1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of speed-critical encoding functions.
11 //
12 // Author: Christian Duvivier (cduvivier@google.com)
13
14 #include "./dsp.h"
15
16 #if defined(WEBP_USE_SSE2)
17 #include <stdlib.h> // for abs()
18 #include <emmintrin.h>
19
20 #include "../enc/cost.h"
21 #include "../enc/vp8enci.h"
22
23 //------------------------------------------------------------------------------
24 // Quite useful macro for debugging. Left here for convenience.
25
26 #if 0
27 #include <stdio.h>
28 static void PrintReg(const __m128i r, const char* const name, int size) {
29 int n;
30 union {
31 __m128i r;
32 uint8_t i8[16];
33 uint16_t i16[8];
34 uint32_t i32[4];
35 uint64_t i64[2];
36 } tmp;
37 tmp.r = r;
38 fprintf(stderr, "%s\t: ", name);
39 if (size == 8) {
40 for (n = 0; n < 16; ++n) fprintf(stderr, "%.2x ", tmp.i8[n]);
41 } else if (size == 16) {
42 for (n = 0; n < 8; ++n) fprintf(stderr, "%.4x ", tmp.i16[n]);
43 } else if (size == 32) {
44 for (n = 0; n < 4; ++n) fprintf(stderr, "%.8x ", tmp.i32[n]);
45 } else {
46 for (n = 0; n < 2; ++n) fprintf(stderr, "%.16lx ", tmp.i64[n]);
47 }
48 fprintf(stderr, "\n");
49 }
50 #endif
51
52 //------------------------------------------------------------------------------
53 // Transforms (Paragraph 14.4)
54
55 // Does one or two inverse transforms.
ITransform(const uint8_t * ref,const int16_t * in,uint8_t * dst,int do_two)56 static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst,
57 int do_two) {
58 // This implementation makes use of 16-bit fixed point versions of two
59 // multiply constants:
60 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
61 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
62 //
63 // To be able to use signed 16-bit integers, we use the following trick to
64 // have constants within range:
65 // - Associated constants are obtained by subtracting the 16-bit fixed point
66 // version of one:
67 // k = K - (1 << 16) => K = k + (1 << 16)
68 // K1 = 85267 => k1 = 20091
69 // K2 = 35468 => k2 = -30068
70 // - The multiplication of a variable by a constant become the sum of the
71 // variable and the multiplication of that variable by the associated
72 // constant:
73 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
74 const __m128i k1 = _mm_set1_epi16(20091);
75 const __m128i k2 = _mm_set1_epi16(-30068);
76 __m128i T0, T1, T2, T3;
77
78 // Load and concatenate the transform coefficients (we'll do two inverse
79 // transforms in parallel). In the case of only one inverse transform, the
80 // second half of the vectors will just contain random value we'll never
81 // use nor store.
82 __m128i in0, in1, in2, in3;
83 {
84 in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
85 in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
86 in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
87 in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
88 // a00 a10 a20 a30 x x x x
89 // a01 a11 a21 a31 x x x x
90 // a02 a12 a22 a32 x x x x
91 // a03 a13 a23 a33 x x x x
92 if (do_two) {
93 const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
94 const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
95 const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
96 const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
97 in0 = _mm_unpacklo_epi64(in0, inB0);
98 in1 = _mm_unpacklo_epi64(in1, inB1);
99 in2 = _mm_unpacklo_epi64(in2, inB2);
100 in3 = _mm_unpacklo_epi64(in3, inB3);
101 // a00 a10 a20 a30 b00 b10 b20 b30
102 // a01 a11 a21 a31 b01 b11 b21 b31
103 // a02 a12 a22 a32 b02 b12 b22 b32
104 // a03 a13 a23 a33 b03 b13 b23 b33
105 }
106 }
107
108 // Vertical pass and subsequent transpose.
109 {
110 // First pass, c and d calculations are longer because of the "trick"
111 // multiplications.
112 const __m128i a = _mm_add_epi16(in0, in2);
113 const __m128i b = _mm_sub_epi16(in0, in2);
114 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
115 const __m128i c1 = _mm_mulhi_epi16(in1, k2);
116 const __m128i c2 = _mm_mulhi_epi16(in3, k1);
117 const __m128i c3 = _mm_sub_epi16(in1, in3);
118 const __m128i c4 = _mm_sub_epi16(c1, c2);
119 const __m128i c = _mm_add_epi16(c3, c4);
120 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
121 const __m128i d1 = _mm_mulhi_epi16(in1, k1);
122 const __m128i d2 = _mm_mulhi_epi16(in3, k2);
123 const __m128i d3 = _mm_add_epi16(in1, in3);
124 const __m128i d4 = _mm_add_epi16(d1, d2);
125 const __m128i d = _mm_add_epi16(d3, d4);
126
127 // Second pass.
128 const __m128i tmp0 = _mm_add_epi16(a, d);
129 const __m128i tmp1 = _mm_add_epi16(b, c);
130 const __m128i tmp2 = _mm_sub_epi16(b, c);
131 const __m128i tmp3 = _mm_sub_epi16(a, d);
132
133 // Transpose the two 4x4.
134 // a00 a01 a02 a03 b00 b01 b02 b03
135 // a10 a11 a12 a13 b10 b11 b12 b13
136 // a20 a21 a22 a23 b20 b21 b22 b23
137 // a30 a31 a32 a33 b30 b31 b32 b33
138 const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
139 const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
140 const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
141 const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
142 // a00 a10 a01 a11 a02 a12 a03 a13
143 // a20 a30 a21 a31 a22 a32 a23 a33
144 // b00 b10 b01 b11 b02 b12 b03 b13
145 // b20 b30 b21 b31 b22 b32 b23 b33
146 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
147 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
148 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
149 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
150 // a00 a10 a20 a30 a01 a11 a21 a31
151 // b00 b10 b20 b30 b01 b11 b21 b31
152 // a02 a12 a22 a32 a03 a13 a23 a33
153 // b02 b12 a22 b32 b03 b13 b23 b33
154 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
155 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
156 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
157 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
158 // a00 a10 a20 a30 b00 b10 b20 b30
159 // a01 a11 a21 a31 b01 b11 b21 b31
160 // a02 a12 a22 a32 b02 b12 b22 b32
161 // a03 a13 a23 a33 b03 b13 b23 b33
162 }
163
164 // Horizontal pass and subsequent transpose.
165 {
166 // First pass, c and d calculations are longer because of the "trick"
167 // multiplications.
168 const __m128i four = _mm_set1_epi16(4);
169 const __m128i dc = _mm_add_epi16(T0, four);
170 const __m128i a = _mm_add_epi16(dc, T2);
171 const __m128i b = _mm_sub_epi16(dc, T2);
172 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
173 const __m128i c1 = _mm_mulhi_epi16(T1, k2);
174 const __m128i c2 = _mm_mulhi_epi16(T3, k1);
175 const __m128i c3 = _mm_sub_epi16(T1, T3);
176 const __m128i c4 = _mm_sub_epi16(c1, c2);
177 const __m128i c = _mm_add_epi16(c3, c4);
178 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
179 const __m128i d1 = _mm_mulhi_epi16(T1, k1);
180 const __m128i d2 = _mm_mulhi_epi16(T3, k2);
181 const __m128i d3 = _mm_add_epi16(T1, T3);
182 const __m128i d4 = _mm_add_epi16(d1, d2);
183 const __m128i d = _mm_add_epi16(d3, d4);
184
185 // Second pass.
