1 // Copyright 2015 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 variant of methods for lossless encoder
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13 
14 #include "./dsp.h"
15 
16 #if defined(WEBP_USE_SSE2)
17 #include <assert.h>
18 #include <emmintrin.h>
19 #include "./lossless.h"
20 
21 // For sign-extended multiplying constants, pre-shifted by 5:
22 #define CST_5b(X)  (((int16_t)((uint16_t)X << 8)) >> 5)
23 
24 //------------------------------------------------------------------------------
25 // Subtract-Green Transform
26 
SubtractGreenFromBlueAndRed(uint32_t * argb_data,int num_pixels)27 static void SubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixels) {
28   int i;
29   for (i = 0; i + 4 <= num_pixels; i += 4) {
30     const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
31     const __m128i A = _mm_srli_epi16(in, 8);     // 0 a 0 g
32     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
33     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // 0g0g
34     const __m128i out = _mm_sub_epi8(in, C);
35     _mm_storeu_si128((__m128i*)&argb_data[i], out);
36   }
37   // fallthrough and finish off with plain-C
38   VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i);
39 }
40 
41 //------------------------------------------------------------------------------
42 // Color Transform
43 
TransformColor(const VP8LMultipliers * const m,uint32_t * argb_data,int num_pixels)44 static void TransformColor(const VP8LMultipliers* const m,
45                            uint32_t* argb_data, int num_pixels) {
46   const __m128i mults_rb = _mm_set_epi16(
47       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
48       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
49       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_),
50       CST_5b(m->green_to_red_), CST_5b(m->green_to_blue_));
51   const __m128i mults_b2 = _mm_set_epi16(
52       CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0,
53       CST_5b(m->red_to_blue_), 0, CST_5b(m->red_to_blue_), 0);
54   const __m128i mask_ag = _mm_set1_epi32(0xff00ff00);  // alpha-green masks
55   const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff);  // red-blue masks
56   int i;
57   for (i = 0; i + 4 <= num_pixels; i += 4) {
58     const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
59     const __m128i A = _mm_and_si128(in, mask_ag);     // a   0   g   0
60     const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
61     const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0));  // g0g0
62     const __m128i D = _mm_mulhi_epi16(C, mults_rb);    // x dr  x db1
63     const __m128i E = _mm_slli_epi16(in, 8);           // r 0   b   0
64     const __m128i F = _mm_mulhi_epi16(E, mults_b2);    // x db2 0   0
65     const __m128i G = _mm_srli_epi32(F, 16);           // 0 0   x db2
66     const __m128i H = _mm_add_epi8(G, D);              // x dr  x  db
67     const __m128i I = _mm_and_si128(H, mask_rb);       // 0 dr  0  db
68     const __m128i out = _mm_sub_epi8(in, I);
69     _mm_storeu_si128((__m128i*)&argb_data[i], out);
70   }
71   // fallthrough and finish off with plain-C
72   VP8LTransformColor_C(m, argb_data + i, num_pixels - i);
73 }
74 
75 //------------------------------------------------------------------------------
76 #define SPAN 8
CollectColorBlueTransforms(const uint32_t * argb,int stride,int tile_width,int tile_height,int green_to_blue,int red_to_blue,int histo[])77 static void CollectColorBlueTransforms(const uint32_t* argb, int stride,
78                                        int tile_width, int tile_height,
79                                        int green_to_blue, int red_to_blue,
80                                        int histo[]) {
81   const __m128i mults_r = _mm_set_epi16(
82       CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0,
83       CST_5b(red_to_blue), 0, CST_5b(red_to_blue), 0);
84   const __m128i mults_g = _mm_set_epi16(
85       0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue),
86       0, CST_5b(green_to_blue), 0, CST_5b(green_to_blue));
87   const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
