficients.
TTransform(const uint8_t * inA,const uint8_t * inB,const uint16_t * const w)1147 static int TTransform(const uint8_t* inA, const uint8_t* inB,
1148                       const uint16_t* const w) {
1149   int32_t sum[4];
1150   __m128i tmp_0, tmp_1, tmp_2, tmp_3;
1151   const __m128i zero = _mm_setzero_si128();
1152 
1153   // Load, combine and transpose inputs.
1154   {
1155     const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
1156     const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
1157     const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
1158     const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
1159     const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
1160     const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
1161     const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
1162     const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
1163 
1164     // Combine inA and inB (we'll do two transforms in parallel).
1165     const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
1166     const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
1167     const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
1168     const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
1169     // a00 b00 a01 b01 a02 b03 a03 b03   0 0 0 0 0 0 0 0
1170     // a10 b10 a11 b11 a12 b12 a13 b13   0 0 0 0 0 0 0 0
1171     // a20 b20 a21 b21 a22 b22 a23 b23   0 0 0 0 0 0 0 0
1172     // a30 b30 a31 b31 a32 b32 a33 b33   0 0 0 0 0 0 0 0
1173 
1174     // Transpose the two 4x4, discarding the filling zeroes.
1175     const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
1176     const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
1177     // a00 a20  b00 b20  a01 a21  b01 b21  a02 a22  b02 b22  a03 a23  b03 b23
1178     // a10 a30  b10 b30  a11 a31  b11 b31  a12 a32  b12 b32  a13 a33  b13 b33
1179     const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
1180     const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
1181     // a00 a10 a20 a30  b00 b10 b20 b30  a01 a11 a21 a31  b01 b11 b21 b31
1182     // a02 a12 a22 a32  b02 b12 b22 b32  a03 a13 a23 a33  b03 b13 b23 b33
1183 
1184     // Convert to 16b.
1185     tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
1186     tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
1187     tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
1188     tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
1189     // a00 a10 a20 a30   b00 b10 b20 b30
1190     // a01 a11 a21 a31   b01 b11 b21 b31
1191     // a02 a12 a22 a32   b02 b12 b22 b32
1192     // a03 a13 a23 a33   b03 b13 b23 b33
1193   }
1194 
1195   // Horizontal pass and subsequent transpose.
1196   {
1197     // Calculate a and b (two 4x4 at once).
1198     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1199     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1200     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1201     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1202     const __m128i b0 = _mm_add_epi16(a0, a1);
1203     const __m128i b1 = _mm_add_epi16(a3, a2);
1204     const __m128i b2 = _mm_sub_epi16(a3, a2);
1205     const __m128i b3 = _mm_sub_epi16(a0, a1);
1206     // a00 a01 a02 a03   b00 b01 b02 b03
1207     // a10 a11 a12 a13   b10 b11 b12 b13
1208     // a20 a21 a22 a23   b20 b21 b22 b23
1209     // a30 a31 a32 a33   b30 b31 b32 b33
1210 
1211     // Transpose the two 4x4.
1212     const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
1213     const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
1214     const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
1215     const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
1216     // a00 a10 a01 a11   a02 a12 a03 a13
1217     // a20 a30 a21 a31   a22 a32 a23 a33
1218     // b00 b10 b01 b11   b02 b12 b03 b13
1219     // b20 b30 b21 b31   b22 b32 b23 b33
1220     const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
1221     const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
1222     const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
1223     const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
1224     // a00 a10 a20 a30 a01 a11 a21 a31
1225     // b00 b10 b20 b30 b01 b11 b21 b31
1226     // a02 a12 a22 a32 a03 a13 a23 a33
1227     // b02 b12 a22 b32 b03 b13 b23 b33
1228     tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
1229     tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
1230     tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
1231     tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
1232     // a00 a10 a20 a30   b00 b10 b20 b30
1233     // a01 a11 a21 a31   b01 b11 b21 b31
1234     // a02 a12 a22 a32   b02 b12 b22 b32
1235     // a03 a13 a23 a33   b03 b13 b23 b33
1236   }
1237 
1238   // Vertical pass and difference of weighted sums.
1239   {
1240     // Load all inputs.
1241     const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
1242     const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
1243 
1244     // Calculate a and b (two 4x4 at once).
1245     const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1246     const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1247     const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1248     const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1249     const __m128i b0 = _mm_add_epi16(a0, a1);
1250     const __m128i b1 = _mm_add_epi16(a3, a2);
1251     const __m128i b2 = _mm_sub_epi16(a3, a2);
1252     const __m128i b3 = _mm_sub_epi16(a0, a1);
1253 
1254     // Separate the transforms of inA and inB.