186 const __m128i tmp0 = _mm_add_epi16(a, d);
187 const __m128i tmp1 = _mm_add_epi16(b, c);
188 const __m128i tmp2 = _mm_sub_epi16(b, c);
189 const __m128i tmp3 = _mm_sub_epi16(a, d);
190 const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
191 const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
192 const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
193 const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
194
195 // Transpose the two 4x4.
196 // a00 a01 a02 a03 b00 b01 b02 b03
197 // a10 a11 a12 a13 b10 b11 b12 b13
198 // a20 a21 a22 a23 b20 b21 b22 b23
199 // a30 a31 a32 a33 b30 b31 b32 b33
200 const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
201 const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
202 const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
203 const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
204 // a00 a10 a01 a11 a02 a12 a03 a13
205 // a20 a30 a21 a31 a22 a32 a23 a33
206 // b00 b10 b01 b11 b02 b12 b03 b13
207 // b20 b30 b21 b31 b22 b32 b23 b33
208 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
209 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
210 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
211 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
212 // a00 a10 a20 a30 a01 a11 a21 a31
213 // b00 b10 b20 b30 b01 b11 b21 b31
214 // a02 a12 a22 a32 a03 a13 a23 a33
215 // b02 b12 a22 b32 b03 b13 b23 b33
216 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
217 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
218 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
219 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
220 // a00 a10 a20 a30 b00 b10 b20 b30
221 // a01 a11 a21 a31 b01 b11 b21 b31
222 // a02 a12 a22 a32 b02 b12 b22 b32
223 // a03 a13 a23 a33 b03 b13 b23 b33
224 }
225
226 // Add inverse transform to 'ref' and store.
227 {
228 const __m128i zero = _mm_setzero_si128();
229 // Load the reference(s).
230 __m128i ref0, ref1, ref2, ref3;
231 if (do_two) {
232 // Load eight bytes/pixels per line.
233 ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
234 ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
235 ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
236 ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
237 } else {
238 // Load four bytes/pixels per line.
239 ref0 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[0 * BPS]));
240 ref1 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[1 * BPS]));
241 ref2 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[2 * BPS]));
242 ref3 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[3 * BPS]));
243 }
244 // Convert to 16b.
245 ref0 = _mm_unpacklo_epi8(ref0, zero);
246 ref1 = _mm_unpacklo_epi8(ref1, zero);
247 ref2 = _mm_unpacklo_epi8(ref2, zero);
248 ref3 = _mm_unpacklo_epi8(ref3, zero);
249 // Add the inverse transform(s).
250 ref0 = _mm_add_epi16(ref0, T0);
251 ref1 = _mm_add_epi16(ref1, T1);
252 ref2 = _mm_add_epi16(ref2, T2);
253 ref3 = _mm_add_epi16(ref3, T3);
254 // Unsigned saturate to 8b.
255 ref0 = _mm_packus_epi16(ref0, ref0);
256 ref1 = _mm_packus_epi16(ref1, ref1);
257 ref2 = _mm_packus_epi16(ref2, ref2);
258 ref3 = _mm_packus_epi16(ref3, ref3);
259 // Store the results.
260 if (do_two) {
261 // Store eight bytes/pixels per line.
262 _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
263 _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
264 _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
265 _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
266 } else {
267 // Store four bytes/pixels per line.
268 WebPUint32ToMem(&dst[0 * BPS], _mm_cvtsi128_si32(ref0));
269 WebPUint32ToMem(&dst[1 * BPS], _mm_cvtsi128_si32(ref1));
270 WebPUint32ToMem(&dst[2 * BPS], _mm_cvtsi128_si32(ref2));
271 WebPUint32ToMem(&dst[3 * BPS], _mm_cvtsi128_si32(ref3));
272 }
273 }
274 }
275
FTransformPass1(const __m128i * const in01,const __m128i * const in23,__m128i * const out01,__m128i * const out32)276 static void FTransformPass1(const __m128i* const in01,
277 const __m128i* const in23,
278 __m128i* const out01,
279 __m128i* const out32) {
280 const __m128i k937 = _mm_set1_epi32(937);
281 const __m128i k1812 = _mm_set1_epi32(1812);
282
283 const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
284 const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
285 const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
286 2217, 5352, 2217, 5352);
287 const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
288 -5352, 2217, -5352, 2217);
289
290 // *in01 = 00 01 10 11 02 03 12 13
291 // *in23 = 20 21 30 31 22 23 32 33
292 const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1));
293 const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1));
294 // 00 01 10 11 03 02 13 12
295 // 20 21 30 31 23 22 33 32
296 const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
297 const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
298 // 00 01 10 11 20 21 30 31
299 // 03 02 13 12 23 22 33 32
300 const __m128i a01 = _mm_add_epi16(s01, s32);
301 const __m128i a32 = _mm_sub_epi16(s01, s32);
302 // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
303 // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
304
305 const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ]
306 const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ]
307 const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
308 const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
309 const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
310 const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
311 const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9);
312 const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9);
313 const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
314 const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
315 const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1...
316 const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3
317 const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
318 *out01 = _mm_unpacklo_epi32(s_lo, s_hi);
319 *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2..
320 }
321
FTransformPass2(const __m128i * const v01,const __m128i * const v32,int16_t * out)322 static void FTransformPass2(const __m128i* const v01, const __m128i* const v32,
323 int16_t* out) {
324 const __m128i zero = _mm_setzero_si128();
325 const __m128i seven = _mm_set1_epi16(7);
326 const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217,
327 5352, 2217, 5352, 2217);
328 const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
329 2217, -5352, 2217, -5352);
330 const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
331 const __m128i k51000 = _mm_set1_epi32(51000);
332
333 // Same operations are done on the (0,3) and (1,2) pairs.
334 // a0 = v0 + v3
335 // a1 = v1 + v2
336 // a3 = v0 - v3
337 // a2 = v1 - v2
338 const __m128i a01 = _mm_add_epi16(*v01, *v32);
339 const __m128i a32 = _mm_sub_epi16(*v01, *v32);
340 const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
341 const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
342 const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
343
344 // d0 = (a0 + a1 + 7) >> 4;
345 // d2 = (a0 - a1 + 7) >> 4;
346 const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
347 const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
348 const __m128i d0 = _mm_srai_epi16(c0, 4);
349 const __m128i d2 = _mm_srai_epi16(c2, 4);
350
351 // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
352 // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
353 const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
354 const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
355 const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
356 const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
357 const __m128i d3 = _mm_add_epi32(c3, k51000);
358 const __m128i e1 = _mm_srai_epi32(d1, 16);
359 const __m128i e3 = _mm_srai_epi32(d3, 16);
360 const __m128i f1 = _mm_packs_epi32(e1, e1);
361 const __m128i f3 = _mm_packs_epi32(e3, e3);
362 // f1 = f1 + (a3 != 0);
363 // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
364 // desired (0, 1), we add one earlier through k12000_plus_one.
365 // -> f1 = f1 + 1 - (a3 == 0)
366 const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
367
368 const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
369 const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
370 _mm_storeu_si128((__m128i*)&out[0], d0_g1);
371 _mm_storeu_si128((__m128i*)&out[8], d2_f3);
372 }
373
FTransform(const uint8_t * src,const uint8_t * ref,int16_t * out)374 static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) {
375 const __m128i zero = _mm_setzero_si128();
376
377 // Load src and convert to 16b.