88   const __m128i mask_b = _mm_set1_epi32(0x0000ff);  // blue mask
89   int y;
90   for (y = 0; y < tile_height; ++y) {
91     const uint32_t* const src = argb + y * stride;
92     int i, x;
93     for (x = 0; x + SPAN <= tile_width; x += SPAN) {
94       uint16_t values[SPAN];
95       const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
96       const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
97       const __m128i A0 = _mm_slli_epi16(in0, 8);        // r 0  | b 0
98       const __m128i A1 = _mm_slli_epi16(in1, 8);
99       const __m128i B0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
100       const __m128i B1 = _mm_and_si128(in1, mask_g);
101       const __m128i C0 = _mm_mulhi_epi16(A0, mults_r);  // x db | 0 0
102       const __m128i C1 = _mm_mulhi_epi16(A1, mults_r);
103       const __m128i D0 = _mm_mulhi_epi16(B0, mults_g);  // 0 0  | x db
104       const __m128i D1 = _mm_mulhi_epi16(B1, mults_g);
105       const __m128i E0 = _mm_sub_epi8(in0, D0);         // x x  | x b'
106       const __m128i E1 = _mm_sub_epi8(in1, D1);
107       const __m128i F0 = _mm_srli_epi32(C0, 16);        // 0 0  | x db
108       const __m128i F1 = _mm_srli_epi32(C1, 16);
109       const __m128i G0 = _mm_sub_epi8(E0, F0);          // 0 0  | x b'
110       const __m128i G1 = _mm_sub_epi8(E1, F1);
111       const __m128i H0 = _mm_and_si128(G0, mask_b);     // 0 0  | 0 b
112       const __m128i H1 = _mm_and_si128(G1, mask_b);
113       const __m128i I = _mm_packs_epi32(H0, H1);        // 0 b' | 0 b'
114       _mm_storeu_si128((__m128i*)values, I);
115       for (i = 0; i < SPAN; ++i) ++histo[values[i]];
116     }
117   }
118   {
119     const int left_over = tile_width & (SPAN - 1);
120     if (left_over > 0) {
121       VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride,
122                                        left_over, tile_height,
123                                        green_to_blue, red_to_blue, histo);
124     }
125   }
126 }
127 
CollectColorRedTransforms(const uint32_t * argb,int stride,int tile_width,int tile_height,int green_to_red,int histo[])128 static void CollectColorRedTransforms(const uint32_t* argb, int stride,
129                                       int tile_width, int tile_height,
130                                       int green_to_red, int histo[]) {
131   const __m128i mults_g = _mm_set_epi16(
132       0, CST_5b(green_to_red), 0, CST_5b(green_to_red),
133       0, CST_5b(green_to_red), 0, CST_5b(green_to_red));
134   const __m128i mask_g = _mm_set1_epi32(0x00ff00);  // green mask
135   const __m128i mask = _mm_set1_epi32(0xff);
136 
137   int y;
138   for (y = 0; y < tile_height; ++y) {
139     const uint32_t* const src = argb + y * stride;
140     int i, x;
141     for (x = 0; x + SPAN <= tile_width; x += SPAN) {
142       uint16_t values[SPAN];
143       const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x +        0]);
144       const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
145       const __m128i A0 = _mm_and_si128(in0, mask_g);    // 0 0  | g 0
146       const __m128i A1 = _mm_and_si128(in1, mask_g);
147       const __m128i B0 = _mm_srli_epi32(in0, 16);       // 0 0  | x r
148       const __m128i B1 = _mm_srli_epi32(in1, 16);
149       const __m128i C0 = _mm_mulhi_epi16(A0, mults_g);  // 0 0  | x dr
150       const __m128i C1 = _mm_mulhi_epi16(A1, mults_g);
151       const __m128i E0 = _mm_sub_epi8(B0, C0);          // x x  | x r'
152       const __m128i E1 = _mm_sub_epi8(B1, C1);
153       const __m128i F0 = _mm_and_si128(E0, mask);       // 0 0  | 0 r'
154       const __m128i F1 = _mm_and_si128(E1, mask);
155       const __m128i I = _mm_packs_epi32(F0, F1);
156       _mm_storeu_si128((__m128i*)values, I);
157       for (i = 0; i < SPAN; ++i) ++histo[values[i]];
158     }
159   }
160   {
161     const int left_over = tile_width & (SPAN - 1);
162     if (left_over > 0) {
163       VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride,
164                                       left_over, tile_height,
165                                       green_to_red, histo);
166     }
167   }
168 }
169 #undef SPAN
170 
