• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Macroblock analysis
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13 
14 #include <stdlib.h>
15 #include <string.h>
16 #include <assert.h>
17 
18 #include "./vp8enci.h"
19 #include "./cost.h"
20 #include "../utils/utils.h"
21 
22 #define MAX_ITERS_K_MEANS  6
23 
24 //------------------------------------------------------------------------------
25 // Smooth the segment map by replacing isolated block by the majority of its
26 // neighbours.
27 
SmoothSegmentMap(VP8Encoder * const enc)28 static void SmoothSegmentMap(VP8Encoder* const enc) {
29   int n, x, y;
30   const int w = enc->mb_w_;
31   const int h = enc->mb_h_;
32   const int majority_cnt_3_x_3_grid = 5;
33   uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp));
34   assert((uint64_t)(w * h) == (uint64_t)w * h);   // no overflow, as per spec
35 
36   if (tmp == NULL) return;
37   for (y = 1; y < h - 1; ++y) {
38     for (x = 1; x < w - 1; ++x) {
39       int cnt[NUM_MB_SEGMENTS] = { 0 };
40       const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
41       int majority_seg = mb->segment_;
42       // Check the 8 neighbouring segment values.
43       cnt[mb[-w - 1].segment_]++;  // top-left
44       cnt[mb[-w + 0].segment_]++;  // top
45       cnt[mb[-w + 1].segment_]++;  // top-right
46       cnt[mb[   - 1].segment_]++;  // left
47       cnt[mb[   + 1].segment_]++;  // right
48       cnt[mb[ w - 1].segment_]++;  // bottom-left
49       cnt[mb[ w + 0].segment_]++;  // bottom
50       cnt[mb[ w + 1].segment_]++;  // bottom-right
51       for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
52         if (cnt[n] >= majority_cnt_3_x_3_grid) {
53           majority_seg = n;
54           break;
55         }
56       }
57       tmp[x + y * w] = majority_seg;
58     }
59   }
60   for (y = 1; y < h - 1; ++y) {
61     for (x = 1; x < w - 1; ++x) {
62       VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
63       mb->segment_ = tmp[x + y * w];
64     }
65   }
66   WebPSafeFree(tmp);
67 }
68 
69 //------------------------------------------------------------------------------
70 // set segment susceptibility alpha_ / beta_
71 
clip(int v,int m,int M)72 static WEBP_INLINE int clip(int v, int m, int M) {
73   return (v < m) ? m : (v > M) ? M : v;
74 }
75 
SetSegmentAlphas(VP8Encoder * const enc,const int centers[NUM_MB_SEGMENTS],int mid)76 static void SetSegmentAlphas(VP8Encoder* const enc,
77                              const int centers[NUM_MB_SEGMENTS],
78                              int mid) {
79   const int nb = enc->segment_hdr_.num_segments_;
80   int min = centers[0], max = centers[0];
81   int n;
82 
83   if (nb > 1) {
84     for (n = 0; n < nb; ++n) {
85       if (min > centers[n]) min = centers[n];
86       if (max < centers[n]) max = centers[n];
87     }
88   }
89   if (max == min) max = min + 1;
90   assert(mid <= max && mid >= min);
91   for (n = 0; n < nb; ++n) {
92     const int alpha = 255 * (centers[n] - mid) / (max - min);
93     const int beta = 255 * (centers[n] - min) / (max - min);
94     enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
95     enc->dqm_[n].beta_ = clip(beta, 0, 255);
96   }
97 }
98 
99 //------------------------------------------------------------------------------
100 // Compute susceptibility based on DCT-coeff histograms:
101 // the higher, the "easier" the macroblock is to compress.
102 
103 #define MAX_ALPHA 255                // 8b of precision for susceptibilities.
104 #define ALPHA_SCALE (2 * MAX_ALPHA)  // scaling factor for alpha.