378 const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
379 const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
380 const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
381 const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
382 const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
383 const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
384 const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
385 const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
386 // Load ref and convert to 16b.
387 const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
388 const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
389 const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
390 const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
391 const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
392 const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
393 const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
394 const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
395 // Compute difference. -> 00 01 02 03 00 00 00 00
396 const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
397 const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
398 const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
399 const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
400
401 // Unpack and shuffle
402 // 00 01 02 03 0 0 0 0
403 // 10 11 12 13 0 0 0 0
404 // 20 21 22 23 0 0 0 0
405 // 30 31 32 33 0 0 0 0
406 const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1);
407 const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3);
408 __m128i v01, v32;
409
410 // First pass
411 FTransformPass1(&shuf01, &shuf23, &v01, &v32);
412
413 // Second pass
414 FTransformPass2(&v01, &v32, out);
415 }
416
FTransform2(const uint8_t * src,const uint8_t * ref,int16_t * out)417 static void FTransform2(const uint8_t* src, const uint8_t* ref, int16_t* out) {
418 const __m128i zero = _mm_setzero_si128();
419
420 // Load src and convert to 16b.
421 const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]);
422 const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]);
423 const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]);
424 const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]);
425 const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
426 const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
427 const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
428 const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
429 // Load ref and convert to 16b.
430 const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]);
431 const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]);
432 const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]);
433 const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]);
434 const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
435 const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
436 const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
437 const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
438 // Compute difference. -> 00 01 02 03 00' 01' 02' 03'
439 const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
440 const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
441 const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
442 const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
443
444 // Unpack and shuffle
445 // 00 01 02 03 0 0 0 0
446 // 10 11 12 13 0 0 0 0
447 // 20 21 22 23 0 0 0 0
448 // 30 31 32 33 0 0 0 0
449 const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1);
450 const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3);
451 const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1);
452 const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3);
453 __m128i v01l, v32l;
454 __m128i v01h, v32h;
455
456 // First pass
457 FTransformPass1(&shuf01l, &shuf23l, &v01l, &v32l);
458 FTransformPass1(&shuf01h, &shuf23h, &v01h, &v32h);
459
460 // Second pass
461 FTransformPass2(&v01l, &v32l, out + 0);
462 FTransformPass2(&v01h, &v32h, out + 16);
463 }
464
FTransformWHTRow(const int16_t * const in,__m128i * const out)465 static void FTransformWHTRow(const int16_t* const in, __m128i* const out) {
466 const __m128i kMult1 = _mm_set_epi16(0, 0, 0, 0, 1, 1, 1, 1);
467 const __m128i kMult2 = _mm_set_epi16(0, 0, 0, 0, -1, 1, -1, 1);
468 const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]);
469 const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]);
470 const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]);
471 const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]);
472 const __m128i A01 = _mm_unpacklo_epi16(src0, src1); // A0 A1 | ...
473 const __m128i A23 = _mm_unpacklo_epi16(src2, src3); // A2 A3 | ...
474 const __m128i B0 = _mm_adds_epi16(A01, A23); // a0 | a1 | ...
475 const __m128i B1 = _mm_subs_epi16(A01, A23); // a3 | a2 | ...
476 const __m128i C0 = _mm_unpacklo_epi32(B0, B1); // a0 | a1 | a3 | a2
477 const __m128i C1 = _mm_unpacklo_epi32(B1, B0); // a3 | a2 | a0 | a1
478 const __m128i D0 = _mm_madd_epi16(C0, kMult1); // out0, out1
479 const __m128i D1 = _mm_madd_epi16(C1, kMult2); // out2, out3
480 *out = _mm_unpacklo_epi64(D0, D1);
481 }
482
FTransformWHT(const int16_t * in,int16_t * out)483 static void FTransformWHT(const int16_t* in, int16_t* out) {
484 __m128i row0, row1, row2, row3;
485 FTransformWHTRow(in + 0 * 64, &row0);
486 FTransformWHTRow(in + 1 * 64, &row1);
487 FTransformWHTRow(in + 2 * 64, &row2);
488 FTransformWHTRow(in + 3 * 64, &row3);
489
490 {
491 const __m128i a0 = _mm_add_epi32(row0, row2);
492 const __m128i a1 = _mm_add_epi32(row1, row3);
493 const __m128i a2 = _mm_sub_epi32(row1, row3);
494 const __m128i a3 = _mm_sub_epi32(row0, row2);
495 const __m128i b0 = _mm_srai_epi32(_mm_add_epi32(a0, a1), 1);
496 const __m128i b1 = _mm_srai_epi32(_mm_add_epi32(a3, a2), 1);
497 const __m128i b2 = _mm_srai_epi32(_mm_sub_epi32(a3, a2), 1);
498 const __m128i b3 = _mm_srai_epi32(_mm_sub_epi32(a0, a1), 1);
499 const __m128i out0 = _mm_packs_epi32(b0, b1);
500 const __m128i out1 = _mm_packs_epi32(b2, b3);
501 _mm_storeu_si128((__m128i*)&out[0], out0);
502 _mm_storeu_si128((__m128i*)&out[8], out1);
503 }
504 }
505
506 //------------------------------------------------------------------------------
507 // Compute susceptibility based on DCT-coeff histograms:
508 // the higher, the "easier" the macroblock is to compress.
509
CollectHistogram(const uint8_t * ref,const uint8_t * pred,int start_block,int end_block,VP8Histogram * const histo)510 static void CollectHistogram(const uint8_t* ref, const uint8_t* pred,
511 int start_block, int end_block,
512 VP8Histogram* const histo) {
513 const __m128i zero = _mm_setzero_si128();
514 const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
515 int j;
516 int distribution[MAX_COEFF_THRESH + 1] = { 0 };
517 for (j = start_block; j < end_block; ++j) {
518 int16_t out[16];
519 int k;
520
521 FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
522
523 // Convert coefficients to bin (within out[]).
524 {
525 // Load.
526 const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
527 const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
528 const __m128i d0 = _mm_sub_epi16(zero, out0);
529 const __m128i d1 = _mm_sub_epi16(zero, out1);
530 const __m128i abs0 = _mm_max_epi16(out0, d0); // abs(v), 16b
531 const __m128i abs1 = _mm_max_epi16(out1, d1);
532 // v = abs(out) >> 3
533 const __m128i v0 = _mm_srai_epi16(abs0, 3);
534 const __m128i v1 = _mm_srai_epi16(abs1, 3);
535 // bin = min(v, MAX_COEFF_THRESH)
536 const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
537 const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
538 // Store.
539 _mm_storeu_si128((__m128i*)&out[0], bin0);
540 _mm_storeu_si128((__m128i*)&out[8], bin1);
541 }
542
543 // Convert coefficients to bin.