171 //------------------------------------------------------------------------------
172 
173 #define LINE_SIZE 16    // 8 or 16
AddVector(const uint32_t * a,const uint32_t * b,uint32_t * out,int size)174 static void AddVector(const uint32_t* a, const uint32_t* b, uint32_t* out,
175                       int size) {
176   int i;
177   assert(size % LINE_SIZE == 0);
178   for (i = 0; i < size; i += LINE_SIZE) {
179     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
180     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
181 #if (LINE_SIZE == 16)
182     const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
183     const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
184 #endif
185     const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i +  0]);
186     const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i +  4]);
187 #if (LINE_SIZE == 16)
188     const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i +  8]);
189     const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]);
190 #endif
191     _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
192     _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
193 #if (LINE_SIZE == 16)
194     _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
195     _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
196 #endif
197   }
198 }
199 
AddVectorEq(const uint32_t * a,uint32_t * out,int size)200 static void AddVectorEq(const uint32_t* a, uint32_t* out, int size) {
201   int i;
202   assert(size % LINE_SIZE == 0);
203   for (i = 0; i < size; i += LINE_SIZE) {
204     const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i +  0]);
205     const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i +  4]);
206 #if (LINE_SIZE == 16)
207     const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i +  8]);
208     const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
209 #endif
210     const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i +  0]);
211     const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i +  4]);
212 #if (LINE_SIZE == 16)
213     const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i +  8]);
214     const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]);
215 #endif
216     _mm_storeu_si128((__m128i*)&out[i +  0], _mm_add_epi32(a0, b0));
217     _mm_storeu_si128((__m128i*)&out[i +  4], _mm_add_epi32(a1, b1));
218 #if (LINE_SIZE == 16)
219     _mm_storeu_si128((__m128i*)&out[i +  8], _mm_add_epi32(a2, b2));
220     _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
221 #endif
222   }
223 }
224 #undef LINE_SIZE
225 
226 // Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But
227 // that's ok since the histogram values are less than 1<<28 (max picture size).
HistogramAdd(const VP8LHistogram * const a,const VP8LHistogram * const b,VP8LHistogram * const out)228 static void HistogramAdd(const VP8LHistogram* const a,
229                          const VP8LHistogram* const b,
230                          VP8LHistogram* const out) {
231   int i;
232   const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_);
233   assert(a->palette_code_bits_ == b->palette_code_bits_);
234   if (b != out) {
235     AddVector(a->literal_, b->literal_, out->literal_, NUM_LITERAL_CODES);
236     AddVector(a->red_, b->red_, out->red_, NUM_LITERAL_CODES);
237     AddVector(a->blue_, b->blue_, out->blue_, NUM_LITERAL_CODES);
238     AddVector(a->alpha_, b->alpha_, out->alpha_, NUM_LITERAL_CODES);
239   } else {
240     AddVectorEq(a->literal_, out->literal_, NUM_LITERAL_CODES);
241     AddVectorEq(a->red_, out->red_, NUM_LITERAL_CODES);
242     AddVectorEq(a->blue_, out->blue_, NUM_LITERAL_CODES);
243     AddVectorEq(a->alpha_, out->alpha_, NUM_LITERAL_CODES);
244   }
245   for (i = NUM_LITERAL_CODES; i < literal_size; ++i) {
246     out->literal_[i] = a->literal_[i] + b->literal_[i];
247   }
248   for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
249     out->distance_[i] = a->distance_[i] + b->distance_[i];
250   }
251 }
252 
253 //------------------------------------------------------------------------------
254 // Entropy
255 
256 // Checks whether the X or Y contribution is worth computing and adding.