105 #define DEFAULT_ALPHA (-1)
106 #define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
107 
FinalAlphaValue(int alpha)108 static int FinalAlphaValue(int alpha) {
109   alpha = MAX_ALPHA - alpha;
110   return clip(alpha, 0, MAX_ALPHA);
111 }
112 
GetAlpha(const VP8Histogram * const histo)113 static int GetAlpha(const VP8Histogram* const histo) {
114   // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
115   // values which happen to be mostly noise. This leaves the maximum precision
116   // for handling the useful small values which contribute most.
117   const int max_value = histo->max_value;
118   const int last_non_zero = histo->last_non_zero;
119   const int alpha =
120       (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
121   return alpha;
122 }
123 
InitHistogram(VP8Histogram * const histo)124 static void InitHistogram(VP8Histogram* const histo) {
125   histo->max_value = 0;
126   histo->last_non_zero = 1;
127 }
128 
MergeHistograms(const VP8Histogram * const in,VP8Histogram * const out)129 static void MergeHistograms(const VP8Histogram* const in,
130                             VP8Histogram* const out) {
131   if (in->max_value > out->max_value) {
132     out->max_value = in->max_value;
133   }
134   if (in->last_non_zero > out->last_non_zero) {
135     out->last_non_zero = in->last_non_zero;
136   }
137 }
138 
139 //------------------------------------------------------------------------------
140 // Simplified k-Means, to assign Nb segments based on alpha-histogram
141 
AssignSegments(VP8Encoder * const enc,const int alphas[MAX_ALPHA+1])142 static void AssignSegments(VP8Encoder* const enc,
143                            const int alphas[MAX_ALPHA + 1]) {
144   // 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an
145   // explicit check is needed to avoid spurious warning about 'n + 1' exceeding
146   // array bounds of 'centers' with some compilers (noticed with gcc-4.9).
147   const int nb = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS) ?
148                  enc->segment_hdr_.num_segments_ : NUM_MB_SEGMENTS;
149   int centers[NUM_MB_SEGMENTS];
150   int weighted_average = 0;
151   int map[MAX_ALPHA + 1];
152   int a, n, k;
153   int min_a = 0, max_a = MAX_ALPHA, range_a;
154   // 'int' type is ok for histo, and won't overflow
155   int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
156 
157   assert(nb >= 1);
158   assert(nb <= NUM_MB_SEGMENTS);
159 
160   // bracket the input
161   for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
162   min_a = n;
163   for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
164   max_a = n;
165   range_a = max_a - min_a;
166 
167   // Spread initial centers evenly
168   for (k = 0, n = 1; k < nb; ++k, n += 2) {
169     assert(n < 2 * nb);
170     centers[k] = min_a + (n * range_a) / (2 * nb);
171   }
172 
173   for (k = 0; k < MAX_ITERS_K_MEANS; ++k) {     // few iters are enough
174     int total_weight;
175     int displaced;
176     // Reset stats
177     for (n = 0; n < nb; ++n) {
178       accum[n] = 0;
179       dist_accum[n] = 0;
180     }
181     // Assign nearest center for each 'a'
182     n = 0;    // track the nearest center for current 'a'
183     for (a = min_a; a <= max_a; ++a) {
184       if (alphas[a]) {
185         while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) {
186           n++;
187         }
188         map[a] = n;
189         // accumulate contribution into best centroid
190         dist_accum[n] += a * alphas[a];
191         accum[n] += alphas[a];
192       }
193     }
194     // All point are classified. Move the centroids to the
195     // center of their respective cloud.
196     displaced = 0;
197     weighted_average = 0;
198     total_weight = 0;
199     for (n = 0; n < nb; ++n) {
200       if (accum[n]) {
201         const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
202         displaced += abs(centers[n] - new_center);
203         centers[n] = new_center;
204         weighted_average += new_center * accum[n];
205         total_weight += accum[n];
206       }
207     }
208     weighted_average = (weighted_average + total_weight / 2) / total_weight;
209     if (displaced < 5) break;   // no need to keep on looping...