544 for (k = 0; k < 16; ++k) {
545 ++distribution[out[k]];
546 }
547 }
548 VP8SetHistogramData(distribution, histo);
549 }
550
551 //------------------------------------------------------------------------------
552 // Intra predictions
553
554 // helper for chroma-DC predictions
Put8x8uv(uint8_t v,uint8_t * dst)555 static WEBP_INLINE void Put8x8uv(uint8_t v, uint8_t* dst) {
556 int j;
557 const __m128i values = _mm_set1_epi8(v);
558 for (j = 0; j < 8; ++j) {
559 _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
560 }
561 }
562
Put16(uint8_t v,uint8_t * dst)563 static WEBP_INLINE void Put16(uint8_t v, uint8_t* dst) {
564 int j;
565 const __m128i values = _mm_set1_epi8(v);
566 for (j = 0; j < 16; ++j) {
567 _mm_store_si128((__m128i*)(dst + j * BPS), values);
568 }
569 }
570
Fill(uint8_t * dst,int value,int size)571 static WEBP_INLINE void Fill(uint8_t* dst, int value, int size) {
572 if (size == 4) {
573 int j;
574 for (j = 0; j < 4; ++j) {
575 memset(dst + j * BPS, value, 4);
576 }
577 } else if (size == 8) {
578 Put8x8uv(value, dst);
579 } else {
580 Put16(value, dst);
581 }
582 }
583
VE8uv(uint8_t * dst,const uint8_t * top)584 static WEBP_INLINE void VE8uv(uint8_t* dst, const uint8_t* top) {
585 int j;
586 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
587 for (j = 0; j < 8; ++j) {
588 _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values);
589 }
590 }
591
VE16(uint8_t * dst,const uint8_t * top)592 static WEBP_INLINE void VE16(uint8_t* dst, const uint8_t* top) {
593 const __m128i top_values = _mm_load_si128((const __m128i*)top);
594 int j;
595 for (j = 0; j < 16; ++j) {
596 _mm_store_si128((__m128i*)(dst + j * BPS), top_values);
597 }
598 }
599
VerticalPred(uint8_t * dst,const uint8_t * top,int size)600 static WEBP_INLINE void VerticalPred(uint8_t* dst,
601 const uint8_t* top, int size) {
602 if (top != NULL) {
603 if (size == 8) {
604 VE8uv(dst, top);
605 } else {
606 VE16(dst, top);
607 }
608 } else {
609 Fill(dst, 127, size);
610 }
611 }
612
HE8uv(uint8_t * dst,const uint8_t * left)613 static WEBP_INLINE void HE8uv(uint8_t* dst, const uint8_t* left) {
614 int j;
615 for (j = 0; j < 8; ++j) {
616 const __m128i values = _mm_set1_epi8(left[j]);
617 _mm_storel_epi64((__m128i*)dst, values);
618 dst += BPS;
619 }
620 }
621
HE16(uint8_t * dst,const uint8_t * left)622 static WEBP_INLINE void HE16(uint8_t* dst, const uint8_t* left) {
623 int j;
624 for (j = 0; j < 16; ++j) {
625 const __m128i values = _mm_set1_epi8(left[j]);
626 _mm_store_si128((__m128i*)dst, values);
627 dst += BPS;
628 }
629 }
630
HorizontalPred(uint8_t * dst,const uint8_t * left,int size)631 static WEBP_INLINE void HorizontalPred(uint8_t* dst,
632 const uint8_t* left, int size) {
633 if (left != NULL) {
634 if (size == 8) {
635 HE8uv(dst, left);
636 } else {
637 HE16(dst, left);
638 }
639 } else {
640 Fill(dst, 129, size);
641 }
642 }
643
TM(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)644 static WEBP_INLINE void TM(uint8_t* dst, const uint8_t* left,
645 const uint8_t* top, int size) {
646 const __m128i zero = _mm_setzero_si128();
647 int y;
648 if (size == 8) {
649 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
650 const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
651 for (y = 0; y < 8; ++y, dst += BPS) {
652 const int val = left[y] - left[-1];
653 const __m128i base = _mm_set1_epi16(val);
654 const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
655 _mm_storel_epi64((__m128i*)dst, out);
656 }
657 } else {
658 const __m128i top_values = _mm_load_si128((const __m128i*)top);
659 const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
660 const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
661 for (y = 0; y < 16; ++y, dst += BPS) {
662 const int val = left[y] - left[-1];
663 const __m128i base = _mm_set1_epi16(val);
664 const __m128i out_0 = _mm_add_epi16(base, top_base_0);
665 const __m128i out_1 = _mm_add_epi16(base, top_base_1);
666 const __m128i out = _mm_packus_epi16(out_0, out_1);
667 _mm_store_si128((__m128i*)dst, out);
668 }
669 }
670 }
671
TrueMotion(uint8_t * dst,const uint8_t * left,const uint8_t * top,int size)672 static WEBP_INLINE void TrueMotion(uint8_t* dst, const uint8_t* left,
673 const uint8_t* top, int size) {
674 if (left != NULL) {
675 if (top != NULL) {
676 TM(dst, left, top, size);
677 } else {
678 HorizontalPred(dst, left, size);
679 }
680 } else {
681 // true motion without left samples (hence: with default 129 value)
682 // is equivalent to VE prediction where you just copy the top samples.
683 // Note that if top samples are not available, the default value is
684 // then 129, and not 127 as in the VerticalPred case.
685 if (top != NULL) {
686 VerticalPred(dst, top, size);
687 } else {
688 Fill(dst, 129, size);
689 }
690 }
691 }
692
DC8uv(uint8_t * dst,const uint8_t * left,const uint8_t * top)693 static WEBP_INLINE void DC8uv(uint8_t* dst, const uint8_t* left,
694 const uint8_t* top) {
695 const __m128i zero = _mm_setzero_si128();
696 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
697 const __m128i left_values = _mm_loadl_epi64((const __m128i*)left);
698 const __m128i sum_top = _mm_sad_epu8(top_values, zero);
699 const __m128i sum_left = _mm_sad_epu8(left_values, zero);
700 const int DC = _mm_cvtsi128_si32(sum_top) + _mm_cvtsi128_si32(sum_left) + 8;
701 Put8x8uv(DC >> 4, dst);
702 }
703
DC8uvNoLeft(uint8_t * dst,const uint8_t * top)704 static WEBP_INLINE void DC8uvNoLeft(uint8_t* dst, const uint8_t* top) {
705 const __m128i zero = _mm_setzero_si128();
706 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
707 const __m128i sum = _mm_sad_epu8(top_values, zero);
708 const int DC = _mm_cvtsi128_si32(sum) + 4;
709 Put8x8uv(DC >> 3, dst);
710 }
711
DC8uvNoTop(uint8_t * dst,const uint8_t * left)712 static WEBP_INLINE void DC8uvNoTop(uint8_t* dst, const uint8_t* left) {
713 // 'left' is contiguous so we can reuse the top summation.
714 DC8uvNoLeft(dst, left);
715 }
716
DC8uvNoTopLeft(uint8_t * dst)717 static WEBP_INLINE void DC8uvNoTopLeft(uint8_t* dst) {
718 Put8x8uv(0x80, dst);
719 }
720
DC8uvMode(uint8_t * dst,const uint8_t * left,const uint8_t * top)721 static WEBP_INLINE void DC8uvMode(uint8_t* dst, const uint8_t* left,
722 const uint8_t* top) {
723 if (top != NULL) {
724 if (left != NULL) { // top and left present
725 DC8uv(dst, left, top);
726 } else { // top, but no left
727 DC8uvNoLeft(dst, top);
728 }
729 } else if (left != NULL) { // left but no top
730 DC8uvNoTop(dst, left);
731 } else { // no top, no left, nothing.