1255     __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
1256     __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
1257     __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
1258     __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
1259 
1260     {
1261       const __m128i d0 = _mm_sub_epi16(zero, A_b0);
1262       const __m128i d1 = _mm_sub_epi16(zero, A_b2);
1263       const __m128i d2 = _mm_sub_epi16(zero, B_b0);
1264       const __m128i d3 = _mm_sub_epi16(zero, B_b2);
1265       A_b0 = _mm_max_epi16(A_b0, d0);   // abs(v), 16b
1266       A_b2 = _mm_max_epi16(A_b2, d1);
1267       B_b0 = _mm_max_epi16(B_b0, d2);
1268       B_b2 = _mm_max_epi16(B_b2, d3);
1269     }
1270 
1271     // weighted sums
1272     A_b0 = _mm_madd_epi16(A_b0, w_0);
1273     A_b2 = _mm_madd_epi16(A_b2, w_8);
1274     B_b0 = _mm_madd_epi16(B_b0, w_0);
1275     B_b2 = _mm_madd_epi16(B_b2, w_8);
1276     A_b0 = _mm_add_epi32(A_b0, A_b2);
1277     B_b0 = _mm_add_epi32(B_b0, B_b2);
1278 
1279     // difference of weighted sums
1280     A_b0 = _mm_sub_epi32(A_b0, B_b0);
1281     _mm_storeu_si128((__m128i*)&sum[0], A_b0);
1282   }
1283   return sum[0] + sum[1] + sum[2] + sum[3];
1284 }
1285 
Disto4x4(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)1286 static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
1287                     const uint16_t* const w) {
1288   const int diff_sum = TTransform(a, b, w);
1289   return abs(diff_sum) >> 5;
1290 }
1291 
Disto16x16(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)1292 static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
1293                       const uint16_t* const w) {
1294   int D = 0;
1295   int x, y;
1296   for (y = 0; y < 16 * BPS; y += 4 * BPS) {
1297     for (x = 0; x < 16; x += 4) {
1298       D += Disto4x4(a + x + y, b + x + y, w);
1299     }
1300   }
1301   return D;
1302 }
1303 
1304 //------------------------------------------------------------------------------
1305 // Quantization
1306 //
1307 
DoQuantizeBlock(int16_t in[16],int16_t out[16],const uint16_t * const sharpen,const VP8Matrix * const mtx)1308 static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16],
1309                                        const uint16_t* const sharpen,
1310                                        const VP8Matrix* const mtx) {
1311   const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
1312   const __m128i zero = _mm_setzero_si128();
1313   __m128i coeff0, coeff8;
1314   __m128i out0, out8;
1315   __m128i packed_out;
1316 
1317   // Load all inputs.
1318   __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
1319   __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
1320   const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
1321   const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
1322   const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
1323   const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
1324 
1325   // extract sign(in)  (0x0000 if positive, 0xffff if negative)
1326   const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
1327   const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
1328 
1329   // coeff = abs(in) = (in ^ sign) - sign
1330   coeff0 = _mm_xor_si128(in0, sign0);
1331   coeff8 = _mm_xor_si128(in8, sign8);
1332   coeff0 = _mm_sub_epi16(coeff0, sign0);
1333   coeff8 = _mm_sub_epi16(coeff8, sign8);
1334 
1335   // coeff = abs(in) + sharpen
1336   if (sharpen != NULL) {
1337     const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
1338     const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
1339     coeff0 = _mm_add_epi16(coeff0, sharpen0);
1340     coeff8 = _mm_add_epi16(coeff8, sharpen8);
1341   }
1342 
1343   // out = (coeff * iQ + B) >> QFIX
1344   {
1345     // doing calculations with 32b precision (QFIX=17)
1346     // out = (coeff * iQ)
1347     const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
1348     const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
1349     const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
1350     const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
1351     __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
1352     __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
1353     __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
1354     __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
1355     // out = (coeff * iQ + B)
1356     const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
1357     const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
1358     const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
1359     const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
1360     out_00 = _mm_add_epi32(out_00, bias_00);
1361     out_04 = _mm_add_epi32(out_04, bias_04);
1362     out_08 = _mm_add_epi32(out_08, bias_08);
1363     out_12 = _mm_add_epi32(out_12, bias_12);
1364     // out = QUANTDIV(coeff, iQ, B, QFIX)
1365     out_00 = _mm_srai_epi32(out_00, QFIX);
1366     out_04 = _mm_srai_epi32(out_04, QFIX);
1367     out_08 = _mm_srai_epi32(out_08, QFIX);
1368     out_12 = _mm_srai_epi32(out_12, QFIX);
1369 
1370     // pack result as 16b
1371     out0 = _mm_packs_epi32(out_00, out_04);
1372     out8 = _mm_packs_epi32(out_08, out_12);
1373 
1374     // if (coeff > 2047) coeff = 2047
1375     out0 = _mm_min_epi16(out0, max_coeff_2047);
1376     out8 = _mm_min_epi16(out8, max_coeff_2047);
1377   }
1378 
1379   // get sign back (if (sign[j]) out_n = -out_n)
1380   out0 = _mm_xor_si128(out0, sign0);
1381   out8 = _mm_xor_si128(out8, sign8);
1382   out0 = _mm_sub_epi16(out0, sign0);
1383   out8 = _mm_sub_epi16(out8, sign8);
1384 
1385   // in = out * Q
1386   in0 = _mm_mullo_epi16(out0, q0);
1387   in8 = _mm_mullo_epi16(out8, q8);
1388 
1389   _mm_storeu_si128((__m128i*)&in[0], in0);
1390   _mm_storeu_si128((__m128i*)&in[8], in8);
1391 
1392   // zigzag the output before storing it.