210   }
211 
212   // Map each original value to the closest centroid
213   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
214     VP8MBInfo* const mb = &enc->mb_info_[n];
215     const int alpha = mb->alpha_;
216     mb->segment_ = map[alpha];
217     mb->alpha_ = centers[map[alpha]];  // for the record.
218   }
219 
220   if (nb > 1) {
221     const int smooth = (enc->config_->preprocessing & 1);
222     if (smooth) SmoothSegmentMap(enc);
223   }
224 
225   SetSegmentAlphas(enc, centers, weighted_average);  // pick some alphas.
226 }
227 
228 //------------------------------------------------------------------------------
229 // Macroblock analysis: collect histogram for each mode, deduce the maximal
230 // susceptibility and set best modes for this macroblock.
231 // Segment assignment is done later.
232 
233 // Number of modes to inspect for alpha_ evaluation. We don't need to test all
234 // the possible modes during the analysis phase: we risk falling into a local
235 // optimum, or be subject to boundary effect
236 #define MAX_INTRA16_MODE 2
237 #define MAX_INTRA4_MODE  2
238 #define MAX_UV_MODE      2
239 
MBAnalyzeBestIntra16Mode(VP8EncIterator * const it)240 static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
241   const int max_mode = MAX_INTRA16_MODE;
242   int mode;
243   int best_alpha = DEFAULT_ALPHA;
244   int best_mode = 0;
245 
246   VP8MakeLuma16Preds(it);
247   for (mode = 0; mode < max_mode; ++mode) {
248     VP8Histogram histo;
249     int alpha;
250 
251     InitHistogram(&histo);
252     VP8CollectHistogram(it->yuv_in_ + Y_OFF_ENC,
253                         it->yuv_p_ + VP8I16ModeOffsets[mode],
254                         0, 16, &histo);
255     alpha = GetAlpha(&histo);
256     if (IS_BETTER_ALPHA(alpha, best_alpha)) {
257       best_alpha = alpha;
258       best_mode = mode;
259     }
260   }
261   VP8SetIntra16Mode(it, best_mode);
262   return best_alpha;
263 }
264 
MBAnalyzeBestIntra4Mode(VP8EncIterator * const it,int best_alpha)265 static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
266                                    int best_alpha) {
267   uint8_t modes[16];
268   const int max_mode = MAX_INTRA4_MODE;
269   int i4_alpha;
270   VP8Histogram total_histo;
271   int cur_histo = 0;
272   InitHistogram(&total_histo);
273 
274   VP8IteratorStartI4(it);
275   do {
276     int mode;
277     int best_mode_alpha = DEFAULT_ALPHA;
278     VP8Histogram histos[2];
279     const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_];
280 
281     VP8MakeIntra4Preds(it);
282     for (mode = 0; mode < max_mode; ++mode) {
283       int alpha;
284 
285       InitHistogram(&histos[cur_histo]);
286       VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
287                           0, 1, &histos[cur_histo]);
288       alpha = GetAlpha(&histos[cur_histo]);
289       if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
290         best_mode_alpha = alpha;
291         modes[it->i4_] = mode;
292         cur_histo ^= 1;   // keep track of best histo so far.