732 DC8uvNoTopLeft(dst);
733 }
734 }
735
DC16(uint8_t * dst,const uint8_t * left,const uint8_t * top)736 static WEBP_INLINE void DC16(uint8_t* dst, const uint8_t* left,
737 const uint8_t* top) {
738 const __m128i zero = _mm_setzero_si128();
739 const __m128i top_row = _mm_load_si128((const __m128i*)top);
740 const __m128i left_row = _mm_load_si128((const __m128i*)left);
741 const __m128i sad8x2 = _mm_sad_epu8(top_row, zero);
742 // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
743 const __m128i sum_top = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
744 const __m128i sad8x2_left = _mm_sad_epu8(left_row, zero);
745 // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
746 const __m128i sum_left =
747 _mm_add_epi16(sad8x2_left, _mm_shuffle_epi32(sad8x2_left, 2));
748 const int DC = _mm_cvtsi128_si32(sum_top) + _mm_cvtsi128_si32(sum_left) + 16;
749 Put16(DC >> 5, dst);
750 }
751
DC16NoLeft(uint8_t * dst,const uint8_t * top)752 static WEBP_INLINE void DC16NoLeft(uint8_t* dst, const uint8_t* top) {
753 const __m128i zero = _mm_setzero_si128();
754 const __m128i top_row = _mm_load_si128((const __m128i*)top);
755 const __m128i sad8x2 = _mm_sad_epu8(top_row, zero);
756 // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
757 const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
758 const int DC = _mm_cvtsi128_si32(sum) + 8;
759 Put16(DC >> 4, dst);
760 }
761
DC16NoTop(uint8_t * dst,const uint8_t * left)762 static WEBP_INLINE void DC16NoTop(uint8_t* dst, const uint8_t* left) {
763 // 'left' is contiguous so we can reuse the top summation.
764 DC16NoLeft(dst, left);
765 }
766
DC16NoTopLeft(uint8_t * dst)767 static WEBP_INLINE void DC16NoTopLeft(uint8_t* dst) {
768 Put16(0x80, dst);
769 }
770
DC16Mode(uint8_t * dst,const uint8_t * left,const uint8_t * top)771 static WEBP_INLINE void DC16Mode(uint8_t* dst, const uint8_t* left,
772 const uint8_t* top) {
773 if (top != NULL) {
774 if (left != NULL) { // top and left present
775 DC16(dst, left, top);
776 } else { // top, but no left
777 DC16NoLeft(dst, top);
778 }
779 } else if (left != NULL) { // left but no top
780 DC16NoTop(dst, left);
781 } else { // no top, no left, nothing.
782 DC16NoTopLeft(dst);
783 }
784 }
785
786 //------------------------------------------------------------------------------
787 // 4x4 predictions
788
789 #define DST(x, y) dst[(x) + (y) * BPS]
790 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
791 #define AVG2(a, b) (((a) + (b) + 1) >> 1)
792
793 // We use the following 8b-arithmetic tricks:
794 // (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
795 // where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
796 // and:
797 // (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
798 // where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1
799 // and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
800
VE4(uint8_t * dst,const uint8_t * top)801 static WEBP_INLINE void VE4(uint8_t* dst, const uint8_t* top) { // vertical
802 const __m128i one = _mm_set1_epi8(1);
803 const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1));
804 const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
805 const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
806 const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
807 const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
808 const __m128i b = _mm_subs_epu8(a, lsb);
809 const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
810 const uint32_t vals = _mm_cvtsi128_si32(avg);
811 int i;
812 for (i = 0; i < 4; ++i) {
813 WebPUint32ToMem(dst + i * BPS, vals);
814 }
815 }
816
HE4(uint8_t * dst,const uint8_t * top)817 static WEBP_INLINE void HE4(uint8_t* dst, const uint8_t* top) { // horizontal
818 const int X = top[-1];
819 const int I = top[-2];
820 const int J = top[-3];
821 const int K = top[-4];
822 const int L = top[-5];
823 WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J));
824 WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K));
825 WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L));
826 WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L));
827 }
828
DC4(uint8_t * dst,const uint8_t * top)829 static WEBP_INLINE void DC4(uint8_t* dst, const uint8_t* top) {
830 uint32_t dc = 4;
831 int i;
832 for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i];
833 Fill(dst, dc >> 3, 4);
834 }
835
LD4(uint8_t * dst,const uint8_t * top)836 static WEBP_INLINE void LD4(uint8_t* dst, const uint8_t* top) { // Down-Left
837 const __m128i one = _mm_set1_epi8(1);
838 const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
839 const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
840 const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
841 const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3);
842 const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
843 const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
844 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
845 const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
846 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg ));
847 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
848 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
849 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
850 }
851
VR4(uint8_t * dst,const uint8_t * top)852 static WEBP_INLINE void VR4(uint8_t* dst,
853 const uint8_t* top) { // Vertical-Right
854 const __m128i one = _mm_set1_epi8(1);
855 const int I = top[-2];
856 const int J = top[-3];
857 const int K = top[-4];
858 const int X = top[-1];
859 const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1));
860 const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
861 const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
862 const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
863 const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0);
864 const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
865 const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
866 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
867 const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
868 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd ));
869 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh ));
870 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
871 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
872
873 // these two are hard to implement in SSE2, so we keep the C-version:
874 DST(0, 2) = AVG3(J, I, X);
875 DST(0, 3) = AVG3(K, J, I);
876 }
877
VL4(uint8_t * dst,const uint8_t * top)878 static WEBP_INLINE void VL4(uint8_t* dst,
879 const uint8_t* top) { // Vertical-Left
880 const __m128i one = _mm_set1_epi8(1);
881 const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top);
882 const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
883 const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
884 const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
885 const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
886 const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
887 const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
888 const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
889 const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
890 const __m128i abbc = _mm_or_si128(ab, bc);
891 const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
892 const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
893 const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
894 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 ));
895 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 ));
896 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
897 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
898
899 // these two are hard to get and irregular
900 DST(3, 2) = (extra_out >> 0) & 0xff;
901 DST(3, 3) = (extra_out >> 8) & 0xff;
902 }
903
RD4(uint8_t * dst,const uint8_t * top)904 static WEBP_INLINE void RD4(uint8_t* dst, const uint8_t* top) { // Down-right