1393   //
1394   // The zigzag pattern can almost be reproduced with a small sequence of
1395   // shuffles. After it, we only need to swap the 7th (ending up in third
1396   // position instead of twelfth) and 8th values.
1397   {
1398     __m128i outZ0, outZ8;
1399     outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
1400     outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
1401     outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
1402     outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
1403     outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
1404     outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
1405     _mm_storeu_si128((__m128i*)&out[0], outZ0);
1406     _mm_storeu_si128((__m128i*)&out[8], outZ8);
1407     packed_out = _mm_packs_epi16(outZ0, outZ8);
1408   }
1409   {
1410     const int16_t outZ_12 = out[12];
1411     const int16_t outZ_3 = out[3];
1412     out[3] = outZ_12;
1413     out[12] = outZ_3;
1414   }
1415 
1416   // detect if all 'out' values are zeroes or not
1417   return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
1418 }
1419 
QuantizeBlock(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)1420 static int QuantizeBlock(int16_t in[16], int16_t out[16],
1421                          const VP8Matrix* const mtx) {
1422   return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx);
1423 }
1424 
QuantizeBlockWHT(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)1425 static int QuantizeBlockWHT(int16_t in[16], int16_t out[16],
1426                             const VP8Matrix* const mtx) {
1427   return DoQuantizeBlock(in, out, NULL, mtx);
1428 }
1429 
Quantize2Blocks(int16_t in[32],int16_t out[32],const VP8Matrix * const mtx)1430 static int Quantize2Blocks(int16_t in[32], int16_t out[32],
1431                            const VP8Matrix* const mtx) {
1432   int nz;
1433   const uint16_t* const sharpen = &mtx->sharpen_[0];
1434   nz  = DoQuantizeBlock(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
1435   nz |= DoQuantizeBlock(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
1436   return nz;
1437 }
1438 
1439 //------------------------------------------------------------------------------
1440 // Entry point
1441 
1442 extern void VP8EncDspInitSSE2(void);
1443 
VP8EncDspInitSSE2(void)1444 WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) {
1445   VP8CollectHistogram = CollectHistogram;
1446   VP8EncPredLuma16 = Intra16Preds;
1447   VP8EncPredChroma8 = IntraChromaPreds;
1448   VP8EncPredLuma4 = Intra4Preds;
1449   VP8EncQuantizeBlock = QuantizeBlock;
1450   VP8EncQuantize2Blocks = Quantize2Blocks;
1451   VP8EncQuantizeBlockWHT = QuantizeBlockWHT;
1452   VP8ITransform = ITransform;
1453   VP8FTransform = FTransform;
1454   VP8FTransform2 = FTransform2;
1455   VP8FTransformWHT = FTransformWHT;
1456   VP8SSE16x16 = SSE16x16;
1457   VP8SSE16x8 = SSE16x8;
1458   VP8SSE8x8 = SSE8x8;
1459   VP8SSE4x4 = SSE4x4;
1460   VP8TDisto4x4 = Disto4x4;
1461   VP8TDisto16x16 = Disto16x16;
1462 }
1463 
1464 #else  // !WEBP_USE_SSE2
1465 
1466 WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2)
1467 
1468 #endif  // WEBP_USE_SSE2
1469