293       }
294     }
295     // accumulate best histogram
296     MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
297     // Note: we reuse the original samples for predictors
298   } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF_ENC));
299 
300   i4_alpha = GetAlpha(&total_histo);
301   if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
302     VP8SetIntra4Mode(it, modes);
303     best_alpha = i4_alpha;
304   }
305   return best_alpha;
306 }
307 
MBAnalyzeBestUVMode(VP8EncIterator * const it)308 static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
309   int best_alpha = DEFAULT_ALPHA;
310   int best_mode = 0;
311   const int max_mode = MAX_UV_MODE;
312   int mode;
313 
314   VP8MakeChroma8Preds(it);
315   for (mode = 0; mode < max_mode; ++mode) {
316     VP8Histogram histo;
317     int alpha;
318     InitHistogram(&histo);
319     VP8CollectHistogram(it->yuv_in_ + U_OFF_ENC,
320                         it->yuv_p_ + VP8UVModeOffsets[mode],
321                         16, 16 + 4 + 4, &histo);
322     alpha = GetAlpha(&histo);
323     if (IS_BETTER_ALPHA(alpha, best_alpha)) {
324       best_alpha = alpha;
325       best_mode = mode;
326     }
327   }
328   VP8SetIntraUVMode(it, best_mode);
329   return best_alpha;
330 }
331 
MBAnalyze(VP8EncIterator * const it,int alphas[MAX_ALPHA+1],int * const alpha,int * const uv_alpha)332 static void MBAnalyze(VP8EncIterator* const it,
333                       int alphas[MAX_ALPHA + 1],
334                       int* const alpha, int* const uv_alpha) {
335   const VP8Encoder* const enc = it->enc_;
336   int best_alpha, best_uv_alpha;
337 
338   VP8SetIntra16Mode(it, 0);  // default: Intra16, DC_PRED
339   VP8SetSkip(it, 0);         // not skipped
340   VP8SetSegment(it, 0);      // default segment, spec-wise.
341 
342   best_alpha = MBAnalyzeBestIntra16Mode(it);
343   if (enc->method_ >= 5) {
344     // We go and make a fast decision for intra4/intra16.
345     // It's usually not a good and definitive pick, but helps seeding the stats
346     // about level bit-cost.
347     // TODO(skal): improve criterion.
348     best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
349   }
350   best_uv_alpha = MBAnalyzeBestUVMode(it);
351 
352   // Final susceptibility mix
353   best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
354   best_alpha = FinalAlphaValue(best_alpha);
355   alphas[best_alpha]++;
356   it->mb_->alpha_ = best_alpha;   // for later remapping.
357 
358   // Accumulate for later complexity analysis.
359   *alpha += best_alpha;   // mixed susceptibility (not just luma)
360   *uv_alpha += best_uv_alpha;
361 }
362 
DefaultMBInfo(VP8MBInfo * const mb)363 static void DefaultMBInfo(VP8MBInfo* const mb) {
364   mb->type_ = 1;     // I16x16
365   mb->uv_mode_ = 0;
366   mb->skip_ = 0;     // not skipped
367   mb->segment_ = 0;  // default segment
368   mb->alpha_ = 0;
369 }
370 
371 //------------------------------------------------------------------------------
372 // Main analysis loop:
373 // Collect all susceptibilities for each macroblock and record their
374 // distribution in alphas[]. Segments is assigned a-posteriori, based on
375 // this histogram.
376 // We also pick an intra16 prediction mode, which shouldn't be considered
377 // final except for fast-encode settings. We can also pick some intra4 modes
378 // and decide intra4/intra16, but that's usually almost always a bad choice at
379 // this stage.
380 
ResetAllMBInfo(VP8Encoder * const enc)381 static void ResetAllMBInfo(VP8Encoder* const enc) {
382   int n;
383   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
384     DefaultMBInfo(&enc->mb_info_[n]);
385   }
386   // Default susceptibilities.
387   enc->dqm_[0].alpha_ = 0;
388   enc->dqm_[0].beta_ = 0;
389   // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value.
390   enc->alpha_ = 0;
391   enc->uv_alpha_ = 0;
392   WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
393 }
394 
395 // struct used to collect job result
396 typedef struct {
397   WebPWorker worker;
398   int alphas[MAX_ALPHA + 1];
399   int alpha, uv_alpha;
400   VP8EncIterator it;
401   int delta_progress;
402 } SegmentJob;
403 
404 // main work call
DoSegmentsJob(SegmentJob * const job,VP8EncIterator * const it)405 static int DoSegmentsJob(SegmentJob* const job, VP8EncIterator* const it) {
406   int ok = 1;
407   if (!VP8IteratorIsDone(it)) {
408     uint8_t tmp[32 + WEBP_ALIGN_CST];
409     uint8_t* const scratch = (uint8_t*)WEBP_ALIGN(tmp);
410     do {
411       // Let's pretend we have perfect lossless reconstruction.