905 const __m128i one = _mm_set1_epi8(1);
906 const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5));
907 const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4);
908 const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
909 const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
910 const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
911 const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
912 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
913 const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
914 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg ));
915 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
916 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
917 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
918 }
919
HU4(uint8_t * dst,const uint8_t * top)920 static WEBP_INLINE void HU4(uint8_t* dst, const uint8_t* top) {
921 const int I = top[-2];
922 const int J = top[-3];
923 const int K = top[-4];
924 const int L = top[-5];
925 DST(0, 0) = AVG2(I, J);
926 DST(2, 0) = DST(0, 1) = AVG2(J, K);
927 DST(2, 1) = DST(0, 2) = AVG2(K, L);
928 DST(1, 0) = AVG3(I, J, K);
929 DST(3, 0) = DST(1, 1) = AVG3(J, K, L);
930 DST(3, 1) = DST(1, 2) = AVG3(K, L, L);
931 DST(3, 2) = DST(2, 2) =
932 DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L;
933 }
934
HD4(uint8_t * dst,const uint8_t * top)935 static WEBP_INLINE void HD4(uint8_t* dst, const uint8_t* top) {
936 const int X = top[-1];
937 const int I = top[-2];
938 const int J = top[-3];
939 const int K = top[-4];
940 const int L = top[-5];
941 const int A = top[0];
942 const int B = top[1];
943 const int C = top[2];
944
945 DST(0, 0) = DST(2, 1) = AVG2(I, X);
946 DST(0, 1) = DST(2, 2) = AVG2(J, I);
947 DST(0, 2) = DST(2, 3) = AVG2(K, J);
948 DST(0, 3) = AVG2(L, K);
949
950 DST(3, 0) = AVG3(A, B, C);
951 DST(2, 0) = AVG3(X, A, B);
952 DST(1, 0) = DST(3, 1) = AVG3(I, X, A);
953 DST(1, 1) = DST(3, 2) = AVG3(J, I, X);
954 DST(1, 2) = DST(3, 3) = AVG3(K, J, I);
955 DST(1, 3) = AVG3(L, K, J);
956 }
957
TM4(uint8_t * dst,const uint8_t * top)958 static WEBP_INLINE void TM4(uint8_t* dst, const uint8_t* top) {
959 const __m128i zero = _mm_setzero_si128();
960 const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
961 const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
962 int y;
963 for (y = 0; y < 4; ++y, dst += BPS) {
964 const int val = top[-2 - y] - top[-1];
965 const __m128i base = _mm_set1_epi16(val);
966 const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
967 WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
968 }
969 }
970
971 #undef DST
972 #undef AVG3
973 #undef AVG2
974
975 //------------------------------------------------------------------------------
976 // luma 4x4 prediction
977
978 // Left samples are top[-5 .. -2], top_left is top[-1], top are
979 // located at top[0..3], and top right is top[4..7]
Intra4Preds(uint8_t * dst,const uint8_t * top)980 static void Intra4Preds(uint8_t* dst, const uint8_t* top) {
981 DC4(I4DC4 + dst, top);
982 TM4(I4TM4 + dst, top);
983 VE4(I4VE4 + dst, top);
984 HE4(I4HE4 + dst, top);
985 RD4(I4RD4 + dst, top);
986 VR4(I4VR4 + dst, top);
987 LD4(I4LD4 + dst, top);
988 VL4(I4VL4 + dst, top);
989 HD4(I4HD4 + dst, top);
990 HU4(I4HU4 + dst, top);
991 }
992
993 //------------------------------------------------------------------------------
994 // Chroma 8x8 prediction (paragraph 12.2)
995
IntraChromaPreds(uint8_t * dst,const uint8_t * left,const uint8_t * top)996 static void IntraChromaPreds(uint8_t* dst, const uint8_t* left,
997 const uint8_t* top) {
998 // U block
999 DC8uvMode(C8DC8 + dst, left, top);
1000 VerticalPred(C8VE8 + dst, top, 8);
1001 HorizontalPred(C8HE8 + dst, left, 8);
1002 TrueMotion(C8TM8 + dst, left, top, 8);
1003 // V block
1004 dst += 8;
1005 if (top != NULL) top += 8;
1006 if (left != NULL) left += 16;
1007 DC8uvMode(C8DC8 + dst, left, top);
1008 VerticalPred(C8VE8 + dst, top, 8);
1009 HorizontalPred(C8HE8 + dst, left, 8);
1010 TrueMotion(C8TM8 + dst, left, top, 8);
1011 }
1012
1013 //------------------------------------------------------------------------------
1014 // luma 16x16 prediction (paragraph 12.3)
1015
Intra16Preds(uint8_t * dst,const uint8_t * left,const uint8_t * top)1016 static void Intra16Preds(uint8_t* dst,
1017 const uint8_t* left, const uint8_t* top) {
1018 DC16Mode(I16DC16 + dst, left, top);
1019 VerticalPred(I16VE16 + dst, top, 16);
1020 HorizontalPred(I16HE16 + dst, left, 16);
1021 TrueMotion(I16TM16 + dst, left, top, 16);
1022 }
1023
1024 //------------------------------------------------------------------------------
1025 // Metric
1026
SubtractAndAccumulate(const __m128i a,const __m128i b,__m128i * const sum)1027 static WEBP_INLINE void SubtractAndAccumulate(const __m128i a, const __m128i b,
1028 __m128i* const sum) {
1029 // take abs(a-b) in 8b
1030 const __m128i a_b = _mm_subs_epu8(a, b);
1031 const __m128i b_a = _mm_subs_epu8(b, a);
1032 const __m128i abs_a_b = _mm_or_si128(a_b, b_a);
1033 // zero-extend to 16b
1034 const __m128i zero = _mm_setzero_si128();
1035 const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero);
1036 const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero);
1037 // multiply with self
1038 const __m128i sum1 = _mm_madd_epi16(C0, C0);
1039 const __m128i sum2 = _mm_madd_epi16(C1, C1);
1040 *sum = _mm_add_epi32(sum1, sum2);
1041 }
1042
SSE_16xN(const uint8_t * a,const uint8_t * b,int num_pairs)1043 static WEBP_INLINE int SSE_16xN(const uint8_t* a, const uint8_t* b,
1044 int num_pairs) {
1045 __m128i sum = _mm_setzero_si128();
1046 int32_t tmp[4];
1047 int i;
1048
1049 for (i = 0; i < num_pairs; ++i) {
1050 const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]);
1051 const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]);
1052 const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]);
1053 const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]);
1054 __m128i sum1, sum2;
1055 SubtractAndAccumulate(a0, b0, &sum1);
1056 SubtractAndAccumulate(a1, b1, &sum2);
1057 sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2));
1058 a += 2 * BPS;
1059 b += 2 * BPS;
1060 }
1061 _mm_storeu_si128((__m128i*)tmp, sum);
1062 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1063 }
1064
SSE16x16(const uint8_t * a,const uint8_t * b)1065 static int SSE16x16(const uint8_t* a, const uint8_t* b) {
1066 return SSE_16xN(a, b, 8);
1067 }
1068
SSE16x8(const uint8_t * a,const uint8_t * b)1069 static int SSE16x8(const uint8_t* a, const uint8_t* b) {
1070 return SSE_16xN(a, b, 4);
1071 }
1072
1073 #define LOAD_8x16b(ptr) \
1074 _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero)
1075
SSE8x8(const uint8_t * a,const uint8_t * b)1076 static int SSE8x8(const uint8_t* a, const uint8_t* b) {
1077 const __m128i zero = _mm_setzero_si128();
1078 int num_pairs = 4;
1079 __m128i sum = zero;
1080 int32_t tmp[4];
1081 while (num_pairs-- > 0) {
1082 const __m128i a0 = LOAD_8x16b(&a[BPS * 0]);
1083 const __m128i a1 = LOAD_8x16b(&a[BPS * 1]);
1084 const __m128i b0 = LOAD_8x16b(&b[BPS * 0]);
1085 const __m128i b1 = LOAD_8x16b(&b[BPS * 1]);
1086 // subtract
1087 const __m128i c0 = _mm_subs_epi16(a0, b0);
1088 const __m128i c1 = _mm_subs_epi16(a1, b1);
1089 // multiply/accumulate with self
1090 const __m128i d0 = _mm_madd_epi16(c0, c0);
1091 const __m128i d1 = _mm_madd_epi16(c1, c1);
1092 // collect
1093 const __m128i sum01 = _mm_add_epi32(d0, d1);
1094 sum = _mm_add_epi32(sum, sum01);
1095 a += 2 * BPS;
1096 b += 2 * BPS;
1097 }
1098 _mm_storeu_si128((__m128i*)tmp, sum);
1099 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1100 }
1101 #undef LOAD_8x16b
1102
SSE4x4(const uint8_t * a,const uint8_t * b)1103 static int SSE4x4(const uint8_t* a, const uint8_t* b) {
1104 const __m128i zero = _mm_setzero_si128();
1105
1106 // Load values. Note that we read 8 pixels instead of 4,
1107 // but the a/b buffers are over-allocated to that effect.