257 // Used in loop unrolling.
258 #define ANALYZE_X_OR_Y(x_or_y, j)                                   \
259   do {                                                              \
260     if (x_or_y[i + j] != 0) retval -= VP8LFastSLog2(x_or_y[i + j]); \
261   } while (0)
262 
263 // Checks whether the X + Y contribution is worth computing and adding.
264 // Used in loop unrolling.
265 #define ANALYZE_XY(j)                  \
266   do {                                 \
267     if (tmp[j] != 0) {                 \
268       retval -= VP8LFastSLog2(tmp[j]); \
269       ANALYZE_X_OR_Y(X, j);            \
270     }                                  \
271   } while (0)
272 
CombinedShannonEntropy(const int X[256],const int Y[256])273 static float CombinedShannonEntropy(const int X[256], const int Y[256]) {
274   int i;
275   double retval = 0.;
276   int sumX, sumXY;
277   int32_t tmp[4];
278   __m128i zero = _mm_setzero_si128();
279   // Sums up X + Y, 4 ints at a time (and will merge it at the end for sumXY).
280   __m128i sumXY_128 = zero;
281   __m128i sumX_128 = zero;
282 
283   for (i = 0; i < 256; i += 4) {
284     const __m128i x = _mm_loadu_si128((const __m128i*)(X + i));
285     const __m128i y = _mm_loadu_si128((const __m128i*)(Y + i));
286 
287     // Check if any X is non-zero: this actually provides a speedup as X is
288     // usually sparse.
289     if (_mm_movemask_epi8(_mm_cmpeq_epi32(x, zero)) != 0xFFFF) {
290       const __m128i xy_128 = _mm_add_epi32(x, y);
291       sumXY_128 = _mm_add_epi32(sumXY_128, xy_128);
292 
293       sumX_128 = _mm_add_epi32(sumX_128, x);
294 
295       // Analyze the different X + Y.
296       _mm_storeu_si128((__m128i*)tmp, xy_128);
297 
298       ANALYZE_XY(0);
299       ANALYZE_XY(1);
300       ANALYZE_XY(2);
301       ANALYZE_XY(3);
302     } else {
303       // X is fully 0, so only deal with Y.
304       sumXY_128 = _mm_add_epi32(sumXY_128, y);
305 
306       ANALYZE_X_OR_Y(Y, 0);
307       ANALYZE_X_OR_Y(Y, 1);
308       ANALYZE_X_OR_Y(Y, 2);
309       ANALYZE_X_OR_Y(Y, 3);
310     }
311   }
312 
313   // Sum up sumX_128 to get sumX.
314   _mm_storeu_si128((__m128i*)tmp, sumX_128);
315   sumX = tmp[3] + tmp[2] + tmp[1] + tmp[0];
316 
317   // Sum up sumXY_128 to get sumXY.
318   _mm_storeu_si128((__m128i*)tmp, sumXY_128);
319   sumXY = tmp[3] + tmp[2] + tmp[1] + tmp[0];
320 
321   retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY);
322   return (float)retval;
323 }
324 #undef ANALYZE_X_OR_Y
325 #undef ANALYZE_XY
326 
327 //------------------------------------------------------------------------------
328 // Entry point
329 
330 extern void VP8LEncDspInitSSE2(void);
331 
VP8LEncDspInitSSE2(void)332 WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) {
333   VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed;
334   VP8LTransformColor = TransformColor;
335   VP8LCollectColorBlueTransforms = CollectColorBlueTransforms;
336   VP8LCollectColorRedTransforms = CollectColorRedTransforms;
337   VP8LHistogramAdd = HistogramAdd;
338   VP8LCombinedShannonEntropy = CombinedShannonEntropy;
339 }
340 
341 #else  // !WEBP_USE_SSE2
342 
343 WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2)
344 
345 #endif  // WEBP_USE_SSE2
346