412       VP8IteratorImport(it, scratch);
413       MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha);
414       ok = VP8IteratorProgress(it, job->delta_progress);
415     } while (ok && VP8IteratorNext(it));
416   }
417   return ok;
418 }
419 
MergeJobs(const SegmentJob * const src,SegmentJob * const dst)420 static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) {
421   int i;
422   for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i];
423   dst->alpha += src->alpha;
424   dst->uv_alpha += src->uv_alpha;
425 }
426 
427 // initialize the job struct with some TODOs
InitSegmentJob(VP8Encoder * const enc,SegmentJob * const job,int start_row,int end_row)428 static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job,
429                            int start_row, int end_row) {
430   WebPGetWorkerInterface()->Init(&job->worker);
431   job->worker.data1 = job;
432   job->worker.data2 = &job->it;
433   job->worker.hook = (WebPWorkerHook)DoSegmentsJob;
434   VP8IteratorInit(enc, &job->it);
435   VP8IteratorSetRow(&job->it, start_row);
436   VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_);
437   memset(job->alphas, 0, sizeof(job->alphas));
438   job->alpha = 0;
439   job->uv_alpha = 0;
440   // only one of both jobs can record the progress, since we don't
441   // expect the user's hook to be multi-thread safe
442   job->delta_progress = (start_row == 0) ? 20 : 0;
443 }
444 
445 // main entry point
VP8EncAnalyze(VP8Encoder * const enc)446 int VP8EncAnalyze(VP8Encoder* const enc) {
447   int ok = 1;
448   const int do_segments =
449       enc->config_->emulate_jpeg_size ||   // We need the complexity evaluation.
450       (enc->segment_hdr_.num_segments_ > 1) ||
451       (enc->method_ == 0);  // for method 0, we need preds_[] to be filled.
452   if (do_segments) {
453     const int last_row = enc->mb_h_;
454     // We give a little more than a half work to the main thread.
455     const int split_row = (9 * last_row + 15) >> 4;
456     const int total_mb = last_row * enc->mb_w_;
457 #ifdef WEBP_USE_THREAD
458     const int kMinSplitRow = 2;  // minimal rows needed for mt to be worth it
459     const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow);
460 #else
461     const int do_mt = 0;
462 #endif
463     const WebPWorkerInterface* const worker_interface =
464         WebPGetWorkerInterface();
465     SegmentJob main_job;
466     if (do_mt) {
467       SegmentJob side_job;
468       // Note the use of '&' instead of '&&' because we must call the functions
469       // no matter what.
470       InitSegmentJob(enc, &main_job, 0, split_row);
471       InitSegmentJob(enc, &side_job, split_row, last_row);
472       // we don't need to call Reset() on main_job.worker, since we're calling
473       // WebPWorkerExecute() on it
474       ok &= worker_interface->Reset(&side_job.worker);
475       // launch the two jobs in parallel
476       if (ok) {
477         worker_interface->Launch(&side_job.worker);
478         worker_interface->Execute(&main_job.worker);
479         ok &= worker_interface->Sync(&side_job.worker);
480         ok &= worker_interface->Sync(&main_job.worker);
481       }
482       worker_interface->End(&side_job.worker);
483       if (ok) MergeJobs(&side_job, &main_job);  // merge results together
484     } else {
485       // Even for single-thread case, we use the generic Worker tools.
486       InitSegmentJob(enc, &main_job, 0, last_row);
487       worker_interface->Execute(&main_job.worker);
488       ok &= worker_interface->Sync(&main_job.worker);
489     }
490     worker_interface->End(&main_job.worker);
491     if (ok) {
492       enc->alpha_ = main_job.alpha / total_mb;
493       enc->uv_alpha_ = main_job.uv_alpha / total_mb;
494       AssignSegments(enc, main_job.alphas);
495     }
496   } else {   // Use only one default segment.
497     ResetAllMBInfo(enc);
498   }
499   return ok;
500 }
501 
502