1108 const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]);
1109 const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]);
1110 const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]);
1111 const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]);
1112 const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]);
1113 const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]);
1114 const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]);
1115 const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]);
1116 // Combine pair of lines.
1117 const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
1118 const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
1119 const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
1120 const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
1121 // Convert to 16b.
1122 const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
1123 const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
1124 const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
1125 const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
1126 // subtract, square and accumulate
1127 const __m128i d0 = _mm_subs_epi16(a01s, b01s);
1128 const __m128i d1 = _mm_subs_epi16(a23s, b23s);
1129 const __m128i e0 = _mm_madd_epi16(d0, d0);
1130 const __m128i e1 = _mm_madd_epi16(d1, d1);
1131 const __m128i sum = _mm_add_epi32(e0, e1);
1132
1133 int32_t tmp[4];
1134 _mm_storeu_si128((__m128i*)tmp, sum);
1135 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
1136 }
1137
1138 //------------------------------------------------------------------------------
1139 // Texture distortion
1140 //
1141 // We try to match the spectral content (weighted) between source and
1142 // reconstructed samples.
1143
1144 // Hadamard transform
1145 // Returns the difference between the weighted sum of the absolute value of
1146 // transformed coefficients.
TTransform(const uint8_t * inA,const uint8_t * inB,const uint16_t * const w)1147 static int TTransform(const uint8_t* inA, const uint8_t* inB,
1148 const uint16_t* const w) {
1149 int32_t sum[4];
1150 __m128i tmp_0, tmp_1, tmp_2, tmp_3;
1151 const __m128i zero = _mm_setzero_si128();
1152
1153 // Load, combine and transpose inputs.
1154 {
1155 const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]);
1156 const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]);
1157 const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]);
1158 const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]);
1159 const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]);
1160 const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]);
1161 const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]);
1162 const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]);
1163
1164 // Combine inA and inB (we'll do two transforms in parallel).
1165 const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
1166 const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
1167 const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
1168 const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
1169 // a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0
1170 // a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0
1171 // a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0
1172 // a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0
1173
1174 // Transpose the two 4x4, discarding the filling zeroes.
1175 const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
1176 const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
1177 // a00 a20 b00 b20 a01 a21 b01 b21 a02 a22 b02 b22 a03 a23 b03 b23
1178 // a10 a30 b10 b30 a11 a31 b11 b31 a12 a32 b12 b32 a13 a33 b13 b33
1179 const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
1180 const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
1181 // a00 a10 a20 a30 b00 b10 b20 b30 a01 a11 a21 a31 b01 b11 b21 b31
1182 // a02 a12 a22 a32 b02 b12 b22 b32 a03 a13 a23 a33 b03 b13 b23 b33
1183
1184 // Convert to 16b.
1185 tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
1186 tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
1187 tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
1188 tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
1189 // a00 a10 a20 a30 b00 b10 b20 b30
1190 // a01 a11 a21 a31 b01 b11 b21 b31
1191 // a02 a12 a22 a32 b02 b12 b22 b32
1192 // a03 a13 a23 a33 b03 b13 b23 b33
1193 }
1194
1195 // Horizontal pass and subsequent transpose.
1196 {
1197 // Calculate a and b (two 4x4 at once).
1198 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1199 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1200 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1201 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1202 const __m128i b0 = _mm_add_epi16(a0, a1);
1203 const __m128i b1 = _mm_add_epi16(a3, a2);
1204 const __m128i b2 = _mm_sub_epi16(a3, a2);
1205 const __m128i b3 = _mm_sub_epi16(a0, a1);
1206 // a00 a01 a02 a03 b00 b01 b02 b03
1207 // a10 a11 a12 a13 b10 b11 b12 b13
1208 // a20 a21 a22 a23 b20 b21 b22 b23
1209 // a30 a31 a32 a33 b30 b31 b32 b33
1210
1211 // Transpose the two 4x4.
1212 const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
1213 const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
1214 const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
1215 const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
1216 // a00 a10 a01 a11 a02 a12 a03 a13
1217 // a20 a30 a21 a31 a22 a32 a23 a33
1218 // b00 b10 b01 b11 b02 b12 b03 b13
1219 // b20 b30 b21 b31 b22 b32 b23 b33
1220 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
1221 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
1222 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
1223 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
1224 // a00 a10 a20 a30 a01 a11 a21 a31
1225 // b00 b10 b20 b30 b01 b11 b21 b31
1226 // a02 a12 a22 a32 a03 a13 a23 a33
1227 // b02 b12 a22 b32 b03 b13 b23 b33
1228 tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
1229 tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
1230 tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
1231 tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
1232 // a00 a10 a20 a30 b00 b10 b20 b30
1233 // a01 a11 a21 a31 b01 b11 b21 b31
1234 // a02 a12 a22 a32 b02 b12 b22 b32
1235 // a03 a13 a23 a33 b03 b13 b23 b33
1236 }
1237
1238 // Vertical pass and difference of weighted sums.
1239 {
1240 // Load all inputs.
1241 const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]);
1242 const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]);
1243
1244 // Calculate a and b (two 4x4 at once).
1245 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
1246 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
1247 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
1248 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
1249 const __m128i b0 = _mm_add_epi16(a0, a1);
1250 const __m128i b1 = _mm_add_epi16(a3, a2);
1251 const __m128i b2 = _mm_sub_epi16(a3, a2);
1252 const __m128i b3 = _mm_sub_epi16(a0, a1);
1253
1254 // Separate the transforms of inA and inB.
1255 __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
1256 __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
1257 __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
1258 __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
1259
1260 {
1261 const __m128i d0 = _mm_sub_epi16(zero, A_b0);
1262 const __m128i d1 = _mm_sub_epi16(zero, A_b2);
1263 const __m128i d2 = _mm_sub_epi16(zero, B_b0);
1264 const __m128i d3 = _mm_sub_epi16(zero, B_b2);
1265 A_b0 = _mm_max_epi16(A_b0, d0); // abs(v), 16b
1266 A_b2 = _mm_max_epi16(A_b2, d1);
1267 B_b0 = _mm_max_epi16(B_b0, d2);
1268 B_b2 = _mm_max_epi16(B_b2, d3);
1269 }
1270
1271 // weighted sums
1272 A_b0 = _mm_madd_epi16(A_b0, w_0);
1273 A_b2 = _mm_madd_epi16(A_b2, w_8);
1274 B_b0 = _mm_madd_epi16(B_b0, w_0);
1275 B_b2 = _mm_madd_epi16(B_b2, w_8);
1276 A_b0 = _mm_add_epi32(A_b0, A_b2);
1277 B_b0 = _mm_add_epi32(B_b0, B_b2);
1278
1279 // difference of weighted sums
1280 A_b0 = _mm_sub_epi32(A_b0, B_b0);
1281 _mm_storeu_si128((__m128i*)&sum[0], A_b0);
1282 }
1283 return sum[0] + sum[1] + sum[2] + sum[3];
1284 }
1285
Disto4x4(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)1286 static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
1287 const uint16_t* const w) {
1288 const int diff_sum = TTransform(a, b, w);
1289 return abs(diff_sum) >> 5;
1290 }
1291
Disto16x16(const uint8_t * const a,const uint8_t * const b,const uint16_t * const w)1292 static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
1293 const uint16_t* const w) {
1294 int D = 0;
1295 int x, y;
1296 for (y = 0; y < 16 * BPS; y += 4 * BPS) {
1297 for (x = 0; x < 16; x += 4) {
1298 D += Disto4x4(a + x + y, b + x + y, w);
1299 }
1300 }
1301 return D;
1302 }
1303
1304 //------------------------------------------------------------------------------
1305 // Quantization
1306 //
1307
DoQuantizeBlock(int16_t in[16],int16_t out[16],const uint16_t * const sharpen,const VP8Matrix * const mtx)1308 static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16],
1309 const uint16_t* const sharpen,
1310 const VP8Matrix* const mtx) {
1311 const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
1312 const __m128i zero = _mm_setzero_si128();
1313 __m128i coeff0, coeff8;
1314 __m128i out0, out8;
1315 __m128i packed_out;
1316
1317 // Load all inputs.
1318 __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
1319 __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
1320 const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]);
1321 const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]);
1322 const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]);
1323 const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]);
1324
1325 // extract sign(in) (0x0000 if positive, 0xffff if negative)
1326 const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
1327 const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
1328
1329 // coeff = abs(in) = (in ^ sign) - sign
1330 coeff0 = _mm_xor_si128(in0, sign0);
1331 coeff8 = _mm_xor_si128(in8, sign8);
1332 coeff0 = _mm_sub_epi16(coeff0, sign0);
1333 coeff8 = _mm_sub_epi16(coeff8, sign8);
1334
1335 // coeff = abs(in) + sharpen
1336 if (sharpen != NULL) {
1337 const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]);
1338 const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]);
1339 coeff0 = _mm_add_epi16(coeff0, sharpen0);
1340 coeff8 = _mm_add_epi16(coeff8, sharpen8);
1341 }
1342
1343 // out = (coeff * iQ + B) >> QFIX
1344 {
1345 // doing calculations with 32b precision (QFIX=17)
1346 // out = (coeff * iQ)
1347 const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
1348 const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
1349 const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
1350 const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
1351 __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
1352 __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
1353 __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
1354 __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
1355 // out = (coeff * iQ + B)
1356 const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]);
1357 const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]);
1358 const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]);
1359 const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]);
1360 out_00 = _mm_add_epi32(out_00, bias_00);
1361 out_04 = _mm_add_epi32(out_04, bias_04);
1362 out_08 = _mm_add_epi32(out_08, bias_08);
1363 out_12 = _mm_add_epi32(out_12, bias_12);
1364 // out = QUANTDIV(coeff, iQ, B, QFIX)
1365 out_00 = _mm_srai_epi32(out_00, QFIX);
1366 out_04 = _mm_srai_epi32(out_04, QFIX);
1367 out_08 = _mm_srai_epi32(out_08, QFIX);
1368 out_12 = _mm_srai_epi32(out_12, QFIX);
1369
1370 // pack result as 16b
1371 out0 = _mm_packs_epi32(out_00, out_04);
1372 out8 = _mm_packs_epi32(out_08, out_12);
1373
1374 // if (coeff > 2047) coeff = 2047
1375 out0 = _mm_min_epi16(out0, max_coeff_2047);
1376 out8 = _mm_min_epi16(out8, max_coeff_2047);
1377 }
1378
1379 // get sign back (if (sign[j]) out_n = -out_n)
1380 out0 = _mm_xor_si128(out0, sign0);
1381 out8 = _mm_xor_si128(out8, sign8);
1382 out0 = _mm_sub_epi16(out0, sign0);
1383 out8 = _mm_sub_epi16(out8, sign8);
1384
1385 // in = out * Q
1386 in0 = _mm_mullo_epi16(out0, q0);
1387 in8 = _mm_mullo_epi16(out8, q8);
1388
1389 _mm_storeu_si128((__m128i*)&in[0], in0);
1390 _mm_storeu_si128((__m128i*)&in[8], in8);
1391
1392 // zigzag the output before storing it.
1393 //
1394 // The zigzag pattern can almost be reproduced with a small sequence of
1395 // shuffles. After it, we only need to swap the 7th (ending up in third
1396 // position instead of twelfth) and 8th values.
1397 {
1398 __m128i outZ0, outZ8;
1399 outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0));
1400 outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
1401 outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
1402 outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1));
1403 outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
1404 outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
1405 _mm_storeu_si128((__m128i*)&out[0], outZ0);
1406 _mm_storeu_si128((__m128i*)&out[8], outZ8);
1407 packed_out = _mm_packs_epi16(outZ0, outZ8);
1408 }
1409 {
1410 const int16_t outZ_12 = out[12];
1411 const int16_t outZ_3 = out[3];
1412 out[3] = outZ_12;
1413 out[12] = outZ_3;
1414 }
1415
1416 // detect if all 'out' values are zeroes or not
1417 return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
1418 }
1419
QuantizeBlock(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)1420 static int QuantizeBlock(int16_t in[16], int16_t out[16],
1421 const VP8Matrix* const mtx) {
1422 return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx);
1423 }
1424
QuantizeBlockWHT(int16_t in[16],int16_t out[16],const VP8Matrix * const mtx)1425 static int QuantizeBlockWHT(int16_t in[16], int16_t out[16],
1426 const VP8Matrix* const mtx) {
1427 return DoQuantizeBlock(in, out, NULL, mtx);
1428 }
1429
Quantize2Blocks(int16_t in[32],int16_t out[32],const VP8Matrix * const mtx)1430 static int Quantize2Blocks(int16_t in[32], int16_t out[32],
1431 const VP8Matrix* const mtx) {
1432 int nz;
1433 const uint16_t* const sharpen = &mtx->sharpen_[0];
1434 nz = DoQuantizeBlock(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0;
1435 nz |= DoQuantizeBlock(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1;
1436 return nz;
1437 }
1438
1439 //------------------------------------------------------------------------------
1440 // Entry point
1441
1442 extern void VP8EncDspInitSSE2(void);
1443
VP8EncDspInitSSE2(void)1444 WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) {
1445 VP8CollectHistogram = CollectHistogram;
1446 VP8EncPredLuma16 = Intra16Preds;
1447 VP8EncPredChroma8 = IntraChromaPreds;
1448 VP8EncPredLuma4 = Intra4Preds;
1449 VP8EncQuantizeBlock = QuantizeBlock;
1450 VP8EncQuantize2Blocks = Quantize2Blocks;
1451 VP8EncQuantizeBlockWHT = QuantizeBlockWHT;
1452 VP8ITransform = ITransform;
1453 VP8FTransform = FTransform;
1454 VP8FTransform2 = FTransform2;
1455 VP8FTransformWHT = FTransformWHT;
1456 VP8SSE16x16 = SSE16x16;
1457 VP8SSE16x8 = SSE16x8;
1458 VP8SSE8x8 = SSE8x8;
1459 VP8SSE4x4 = SSE4x4;
1460 VP8TDisto4x4 = Disto4x4;
1461 VP8TDisto16x16 = Disto16x16;
1462 }
1463
1464 #else // !WEBP_USE_SSE2
1465
1466 WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2)
1467
1468 #endif // WEBP_USE_SSE2
1469